
Objective Limits on Forecasting Skill of Rare Events

NATHAN M. HITCHENS* AND HAROLD E. BROOKS

NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

MICHAEL P. KAY
1

Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma,

and NOAA/NWS/Storm Prediction Center, Norman, Oklahoma

(Manuscript received 18 October 2012, in final form 13 December 2012)

ABSTRACT

A method for determining baselines of skill for the purpose of the verification of rare-event forecasts is

described and examples are presented to illustrate the sensitivity to parameter choices. These ‘‘practically

perfect’’ forecasts are designed to resemble a forecast that is consistent with that which a forecaster would

make given perfect knowledge of the events beforehand. The Storm Prediction Center’s convective outlook

slight risk areas are evaluated over the period from 1973 to 2011 using practically perfect forecasts to define

the maximum values of the critical success index that a forecaster could reasonably achieve given the con-

straints of the forecast, as well as the minimum values of the critical success index that are considered the

baseline for skillful forecasts. Based on these upper and lower bounds, the relative skill of convective outlook

areas shows little to no skill until the mid-1990s, after which this value increases steadily. The annual fre-

quency of skillful daily forecasts continues to increase from the beginning of the period of study, and the

annual cycle shows maxima of the frequency of skillful daily forecasts occurring in May and June.

1. Introduction

Forecasting rare, severe weather events is challenging.

Equally challenging, however, is the problem of de-

veloping verification procedures that can be meaningful

from the standpoint of forecasters, forecast users, and

the forecasting organization. A wide range of difficulties

arises within this context, from collecting good obser-

vations of the phenomena in question to conveying in-

formation from the verification in a meaningful way.

In his essay on the nature of goodness in weather

forecasting, Murphy (1993) defines ‘‘quality’’ (type 2

goodness) as the degree of correspondence between

forecasts and events. Ten aspects of quality are defined,

with ‘‘accuracy’’ and ‘‘skill’’ of particular interest when

considering the forecasting of rare events. Accuracy is

described as the average correspondence between in-

dividual pairs of forecasts and observations, while skill

is described as the accuracy of forecasts relative to the

accuracy of a forecast produced by a standard of ref-

erence.1 So, while knowing the accuracy of a forecast is

helpful, it may be more significant to know whether or

not a forecast was skillful (and the degree of skill) in

order to better understand the value added by a fore-

caster. For instance, a forecast that is accurate within 1.08
is more skillful when compared to a guidance forecast

that is accurate within 5.08 than a guidance forecast that is
accurate within 1.58.
In this paper we will focus on one particular problem

associated with the verification of rare-event forecasts:

development of appropriate baselines for skill given that

forecast difficulty varies from situation to situation. Ef-

forts to identify ‘‘no skill’’ baselines date back to Gilbert

(1884) and have focused primarily on the use of
* Current affiliation: Department of Geography, Ball State Uni-
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climatological (either sample or long term) data. Such

efforts attempt to limit the credit given to forecasters for

making easy, correct forecasts, guessing, or forecasting

the same thing all the time, particularly when the ob-

servations are dominated by nonevents of the element

of interest. To quote Peirce (1884), ‘‘The value of the

expert work must be measured by the excess which is

obtained over the man who knows nothing of the sub-

ject.’’ In effect, we would like to know the quality of

a forecast system compared to some other standard, or

baseline, forecast system.

The question of whether forecasters improve the

quality of forecast guidance was examined by Ebert et al.

(2004) in their verification of forecasts from the World

Weather Research Programme’s Sydney 2000 Forecast

Demonstration Project. Forecasts for a variety of events,

including the location of convection, were made using

a number of radar-based nowcast algorithms, with per-

sistence forecasts used as the no-skill baseline for the

evaluation of the forecasts. No skill in this sense does not

mean that the baseline forecast system is of low quality;

merely that it performs at a level against which other

forecast systems are to be compared. The authors ob-

served that, in some instances, forecasters were able to

make significant improvements to the persistence fore-

casts, but at other times forecaster intervention resulted

in less desirable outcomes. It is also pertinent to note that

although hail events were forecast during this project,

only a single thunderstorm had hail reports associated

with it, and of the 20 hail reports recorded, only 11 in-

cluded usable size and location data. This illustrates the

difficulties in verifying events in which reports are pri-

marily made by the general public.

A challenge similar to Ebert et al.’s (2004) lack of hail

reports was discussed in Brown et al.’s (1997) verifica-

tion of in-flight icing algorithms. Pilot reports are the

only actual measure of icing events, but two issues arise

when considering the use of these reports for verification

purposes. First, pilots are not required to report ‘‘no ic-

ing’’ conditions and have no incentive to do so.As a result

the authors noted that only 25% of all pilot reports were

for no-icing events. Second, regions where icing con-

ditions are forecast to occur may be avoided by pilots

due to the inherent safety issues accompanying such

conditions. Thus, the authors differentiated between

‘‘pilot reports’’ and ‘‘icing events’’ and described the

implications this had on the verification measures used.

For the verification of severe thunderstorm forecasts,

particularly in the form of guidance products such as the

convective outlooks issued by the Storm Prediction

Center (SPC), the problem of verifying rare events takes

on additional complexity. Much like the challenges

faced by Brown et al. (1997) and Ebert et al. (2004),

almost all of the observations come in from volunteer

spotters, so that there is no regular temporal and spatial

order to the observations. The existence of a forecast

that an event is likely to occur could increase the like-

lihood that observers will be present to collect obser-

vations compared to a forecast of no event. Further,

outlook products are issued with the explicit expecta-

tion that there will be ‘‘false alarms’’ (parts of the

forecast for which there are no events) and ‘‘missed

detections’’ (events which are not included in the fore-

cast). Thus, the expected range of values of the proba-

bility of detection (POD) or false alarm rate (FAR), for

example, does not run from 0 to 1 in practice. Here, we

will discuss the concept of a ‘‘practically’’ perfect (PP)

forecast (Brooks et al. 1998; Davis and Carr 2000) and

apply it to the SPC’s categorical convective outlook

products, specifically their ‘‘slight risk’’ areas, which we

will refer to henceforth using the broad term ‘‘outlooks.’’

The dataset of outlooks used herein is described in

Hitchens and Brooks (2012), with the addition of data

from 2011.

By practically perfect,2 we mean a forecast that is

consistent with that which a forecaster would make given

perfect knowledge of the reported events beforehand and

the operational constraints associated with the fore-

casting system. If, as in the case of outlooks, there are

explicit or implicit limits on the size of the product (e.g.,

outlooks are rarely smaller than 50 000 km2) or if the

forecaster has the goal of having a minimum number of

reports within a forecast area before a product should be

issued, then there will be false alarms and missed de-

tections associated with the PP forecast. The PP forecast

can then be used to estimate the maximum score, and as

will be shown, also the minimum score that a forecaster

could reasonably obtain. In general, that range will be

much smaller than the absolute minimum andmaximum,

but will provide a range over which forecast performance

can be judged. Note that such a concept is not limited to

any particular score that can be derived from a set of

verification data, nor is it limited to dichotomous (yes–

no) forecasts. It can be applied to any forecast measure

and to probabilistic forecasts easily.

2 The term ‘‘practically perfect’’ draws on the usage ‘‘practical

zero,’’ in which a person offering a judgment on the probability of

a very unlikely event may describe it as zero, even though they do

not think the probability is exactly zero. The probability is suffi-

ciently low to be regarded as zero in typical applications. Similarly,

the ‘‘practically’’ in practically perfect does not mean that the

forecast is almost perfect, but that the forecast is as good as could

be expected in typical practice.
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2. Practically perfect forecasts

To develop the PP forecast, we will begin with the re-

ports of events, as recorded at the SPC. Reports of severe

weather are put on a grid with each grid box representing

an area approximately 80 km3 80 km, roughly equivalent

to the area associated with SPC forecast definitions of the

probability of an event occurring within 25 miles (mi) of

a point. For now, we will consider all severe weather

reports as equal and look at only whether a box has

had an event or not. (The methodology could be ex-

tended to consider the intensity and number of re-

ports, but we will limit the procedure to the simplest

case.) The PP forecast is then created by smoothing

the events using nonparametric density estimation with

a two-dimensional Gaussian kernel (Silverman 1986).

FIG. 1. (a),(f) SPC convective outlooks, (b),(g) locations of storm reports, and PP forecasts

for s 5 (c),(h) 0.75, (d),(i) 1.5, and (e),(j) 3.0 for the 24-h periods beginning at 1200 UTC on

(a)–(e) 19Apr 2011 and (f)–(j) 1 Aug 2010. Light shading in (a),(b) denotes slight risk areas and

darker shading indicated moderate risk areas.
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Specifically, at each grid point in the domain, the PP

forecast value f is given by

f 5 �
N

n51

1

2ps2
exp

�
2
1

2

�
dn
s

�2�
, (1)

where dn is the distance from the forecast grid point to

the nth location that had an event occur, N is the total

number of grid points with events, and s is a weighting

function that can be interpreted as the confidence one

has in the location of the forecast event. Increasing s is

equivalent to increasing the spatial uncertainty associ-

ated with the forecast as one would do with increasing

lead time of the forecast. That is, within the context of

severe weather forecasting, very small s can be thought

of as being associated with the warning stage, while

larger s is associated with the watch or convective out-

look stages.

The field of f gives an artificial forecast that is as good

as could be expected for a forecaster knowing the lo-

cations of events with a confidence level associated with

s; it gives the probability that an event occurs in a given

grid box. To illustrate the impact of the choice of the

s value (0.75, 1.5, or 3.0), we examine events repre-

senting the two extremes on the spectrum of severe

weather forecast scenarios: a large ‘‘outbreak’’ (case 1;

Figs. 1a–e) and a relatively small number of reports with

little spatial concentration (case 2; Figs. 1f–j). There are

1045 severe weather reports covering 209 grid boxes in

case 1, and 73 reports covering 18 grid boxes in case 2.

For both cases the PP forecast size decreases with in-

creasing probability threshold values, with the rate of

decrease being larger at higher s values (Fig. 2). Con-

centrating on each s value, for 0.75 the size of the 0.01

or greater probability area for case 1 (case 2) is 1.79 (1.27)

million km2, and reduces to no area at a probability of

94% (57%). Likewise, for as value of 1.5 (3.0), the size of

the 0.01 probability area is 3.04 (4.76) million km2 for

case 1, and 2.60 (4.00) million km2 for case 2. The prob-

ability threshold at which it reduces to no area for case 1 is

100% (84%) and is 28% (17%) for case 2.

The choice of the value of s should at least in part be

made with the goal of emulating the range of sizes made

by forecasters. A comparison of quantiles of outlook size

and PP forecast size from 1982–91 and 2002–11 (Fig. 3)

reveals a shift from outlooks being more closely asso-

ciated in size to PP forecasts at the 5% threshold to PP

forecasts at the 10% threshold. Forecasts from the mid-

1990s were purposely excluded due to apparent changes

in forecasting philosophies that significantly impacted

the size of outlook areas (Hitchens and Brooks 2012).

Quantiles of the first two s values (0.75 and 1.5) corre-

spond well to the line y 5 x, with noticeable curvature

toward the y axis at lower quantiles, suggesting that there

is greater variability among outlook sizes at these quan-

tiles. The quantiles for s5 3.0 are sharply curved toward

the x axis at lower quantiles, indicating more dispersion

among PP forecasts at these quantiles and, in general,

show much less correspondence to the line y 5 x com-

pared to the other s values.

By considering each increasing PP forecast proba-

bility value as an individual threshold, we can convert

the range of probabilities into a set of dichotomous (yes

or no) forecasts of severe weather. This allows for the

development of a 2 3 2 contingency table for each

probability threshold (Table 1) and the calculation of

standard measures of performance [see Doswell et al.

(1990) for a complete description of the measures used

herein]. For each probability threshold the critical success

index (CSI), a performance measure that compares the

number of correct forecasts to the union of all forecasts

and observations, is calculated. The value of the CSI at a

FIG. 2. The PP forecast size by probability threshold for the 24-h

period beginning at 1200 UTC on (a) 19 Apr 2011 and (b) 1 Aug

2010. The size of the SPC’s outlook area for the same period is

displayed as a dashed horizontal line.
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probability threshold of 0% (always forecast yes) is equal

to the areal coverage of the event. This represents one

estimate of the lower bound on expected performance,

which the forecaster could attain by forecasting that the

event would occur everywhere. A slightly greater lower

bound can be found by noting that there is a large drop in

CSI from a probability threshold of 1% to a threshold of

0%, and considering the value that CSI approaches as the

probability threshold approaches zero. The 2% and 1%

CSI values are used to linearly extrapolate this adjusted

lower bound. In the two cases described above the CSI

values at the 0% threshold are 0.06 and 0.02 for cases 1

and 2, respectively, while the values for the adjusted

lower bound are 0.29 and 0.08 (for s 5 1.5).

FIG. 3. The Q–Q plots comparing quantiles of the size of the SPC’s outlook areas and the PP forecast

5% (black circles) and 10% (gray squares) probability areas during (left) 1982–91 and (right) 2002–11 for

s 5 (top) 0.75, (middle) 1.5, and (bottom) 3.0. The line y 5 x is displayed as a black, dashed line.
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As s increases, the maximum value of CSI generally

decreases (Fig. 4). Assuming that a value of s can be

found that produces forecasts that ‘‘look’’ like real fore-

casts (e.g., similar areal coverage), the practicalmaximum

value of CSI for that situation, given the nature of the

forecast, can be obtained. Thus, the simple artificial fore-

cast can be used to estimate the upper and lower bounds

on the performance measure. Based on the size com-

parison above,s5 3.0would not be a suitable choice, and

of the remaining two values, s5 1.5 better represents the

outlooks issued by the SPC. For example, the maximum

CSI value attained using s 5 0.75 in case 1 (case 2) is

0.90 (0.84), while for s 5 1.5 the maximum is 0.78 (0.31).

Not only does s 5 1.5 provide a more reasonable upper

bound, especially in the case of an event that is less

concentrated (e.g., Fig. 4b), but it also compares better

visually to the SPC’s outlooks (Fig. 1). Thus, s 5 1.5 will

be used hereafter when PP values are calculated. Using

this approach to define practical lower and upper bounds

for severeweather forecasts, we can determine the skill of

a forecast by calculating its relative position between the

two bounds. In our two cases the relative skill of the first

case is 0.71 and 0.13 for the second, providing increases

from their CSI values of 0.64 and 0.11.

3. Application to categorical forecasts

Expanding this analysis to the entire digital dataset of

SPC outlooks (1973–2011), it is seen from a 365-day

running mean3 that these forecasts show little to no skill

until 1987, after which the relative skill remains above

zero (Fig. 5). Further, until the mid-1990s the relative

skill shows little variation, ranging between 20.03 and

0.06, but beginning in 1995 there is a steady increase

until the end of the period of record, with a maximum

relative skill of 0.25 in 2010. This corresponds with the

improvements in POD and frequency of hits (FOH)

observed in Hitchens and Brooks (2012) for the same

forecasts. A number of factors could have contributed to

this increase in relative skill, including advancements

in numerical weather prediction, changes in forecasting

philosophies within the SPC, improved physical under-

standing of severe thunderstorms, and the completion

of upgrades to the national radar network. It is impossible

to determine the relative importance of these, or other,

factors, particularly considering thatwe cannot put strong

limits on the interannual variability of the difficulty of the

forecasts. Through the first 25 yr of data the CSI value for

TABLE 1. A 2 3 2 contingency table for forecasts and observations.

Observed yes Observed no Sum

Forecast yes a b a 1 b

Forecast no c d c 1 d

Sum a 1 c b 1 d n

Quantities of interest: probability of detection (POD)5 a/(a1 c),

frequency of hits (FOH)5 a/(a1 b), critical success index (CSI)5
a/(a 1 b 1 c), and bias 5 (a 1 b)/(a 1 c).

FIG. 4. CSI value by PP forecast probability threshold for the

24-h period beginning at 1200UTCon (a) 19Apr 2011 and (b) 1Aug

2010. The CSI value calculated from the SPC’s outlook area for the

same period is displayed as a dashed horizontal line.

3 In this study 365-day running means are computed by con-

structing a 23 2 table that sums all 365 forecasts centered on each

day. In the case of maximumCSI from PP forecasts, the 23 2 table

associated with each day’s maximum CSI value is used in the

construction of the table for the 365-day period.
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both the upper and lower bounds increased steadily, by

;0.10 for the upper bound and ;0.04 for the lower, but

from 1998 onward neither displayed a noticeable trend.

Likewise, during the first two decades the CSI of the

outlooks increased at nearly the same rate as the lower

bound, but after 1995 it increased at a higher rate than the

lower bound, accounting for the increase in relative skill

over that time.

The SPC outlooks and the practical upper and lower

bounds can be further analyzed using a performance

diagram of annual mean values to examine additional

measures related to these forecasts (Fig. 6). As expected,

the lower bound has a POD of 1.0 since these PP forecast

areas include all reports, but these large areal extents

limit the FOH to 0.05–0.11. Of more interest is the upper

bound, which shows amoderate increase in POD through

time (0.50–0.69), but exhibits the most improvement in

FOH (0.38–0.65). While the POD of the outlooks in-

creased significantly during the first 20 yr of the study

period, it has not displayed a steady improvement in

the remaining years, but only trails the upper bound

by 0.12 for 2011. Although the FOH values of the out-

looks have been increasing since the mid-1990s, the

best value (0.26 in 2011) has not yet reached the lowest

value of the upper bound (0.38 in 1977) and trails the

FOH of 2011 (0.63) by 0.37. The recent improvement in

the performance of the outlooks, as well as the poten-

tial for continued improvement, can be attributed to

the placement of outlook areas (i.e., correctly forecasting

as many events as possible while seeking to minimize

outlook size).

Another useful application of the upper and lower

bounds is for investigating how often individual out-

looks are skillful (i.e., positive, nonzero values of rel-

ative skill). Throughout the period of record the annual

frequency of skillful forecasts has increased steadily

from 22% in 1973 to 75% in 2011 when considering all

forecast days,4 with a maximum of 78% during 2008

(Fig. 7). These frequencies are slightly higher when

considering only days with both an outlook and at least

one observation, with a maximum of 86% during 2009.

The annual cycle of skillful forecast frequency for all days

(Fig. 8) shows a peak in May (55%) during the 10-yr

period covering 1982–91, and for 2002–11 the peak fre-

quency occurs in June (86%), with a distinct secondary

peak in November (69%). For both decades January is

the month with the lowest frequency of skillful forecasts

(23% and 54%, respectively). It should be noted that

the entirety of the frequencies from the latter period

are above 50%, while only two (April and May) from

the prior period exceed this number. Frequencies in

the first decade are impacted by a larger proportion of

false alarms and missed events during the cool season

(October–February) compared to the latter decade,

while the proportions of these events were similar in both

decades for the remaining months. The 90% confidence

interval for each decade is constructed from 101 trials

with random samples without replacement sized at half

the number of events for a particular month. These

confidence intervals suggest that the frequencies from

each decade are well separated, with larger intervals

during the cool season in both periods.

Over the same two 10-yr periods, the frequency of the

relative skill values for all days is calculated (Fig. 9) il-

lustrating an increase in skillful forecasts from 44% to

73%. This increase is the result of forecasts that showed

small negative (0.0 to20.2) to small positive (#0.1) skill

during 1982–91 instead showing more skill in the mod-

erate to high positive values (0.2–0.6). From a forecasting

perspective this change in the distribution of relative skill

is partly caused by the reduction of false alarms by 58%

(a reduction in frequency of 0.03), which are considered

to have zero relative skill, as well as increases in the skill

of forecasts with relative skill values of at least 20.2 by

FIG. 5. (a) CSI values calculated using a 365-day running mean.

The maximum and minimum CSI values from PP forecasts are

plotted as gray lines and the CSI value from SPC outlook areas is

plotted as a black line. (b) The skill of the SPC’s outlook areas is

calculated as the relative position of the outlookCSI value between

the corresponding maximum andminimumCSI values from the PP

forecast.

4 The term ‘‘all forecast days’’ includes days when an outlook was

issued and no reports were recorded (‘‘false alarm’’), and days when

no outlook was issued but reports were recorded (‘‘missed events’’).

In the latter scenario the area of the upper bound must be at least as

large as the smallest regular outlook area (;64 000 km2).
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making better forecasts (namely increasing FOH). An-

other interesting change observed in Fig. 9 is the increase

in the frequency of forecasts with relative skill values

between20.2 and20.3. This increase (0.0228) is entirely

the result of a rise in missed events (up 49%), contrib-

uting 0.0235 to the frequency of the relative skill values in

that range. The discrepancy is likely due to slight im-

provements in forecasts with accompanying observations

(i.e., forecasts that were not ‘‘false alarms’’) between

the two decades. Some of these ‘‘missed events’’ are

rather substantial, with 46% having at least 20 grid

boxes containing reports, and 5% with at least 50 grid

boxes. However, the majority of these apparent misses

are forecast by the SPC as ‘‘see text’’; locations where

a threat of severe weather exists, but that threat is not

sufficient to issue a slight risk. These forecasts were first

issued publicly beginning in 1999, and their spatial ex-

tents are not explicitly defined.

As demonstrated in the performance diagram, im-

provements in CSI (and relative skill) are influenced

more by improvements in FOH. This relationship is

supported in a plot of FOHvalues as a function of relative

skill (Fig. 10), with a 0.77 coefficient of determination

(R2). For relative skill values from just below 0.0 to

FIG. 6. Performance diagram (Roebber 2009) showing annual performance from 1973 to

2011 for outlook areas (black circles and lines) and PP forecasts (gray circles and lines) in terms

of POD and FOH. The dashed lines represent bias (B), while the curved lines show CSI. The

(center) maximum and (top left) minimum annual PP forecasts are determined using annual

CSI values. Labeled years are provided for context.

FIG. 7. Frequency of skillful daily forecasts by year for all days

(black circles and line) and only those days in which both an outlook

was issued and severe weather was reported (gray circles and line).
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approximately 0.2 there appears to exist a well-defined

minimum threshold of FOH values. In contrast, there

is no significant relationship between the size of the

outlook areas or the observation areas and relative skill

(Fig. 11). Although no relationship exists with the size

of outlook areas (R2 5 0.001), there is a tendency for

outlook sizes related tomore extreme relative skill values

to be smaller relative to some outlooks with relative skill

values near zero. Outlooks with smaller areas are more

likely to have extreme relative skill values since the FOH

plays such a large role in the calculation; a small-sized

outlook that misses a very localized cluster of reported

events will have an FOH and POD of zero, while in the

same scenario, if the small-sized outlook is well placed, it

will have a large FOH and POD. Larger outlooks are less

likely to have greater values of FOH due to a higher

likelihood of false alarms. On the other hand, the size

of the observation areas (R2 5 0.22) is relatively uniform

across the range of relative skill values, suggesting that

forecasters do not seem to perform better (or worse)

based on the areal extent of an event.

4. Concluding remarks

The primary objective of this paper was to develop

objective, practical baselines for forecasts of rare events.

This is accomplished by using practically perfect fore-

casts to identify a ‘‘no skill’’ lower bound and a practical

upper bound of CSI values for any particular forecast.

The position of the CSI value of a forecast relative to the

values attained from a PP forecast indicates the skill of

that forecast. The choice of s in the calculation of PP

forecasts plays an important role, and can be effectively

used to simulate the level of uncertainty inherent to

a particular forecast (e.g., convective outlooks versus

severe weather watches). For the purpose of evaluating

the SPC’s convective outlooks,s5 1.5 was chosen based

on a comparison of the sizes of PP forecasts and out-

looks, as well as the range of CSI values for the PP

forecasts.

Analysis of convective outlooks issued from 1973 to

2011 using PP forecasts for CSI baselines revealed that

FIG. 8. Frequency of skillful daily forecasts by month (lines with

circles) with 90% confidence intervals (dashed lines) for 1982–91

(gray) and 2002–11 (black).

FIG. 9. Frequency of daily forecast skill binned in 10% increments

for 1982–91 (gray) and 2002–11 (black).

FIG. 10. Distribution of outlook FOH values by daily forecast

skill for days in which both an outlook was issued and severe

weather was reported.

FIG. 11. (a) Distribution of the size of outlook areas and (b) the

size of reported severe event areas by daily forecast skill for days in

which both an outlookwas issued and severeweather was reported.
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these forecasts showed little to no relative skill for two

decades, but after 1995 the relative skill of the outlooks

has shown steady improvement. The timing of this in-

crease in relative skill is not unexpected since Hitchens

and Brooks (2012) found that FOH values for these

forecasts began to increase at a similar point in time.

Additionally, the annual frequency of skillful forecasts

has continued to increase, with at least 50% of forecasts

each year since 1995 showing some skill.

We plan to extend the analyses using PP forecasts to

the full suite of convective outlook products—the ‘‘day

2’’ and ‘‘day 3’’ forecasts valid for the same 24-h period

examined in this study, and the various updates to the

0600 UTC ‘‘day 1’’ outlook—and the probabilistic con-

vective outlooks that were introduced in the early 2000s.

Future work will also explore approaches to include the

number and intensity of events within the PP forecast

framework.
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