Examples of Skewed Temperatures

Source: Scott Runyon M.S. Thesis

<u>Methodology</u>

- Temperature data were gathered from the National Climatic Data Center's (NCDC) high resolution surface dataset
- Daily high temperatures were extracted for 54 surface stations over a 54-year period (1948–2001)
- Stations selected on basis of both dataset continuity and coverage within the NCDC's Standard Regions for temperature and precipitation

- An anomalously hot day was initially defined as a day having a high temperature ≥ 2 standard deviations (σ) above the normal* high temperature
- Result:
 - Large variability in number of anomalous warm events between stations
 - Extreme ratios of anomalously hot days to anomalously cold days at many stations

 This initial method led to a discovery: *High temperatures at most stations are not normally distributed ("skewed")*

Negatively Skewed

2 Standard Deviation		
Temperature Anomalies		
Station	<u>% Negative</u>	<u>% Positive</u>
DEN	94.2	5.8
CYS	91.3	8.7
TPA	90.7	9.3
MSY	88.8	11.2
BPT	87.8	12.2
AMA	87.6	12.4
ELY	87.6	12.4
GTF	86.9	13.1
ABQ	86.5	13.5
SJT	86.3	13.7

Positively Skewed

2 Standard De∨iation			
Temperature Anomalies			
Station	<u>% Negative</u>	<u>% Positive</u>	
LAX	5.7	94.3	
SFO	13.8	86.2	
ERI	28.8	71.2	
BOS	30.7	69.3	
SEA	32.2	67.8	
LGA	37.7	62.3	
MKE	40.5	59.5	
CAR	40.8	59.2	
ALB	44.5	55.5	
ORF	44.5	55.5	

 <u>Temperature data is widely</u> <u>assumed to be normally distributed</u>

Los Angeles, CA and Denver, CO:

 Most positively and negatively skewed datasets, respectively
 Using 2σ method 989 (49) anomalously hot days were found in Los Angeles (Denver) for all seasons

Most Positively Skewed Station: Los Angeles, CA

Los Angeles, CA: Daily High Temperatures

June 1 – August 31, 1948 – 2001

Los Angeles, CA: Composite Mean Sea Level Pressure (hPa) – Ten Most Anomalous Warm Summer Days

Los Angeles, CA: Daily High Temperatures

December 1 – February 29, 1948 – 2001

Los Angeles, CA: Composite Mean Sea Level Pressure (hPa) – Ten Most Anomalous Warm Winter Days

Most Negatively Skewed Station: Denver, CO

Denver, CO: Daily High Temperatures

June 1 – August 31, 1948 – 2001

Denver, CO: Composite Mean Sea Level Pressure (hPa) – Ten Most Anomalous Cold Summer Days

Denver, CO: Daily High Temperatures

December 1 – February 29, 1948 – 2001

Denver, CO: Composite Mean Sea Level Pressure (hPa) – Ten Most Anomalous Cold Winter Days