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ABSTRACT

NOAA’s second-generation reforecasts are approximately consistent with the operational version of the

2012 NOAA Global Ensemble Forecast System (GEFS). The reforecasts allow verification to be performed

across a multidecadal time period using a static model, in contrast to verifications performed using an ever-

evolving operational modeling system. This contribution examines three commonly used verification metrics

for reforecasts of precipitation over the southeastern United States: equitable threat score, bias, and ranked

probability skill score.Analysis of the verificationmetrics highlights the variation in the ability of theGEFS to

predict precipitation across amount, season, forecast lead time, and location. Beyond day 5.5, there is little

useful skill in quantitative precipitation forecasts (QPFs) or probabilistic QPFs. For lighter precipitation

thresholds [e.g., 5 and 10mm (24 h)21], use of the ensemblemean adds about 10% to the forecast skill over the

deterministic control. QPFs have increased in accuracy from 1985 to 2013, likely due to improvements in

observations. Results of this investigation are a first step toward using the reforecast database to distinguish

weather regimes that the GEFS typically predicts well from those regimes that the GEFS typically predicts

poorly.

1. Introduction

Attendant with the development of advanced nu-

merical weather prediction (NWP) systems is the need

to verify the capabilities of these systems. In particular,

the quantitative precipitation forecast (QPF) is impor-

tant to society and challenging for NWP systems. At

what forecast lead time does NWP QPF skill effectively

vanish?Howmuch additional skill is provided by the use

of ensemble versus deterministic forecasts? Has QPF

skill changed over time? The development of NOAA’s

second-generation reforecast database (Hamill et al.

2013) allows these questions to be addressed. Due to

challenges in verifying QPF in areas where the pre-

cipitation climatology varies considerably (Hamill and

Juras 2006), our focus is restricted to the southeastern

United States (SEUS), where climatological pre-

cipitation characteristics are relatively homogeneous

(Prat and Nelson 2014).
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The SEUS receives precipitation associated with

a variety of meteorological phenomena, including tropi-

cal cyclones, baroclinic waves, mesoscale convective

systems, and localized diurnal convection (Moore et al.

2014, manuscript submitted toMon. Wea. Rev., hereafter

MMSCH). The juxtaposition of the Appalachian

Mountains to the Atlantic Ocean and Gulf of Mexico

creates an environment where QPFs are particularly

challenging. While QPFs from NWP and forecasters

have improved over the last 30 yr (Novak et al. 2014),

challenges remain. A static model run over multiple

decades allows for verifications that span time scales

longer than the periods that operational models remain

unchanged. Long-term verification of reforecast data

provides a sufficiently large sample size to allow the

development of model climatology, which can then be

compared with the climatology of the atmosphere.

NWP verification can inform forecasters of the

strengths, limitations, and best applications of a model-

ing system. Ensembles attempt to provide a measure of

confidence in a particular outcome, but if the model

driving the ensemble system has difficulty in predicting

a phenomenon, the ensemble spread can be misleading

to a forecaster and therefore has reduced utility. Thus, it

is helpful to document the accuracy of a modeling sys-

tem’s QPFs over long periods, and to provide this in-

formation to forecasters in a manner that allows for easy

incorporation into the forecast process. As the value

added by human forecasters over model QPF is dimin-

ishing (Novak et al. 2014), the need to leverage any

sources of available information to improve uponmodel

QPF becomes increasingly critical.

The National Oceanic and Atmospheric Administra-

tion’s (NOAA) second-generation reforecasts are ap-

proximately consistent with the operational 0000 UTC

cycle of the 2012 NOAA Global Ensemble Forecast

System (GEFS). The 11-member reforecasts were cre-

ated at ;0.58 grid spacing out to day 8 and ;0.758 grid
spacing for day-8–16 forecasts. Because of the change in

grid spacing, we use only day-0–7 reforecasts. The re-

forecasts were verified using gridded precipitation data

from NOAA/Climate Prediction Center’s Daily U.S.

Unified Precipitation Dataset (Chen et al. 2008). This

analysis is composed of gauge observations interpolated

onto a 0.258 grid. The 29 yr (January 1985–December

2013) of verification undertaken here precludes the use

of a multisensor precipitation dataset. The reforecasts

and precipitation data were interpolated onto a common

0.58 3 0.58 grid over the SEUS (Fig. 6, described in

greater detail below, depicts the area of study) using

bilinear interpolation. As the period of observed pre-

cipitation is from 1200 to 1200 UTC, and the reforecasts

were initialized at 0000 UTC, the lead times used in this

study are from 1.5 days (12–36 h) through 7.5 days (156–

180 h). For in-depth explanation of verification metrics,

the reader is directed to Wilks (2011, chapter 8) and

Jolliffe and Stephenson (2012, chapters 2 and 3). To

enhance readability, all time series of yearly quantities

have been filtered with the 1–2–1 (orHanning) filter (see

Von Storch and Zwiers 1999). Linear regressions and

their statistical significance at the 95% confidence level

have been computed for all time series using un-

smoothed data.

2. Verification of deterministic forecasts

The equitable threat score (ETS) evaluates a model’s

ability to predict a two-category event. Values range

from21/3 to 1, where 1 represents a perfect forecast and

0 or less indicates unskilled forecasts. ETS is given by

h2 hc
h1 fa1m2 hc

where hc5
(h1 fa)(h1m)

n
. (1)

Here, h are hits, fa are false alarms,m are misses, and hc
represents hits correct by chance (n is equal to h1 fa 1
m 1 cn, where cn are correct negatives).

Generally, time series of annual ETS depict a statisti-

cally significant upward trend (Fig. 1). As the model and

data assimilation system used in the reforecasts remains

static over the period, the upward trend in ETS is likely

due to improvements of the initial conditions used by

the model through increased and higher quality obser-

vations. Alternatively, the upward trend may in part be

explained by changes in the quality of the verification

dataset. The year-to-year variability in ETS evidently

results from variability in the model’s ability to predict

the phenomena that lead to precipitation in those years.

Also, ETS tends to increase with fractional area cover-

age of the phenomenon (Hamill 1999; MMSCH). Model

QPF errors arise from both the quality of the model and

observations, and the model atmosphere’s sensitive de-

pendence on the initial conditions [Zhang et al. (2006),

after Lorenz (1996)]. ETS decreases with increasing lead

time and with increasing threshold. Beyond day 5.5,

average ETS values are below 0.1 (except for the 5-mm

threshold), indicating little to no skill. When the average

ETS over 1985–89 is compared with 2009–13, an in-

crease in ETS is seen for all lead times at all thresholds,

though trends over the entire period are not significant

for the three time series shown with dashed lines in Fig.

1. The increases in ETS over the period for day-1.5

forecasts are 0.088, 0.084, 0.073, and 0.081 for 5-, 10-, 25-,

and 40-mm thresholds, respectively. For day 7.5, the

increases in ETS are 0.030, 0.025, 0.015 (not significant),

and 0.006 (not significant) for 5-, 10-, 25-, and 40-mm
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thresholds, respectively. Thus, day-1.5 ETS values have

increased by 3, 3, 5, and 14 times for 5-, 10-, 25-, and 40-

mm thresholds, respectively, when compared with day-

7.5 ETS values over the nearly 30-yr period. The most

recent day-3.5 ETS values are approximately equivalent

in accuracy to the oldest day-1.5 reforecasts, as follows

for 5-, 10-, 25-, and 40-mm thresholds: 0.33 versus 0.36,

0.24 versus 0.22, 0.18 versus 0.17, and 0.11 versus 0.12.

This increase in useful lead time is likely due to increases

in the quantity and quality of the observations, and il-

lustrates the considerable impact these better observa-

tions have had on QPFs over the SEUS.

Considerable seasonal variability in ETS is present for

the 20-mm threshold (Fig. 2). The 20-mm threshold is

chosen for further analysis, as it represents an ‘‘inter-

mediate’’ amount of precipitation in the SEUS, and it

occurs with sufficient frequency to allow meaningful

analysis. Average ETS is highest in winter (0.19), fol-

lowed by fall (0.16), spring (0.15), and summer (0.07),

consistent with Fig. 3 of Hamill et al. (2013). This order

in average ETS persists for days 1.5–5.5. At days 6.5 and

7.5, average ETSs for winter, spring, and fall are essen-

tially the same, within 0.01. Beyond day 5.5, ETS values

for all seasons are below 0.1, indicating little to no skill.

As with annual ETS, seasonal ETS exhibits an increase in

5-yr-average ETS from the beginning to the end of the

period, with most trends over the entire period being

statistically significant. The trend in summer-day-1.5 ETS

is minimal (0.01), less than that of winter (0.13), spring

(0.10), or fall (0.10), suggesting that improvements in

observations have not led to as much improvement in

summer QPF compared with other seasons (e.g., Fritsch

and Carbone 2004). Similar patterns are seen in ETS for

other thresholds.

The bias score B describes the ratio of the number of

yes forecasts to the number of yes observations, where h,

fa, and m are as in (1):

B5
h1 fa

h1m
. (2)

When bias exceeds one, the event is overforecast, and

when bias is less than one, the event is underforecast. A

FIG. 1. Annual ETSs from 1985 to 2013 for (a) 5-, (b) 10-, (c) 25-, and (d) 40-mm thresholds. Lines are forecast lead

times as indicated in the legend. Dashed lines indicate trends are not significant at the 95% confidence level. The

domain used for calculation can be seen in Fig. 6.
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bias of one indicates the event was forecast the same

number of times as it was observed. Bias does not mea-

sure the correspondence between individual forecast–

observation pairs and, thus, provides no information on

model accuracy. At a 20-mm threshold, precipitation is

underforecast in all seasons (Fig. 3), as indicated by

averages over all years and forecast lead times: winter

(0.94), spring (0.89), summer (0.62), and fall (0.72). The

bias closer to unity in the winter may result from the

tendency for gauges to underestimate precipitation that

falls as snow (Rasmussen et al. 2012). Annual variability

in the bias likely arises from variation in the number of

events forecast or observed from year to year. Only four

of the trends in the 28 bias time series are statistically

significant.

3. Verification of ensemble forecasts

The ensemble mean versus control QPF was com-

pared by calculating the ETS for each season over the

29-yr period for both forecasts and, then, finding the

percent difference (Fig. 4). In general, the ensemble

mean provides the most improvement over the control

for lower thresholds and shorter lead times. As

thresholds increase, the ensemble mean is more sus-

ceptible to smearing (i.e., multiple nonoverlapping

positions of the precipitation maximum across en-

semble members), leading to underestimation of the

magnitudes found in the control. This effect is most

pronounced in summer, when rain amounts are cli-

matologically higher and precipitation is more local-

ized. In all seasons but summer, and for all thresholds

except for 40mm, the ensemble mean has an average

of 6% higher ETS values versus the control through

4.5-day lead time. In all seasons but summer, the 5-

and 10-mm thresholds have an average of 10% higher

ETS values in the mean for all lead times through 7.5

days.

The ranked probability score (RPS) measures the

difference between the cumulative distributions of

FIG. 2. Annual ETSs for the 20-mm threshold from 1985 to 2013 for (a) winter, (b) spring, (c) summer, and (d) fall.

Lines are forecast lead times as indicated in the legend. Dashed lines indicate trends are not significant at the 95%

confidence level.
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forecasts and observations over a set of categories, as

follows:

RPS5 �
K

k51

(CDFfc,k 2CDFobs,k)
2 , (3)

where k 5 1, . . . , K indicates the number of categories,

and CDF refers to the cumulative distribution of either

the forecast fc or observations obs. Categories were

chosen to be similar to those used for probabilistic QPF

at NOAA’s Weather Prediction Center.1 A ranked prob-

ability skill score is defined as RPSS5 12RPS/RPSCL,

where RPSCL is the RPS computed using the cumulative

climatological distribution to forecast the cumulative

distribution of the observations. Overbars indicate that

values are averaged over time and space. RPSS values

less than 0 indicate that a probabilistic quantitative

precipitation forecast (PQPF) from the ensemble is

no better than using a climatological distribution as

a probabilistic prediction. Seasonal values of RPSCL
were calculated at every grid point using cumulative

climatological distributions for each season. Note that

comparing the RPSS values applied here with other

ensemble systems with differing numbers of members

will not provide an even comparison, and additional

calculations would be needed to appropriately make

such comparisons (Richardson 2001).

As with ETS from the control run, when RPSS are

averaged over all years and forecast lead times (Fig. 5),

winter has the highest skill score (0.23), followed by fall

(0.19), spring (0.14), and summer (20.05). The negative

summer value indicates that RPS values are worse than

those that could be achieved by using climatology. In the

summer, only day-1.5 RPS values exceed those from

FIG. 3. Annual B for the 20-mm threshold from 1985 to 2013 for (a) winter, (b) spring, (c) summer, and (d) fall.

Lines are forecast lead times as indicated in the legend. Dashed lines indicate trends are not significant at the 95%

confidence level.

1 Categories are mutually exclusive and encompass all possibil-

ities: $0 and ,1, $1 and ,3, $3 and ,5, $5 and ,10, $10 and

,20,$20 and,25,$25 and,40,$40 and,50,$50 and,65,$65

and ,75, and $75mm.
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climatology. This result indicates that the resolution of

the reforecast system is not adequate to predict the scale

of the phenomena dominant in the summer months in

the SEUS; intrinsic predictability in the model is re-

duced in the presence of convection (Zhang et al. 2003).

Systematic deficiencies in the GEFS also contribute to

QPF error, such as the excessive semblance of ensemble

members, resulting in overconfident probabilistic fore-

casts (Palmer 2012). Average RPSS values beyond day

5.5 are less than 0.1, indicating little to no skill. Seasonal

RPSSs experience an upward trend when 5-yr-average

RPSSs from the first 5 yr are compared with those of the

last 5 yr. All forecast leads in every season exhibit this

upward trend, though trends for four time series are

not statistically significant when linear regressions are

computed over the entire period. This indicates that

better observations have led to not only an increase in

accuracy in deterministic QPF, but also in the ensem-

ble’s ability to provide a probabilistic QPF. The trend in

day-1.5 RPSS is greatest for fall (0.27), followed by

winter (0.20), spring (0.12), and summer (0.10). In-

terestingly, the summer exhibits a positive trend for

PQPF as measured by RPSS, while no appreciable trend

is observed for deterministic QPF as measured by ETS.

Spatial plots of seasonal RPSSs (Fig. 6) qualitatively

match the day-1.5 curves in Fig. 5, with winter and fall

having the highest RPSSs, and spring and summer the

lowest RPSSs. In the summer, PQPFs are no better than

climatology when measured by RPS in parts of the do-

main. Outside of summer, areas in the interior of the

domain feature the greatest improvement over clima-

tology. Longer lead times follow similar patterns, with

the areas of greatest improvement shrinking in size to-

ward the center of the domain.

4. Conclusions and future work

To assess QPF skill as a function of lead time, and to

quantify the benefit of the ensemble mean over determin-

istic QPFs, verification of the NOAA second-generation

FIG. 4. Changes (%) in ETS with forecast lead time when ensemble mean is compared with control for (a) winter,

(b) spring, (c) summer, and (d) fall over the 1985–2013 period. Lines are precipitation thresholds as indicated in the legend.
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reforecast dataset has been completed for the SEUS

from 1985 to 2013. This long-term verification provides

forecasters with useful information on the capabilities

of the current generation of NOAA’s GEFS. Both

deterministic and probabilistic QPFs exhibit long-term

increases, likely due to the improvement of the obser-

vations. For deterministic QPFs, summer does not

feature an appreciable increase, while an increase in

summer occurs for PQPFs. For all seasons, day-6.5

and day-7.5 QPFs and PQPFs for the SEUS have little

to no skill over random chance or climatology, re-

spectively. The use of the ensemble mean rather than

the control offers benefit on average, especially for

lower thresholds and shorter lead times. Reforecasts can

be used to improve forecasts of precipitation through

many techniques, such as the analog-based technique of

Hamill and Whitaker (2006) or logistic regression

(Hamill et al. 2008). Verification of these adjusted real-

time forecasts has shown them to be superior to the re-

forecasts themselves and the unadjusted real-time

forecasts (Hamill et al. 2013).

MMSCH produced a 10-yr climatology of extreme

precipitation events in the SEUS and found that events

associated with stronger dynamical forcing were more

accurately predicted by the reforecasts in terms of ETS,

bias, and fractional area. This is corroborated by the

present study of all precipitation events in the SEUS, as

the summer events were poorly predicted and are more

likely to be associated with weaker dynamical forcing.

Future work will analyze patterns associated with the

most and least accurate reforecasts of precipitation

events in the SEUS. Greater understanding of how the

modeled atmosphere differs from the real atmosphere

will allow forecasters and researchers to identify situa-

tions where model guidance is likely to be poor. In ad-

dition, continuing analysis of the complex relationship

between forecast precipitation, ensemble spread, and

accuracy will help forecasters to better convert ensem-

ble guidance into useful forecast confidence (Palmer

2012). The results of such analyses can help forecasters

better allocate their time and effort in improving model

guidance, and would allow researchers to better allocate

FIG. 5. Annual RPSSs from 1985 to 2013 for (a) winter, (b) spring, (c) summer, and (d) fall. Lines are forecast lead

times as indicated in the legend. Dashed lines indicate trends are not significant at the 95% confidence level.
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their resources in improving observing and modeling

systems.
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