

Is there an optimal ENSO pattern that enhances large-scale atmospheric processes conducive to tornado outbreaks in the U.S?

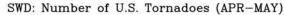
Sang-Ki Lee^{2,1} Robert Atlas¹, David Enfield^{2,1}, Chunzai Wang¹, and Hailong Liu^{2,1} ¹NOAA-AOML, ²Univ. of MIAMI-CIMAS

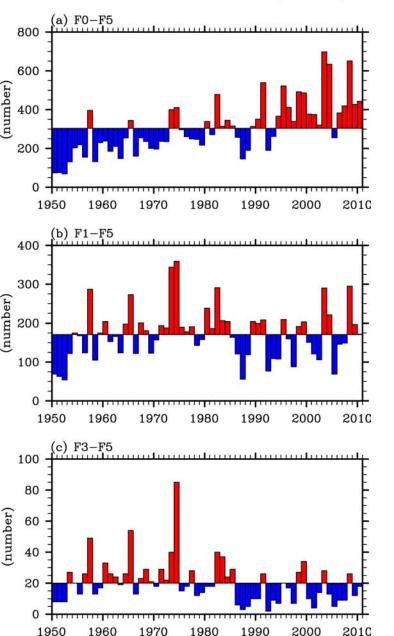
Outline

- Motivation and Background
- Trans-Niño and U.S. Tornado Activity
- Trans-Niño and Historical Super Tornado outbreaks
- ENSO Transitions in Boreal Spring
- Summary and Discussions

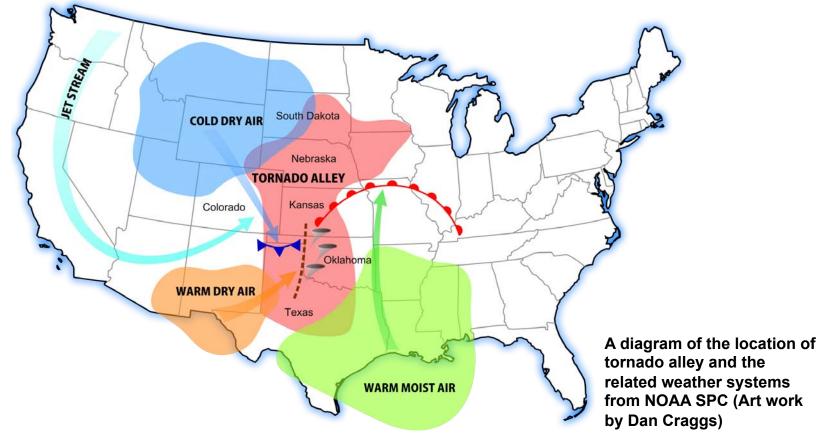
MAPP Webinar Jan-15 2013

April-May, 2011 U.S. Tornado Outbreak




- In April and May of 2011, a record breaking 1,084 tornadoes and 541 tornado-related fatalities were confirmed in the U.S.
- 2011 (541) was one of the four deadliest tornado years in the U.S. history along with 1925 (794), 1936 (552) and 1917 (551).
- Questions were raised as to whether the extreme tornadoes outbreaks in 2011 could be linked to long-term climate variability.

Is U.S Tornado Activity Increasing?

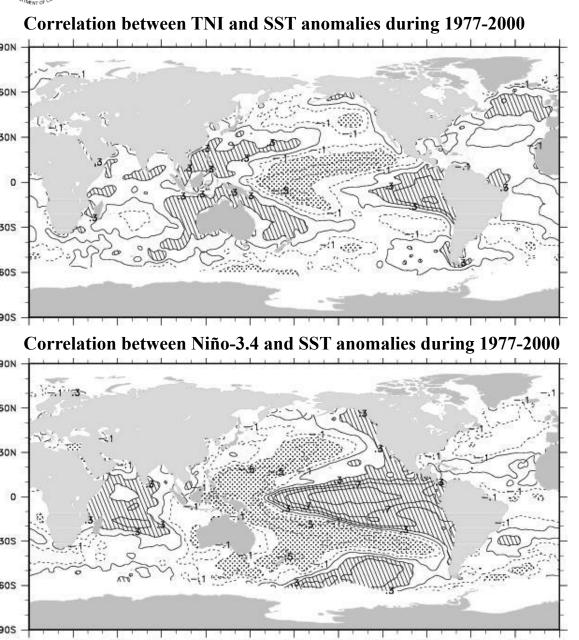


- The number of total U.S. tornadoes (F0-F5) during the most active tornado months of April and May (AM) has been steadily increasing since 1950.
- However, tornado database, especially in earlier periods, has many issues.
- Once F0 tornadoes are removed, the positive trend disappears.
- Intense and long-lived tornadoes are much more likely to be detected and reported even before a national network of Doppler radar was build in the 1990s.
- Here, we use the number of intense U.S. tornadoes (F3-F5) in AM as the primary diagnostic index in this study.
- Intense tornado-days is also used as an index.

Environmental factors for U.S tornadoes

- In the central U.S. east of the Rocky Mountains, cold and dry upper-level air from the high-latitudes often converges with warm and moist lower-level air coming from the Gulf of Mexico.
- Due to this large-scale differential advection, a conditionally unstable atmosphere with high CAPE is formed. The associated lower-level vertical shear further provides a favorable environment to form an intense rotating thunderstorm known as a supercell.

U.S. Tornado Activity and Climate Indices


Index	DJF	FMA	AM	•	Correlation coefficients of various long-term climate
GoM-to-U.S. moisture transport	0.12 (0.09)	0.20 (0.10)	0.44 (0.34)		patterns with the number of intense tornadoes (tornado-
Lower-Level vertical wind	0.12 (0.09)	0.20 (0.12)	0.44 (0.35)		days)
shear					Niño–3.4 has a very weak
GoM SST	0.15 (0.15)	0.21 (0.16)	0.20 (0.19)		correlation with U.S. Tornado
Niño-4	-0.22 (-0.19)	-0.20 (-0.18)	-0.19 (-0.18)		activity, consistent with previous studies.
Niño-3.4	-0.13 (-0.11)	-0.13 (-0.12)	-0.11 (-0.11)		Niño–4 is negatively
Niño-1+2	0.02 (0.03)	0.11 (0.11)	0.15 (0.13)		correlated, while Niño-1+2 is positively correlated.
TNI	0.28 (0.26)	0.29 (0.28)	0.33 (0.29)		U.S. tornado activity is more
PNA	-0.05 (-0.02)	-0.10 (-0.06)	-0.20 (-0.16)		strongly correlated with Trans-Niño (TNI) than any
PDO	-0.12 (-0.09)	-0.10 (-0.11)	-0.14 (-0.20)		other climate pattern.
NAO	-0.01 (-0.07)	-0.10 (-0.14)	-0.18 (-0.18)		

30E

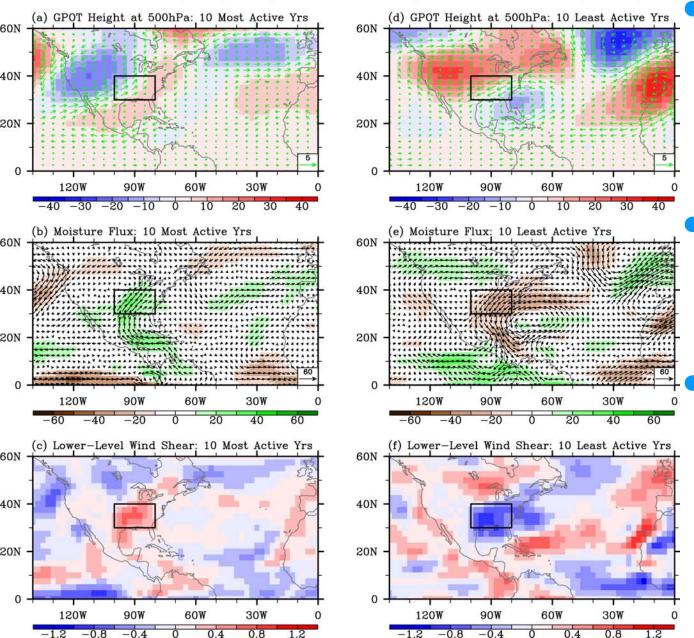
What is Trans-Niño (TNI)?

150F

- TNI is defined as the difference in normalized SST anomalies between the Niño-1+2 and Niño-4 regions [Trenberth and Stepaniak, 2001].
- It represents the evolution of ENSO during its onset and decaying phases, which frequently occur in boreal spring.
- Why is the number of intense U.S. tornadoes in AM significantly correlated with the TNI index, but not with conventional ENSO?

Trans-Niño and U.S. Tornado Activity

ARTMENT OF COM				
Ranking	Year	ENSO phase in spring	TNI index (detrended)	
1	1974	La Niña persists	1.30 (1.48)	
2	1965	La Niña transitions to El Niño	1.39 (1.54)	
3	1957	La Niña transitions to El Niño	0.57 (0.69)	
4	1982	El Niño develops	-1.11 (-0.89)	
5	1973	El Niño transitions to La Niña	-0.42 (-0.24)	
6	1999	La Niña persists	0.47 (0.75)	
7	1983	El Niño decays	1.86 (2.08)	
8	2003	El Niño decays	-1.24 (-0.94)	
9	2008	La Niña decays	1.41 (1.73)	
10	1998	El Niño transitions to La Niña	1.69 (1.97)	

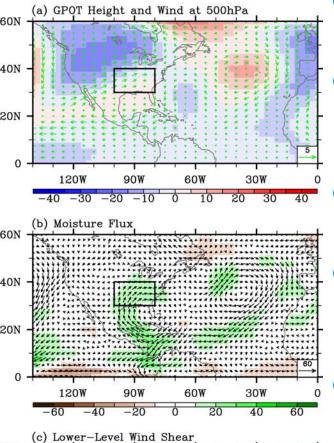

- However, correlation analysis may be misleading.
- Top 10 extreme tornado outbreak years during 1950-2010 are listed in the table.
- 7 out of the top 10 extreme tornado years are identified with positive phase (within the upper quartile) TNI.
- The top 3 years (1974,1965 and 1957) are also identified with positive phase (within the upper quartile) TNI.
- The 10 least active tornado years are largely neutral TNI years (not shown).

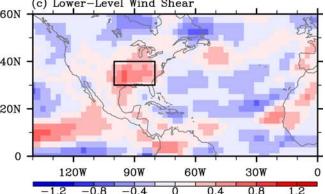
CHARLEN OF COMPANY

Key Atmos. Conditions for U.S. Tornado Outbreaks

NCEP-NCAR Reanalysis: Key Atmospheric Conditions during Active and Inactive Years (APR-MAY)

- Anomalous upperlevel cyclone over the North America brings more cold and dry upper-level air to the east of the Rockies.
- Increased GoM-to-U.S. lower-level wind (i.e., GPLLJ) and associated moisture transport.

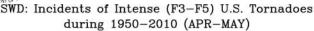

Enhanced largescale differential advection leads to increased CAPE and vertical wind shear east of the Rockies.

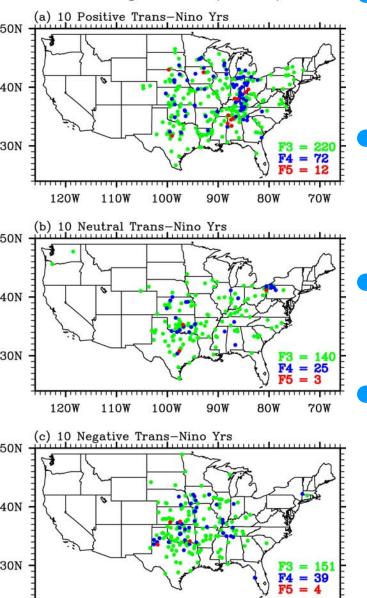


Trans-Niño and U.S. Tornado Activity

NCEP-NCAR Reanalysis: Pos. TNI Years (APR-MAY)

- Key atmospheric conditions for the top 10 positive TNI years are shown.
- Anomalous upper-level cyclone over the North America brings more cold and dry upper-level air to the east of the Rockies.
- Increased GoM-to-U.S. lower-level wind (i.e., GPLLJ) and associated moisture transport.
- Enhanced large-scale differential advection leads to increased CAPE and vertical wind shear east of the Rockies.
- All these conditions are consistent with those for the top 10 extreme tornado outbreak years.




120W

110W

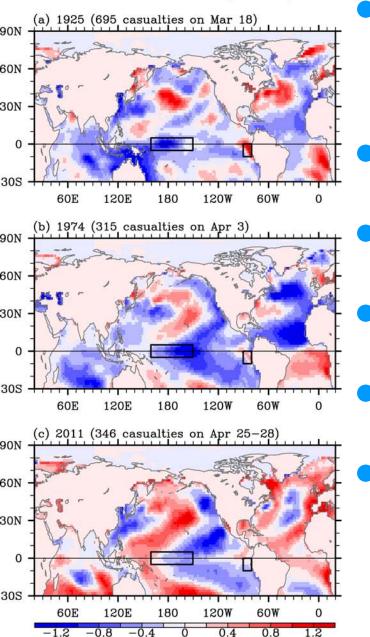
Trans-Niño and U.S. Tornado Activity

100W

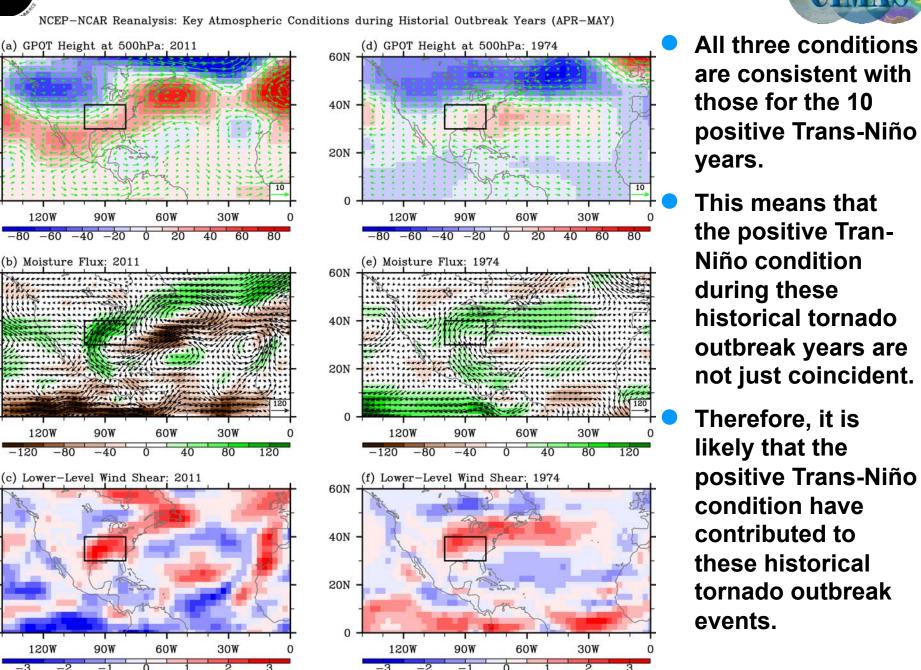
90W

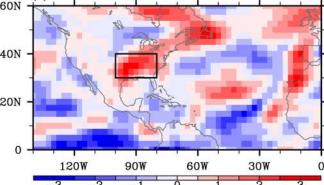
80W

70W


- Incidents of intense (F3-F5) tornadoes for 10 positive, 10 neutral and 10 negative Trans-Niño years during 1950-2010 are shown.
- Number of intense tornadoes is increased from 168 during the 10 neutral TNI years to 304 during the 10 positive TNI years (It is almost doubled).
- During positive TNI years, violent (F4-F5) tornadoes are increased over the Ohio river valley.
- During negative TNI years, number of intense tornadoes is not increased.

Trans-Niño and Historical U.S. Tornado Outbreaks


- Tri-state (Missouri, Illinois and Indiana) tornado of March 18, 1925 is the deadliest tornado outbreak event in the U.S. history (695 deaths).
- Super tornado outbreak on April 3, 1974 resulted in 315 deaths.
- April 25-28, 2011 is the 2nd deadliest tornado outbreak event (346 deaths).
- 1936 (552) and 1917 (551) are the 2nd and 3rd deadliest tornado years.
- All five of these historic tornado outbreak years were positive Trans-Niño years.
- April & March of 1917 is marked as the strongest TNI during the period of 1854 2011 (not shown).


60N

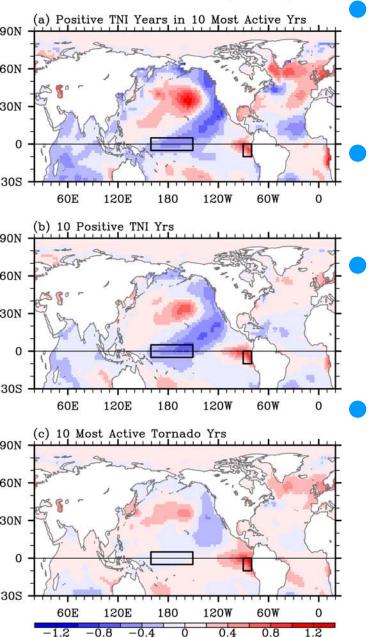
Trans-Niño and Historical U.S. Tornado Outbreaks

NCEP-NCAR Reanalysis: Key Atmospheric Conditions during Historial Outbreak Years (APR-MAY)

40N 20N 120W 90W -80 -60 -40 -20 0 (b) Moisture Flux: 2011 60N 40N 20N 120W 90W -80 -120-40(c) Lower-Level Wind Shear: 2011

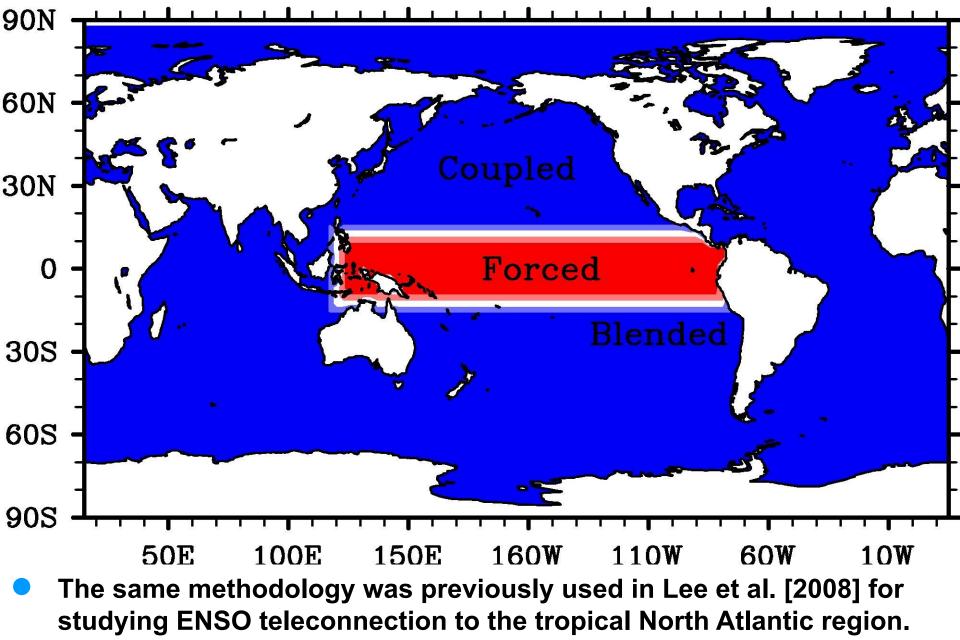
- Observations and reanalysis products are used to show that a positive phase of the Trans-Niño is linked to U.S. tornado outbreaks.
- The TNI-U.S. tornado link is due to the enhanced large-scale differential advection during a positive phase of the Trans-Niño 1) anomalous upper-level cyclone over the North America;
 2) increased GoM-to-U.S. moisture transport;
 3) increased lower-level vertical wind shear east of the Rockies.
- Lee et al. [2013, JCL in-press] used model experiments to explore the potential mechanisms for the link between Trans-Niño and U.S. tornado activity.
- Positive Trans-Niño frequently occurs during either the onset phase of El Niño or the decay phase of La Niña (not shown).

Extra Slides from Here



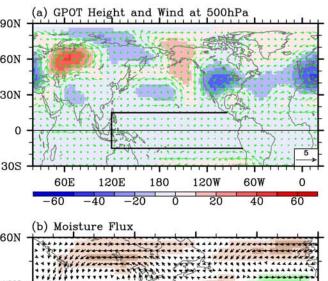
Trans-Niño and U.S. Tornado Activity

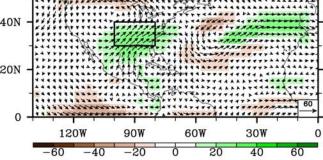
ERSST3: SST Anomalies (APR-MAY)

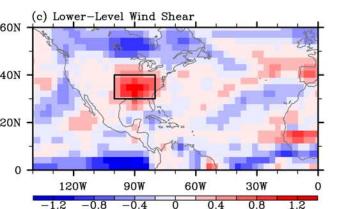


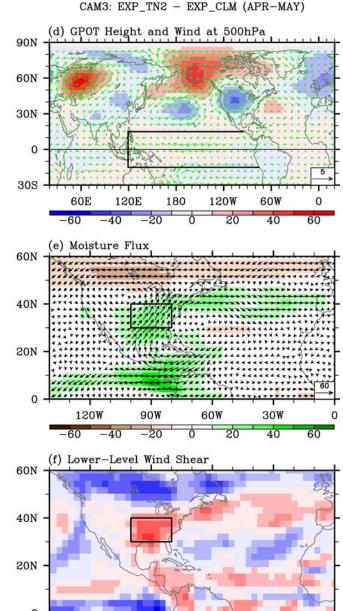
- SST anomalies for 5 positive TNI years identified among the 10 most active tornado years are shown in the upper panel.
- SST anomalies for 10 positive TNI years and for the 10 most active tornado years are shown in the middle and upper panels.
- Positive Trans-Niño occurs when normalized SST anomalies are larger in Niño-1+2 than in Niño-4 region [Trenberth and Stepaniak 2001].
- Therefore, neutral Niño–4 with positive Niño–1+2 and neutral Niño–1+2 with negative Niño–4 are also qualified as positive TNI conditions.

Model Experiments (CAM3-SOM)






Model Experiments (CAM3-SOM)



CAM3: EXP_TN1 - EXP_CLM (APR-MAY)

60W

0.4

90W

-0.4

30W

0.8

120W

-0.8

- Results from EXP_TN1 and EXP_TN2 are shown.
- EXP_TN1: Tropical Pacific SSTs are prescribed with the composite of 10 positive TNI years.
- EXP_TN2: Tropical Pacific SSTs are prescribed with the composite of 10 most active years.
- All three conditions are favorable for increased U.S. tornado activity.

120E

150E

180

150W

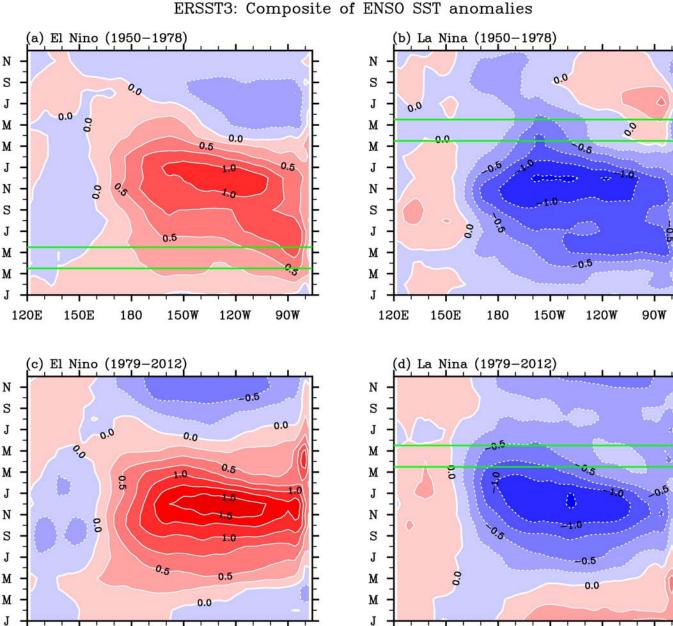
120W

90W

120E

150E

180

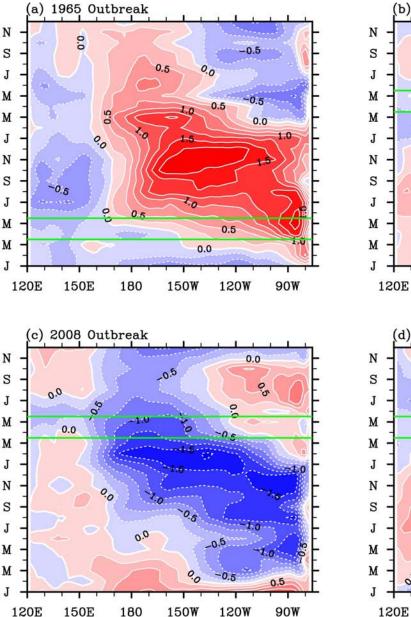

150W

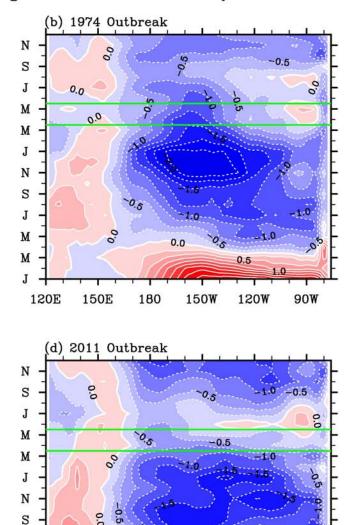
120W

90W

ENSO Transitions in Boreal Spring

Prior to 1976/77 climate shift, a positive Trans-Niño could occur during the onset of an El Niño and the decay of a La Niña.


- After 1976/77, a positive Trans-Niño occurs only during the decay phase of a La Niña.
- Reproduced from McPhaden and Zhang (2009)



ENSO Transitions & U.S. Tornado Outbreaks

ERSST3: ENSO transitions during U.S. tornado outbreak years

-0.5

150W

0.0

0.5

120W

0.0

90W

0.5

150E

180

- 1965 outbreak occurred during the onset phase of an El Niño .
- After 1975/76, however, the onset phase of El Niño is rarely associated with U.S. tornado outbreaks.
- Many U.S. tornado outbreak years are linked to the decay phase of La Niña (ex: 1974, 1999, 2008 and 2011).

What is Fujita Scale?

Damage f scale		Little Damage	Minor Damage	Roof Gone	Walls Collapse	Blown Down	Blown Away	
		fO	f1	f2	f3	f4	f5	
Windspeed F scale		7 m/s 3	2 5	0 7	'0 9 I	2 I	16 I4	42 1
		FO	F 1	F 2	F3	F4	F 5	
		, Omph 7	' <mark>3 I</mark>	3	58 20	57 20	6I <u>3</u>	19
To convert f scale into F scale, add the appropriate number								
Weak Outbuilding	-3	f3	f4	f 5	f5	f 5	f5	
Strong Outbuilding	-2	f 2	f3	f4	f 5	f 5	f5	
Weak Framehouse	- 1	f1	f 2	f3	f4	f 5	f 5	
Strong Framehouse	0	FO	F1	F 2	F3	F4	F5	
Brick Structure	+1	×	fO	f1	f2	f3	f4	
Concrete Building	+2	-	-	fO	f1	f 2	f3	

Fig. 2.4-1 The Fujita tornado scale (F scale) pegged to damage-causing windspeeds. The extent of damage expressed by the damage scale (f scale) varies with both windspeed and the strength of structures.

- Lee et al. [2013, JCL in-press] explored the potential mechanisms for the link between Trans-Niño and U.S. tornado activity
- The highlight of Lee et al. [2013] is that background atmospheric structure in spring makes the central tropical Pacific as an ideal spot to force a robust teleconnection pattern that enhances the differential advection east of the Rockies.
- TNI-based seasonal hindcast for 1950-2010:
 1) 15 tornado outbreak warnings should be issued.
 2) 7 tornado outbreaks occurred and 8 were false alarm.
 3) 3 tornado outbreaks missed.
 - 4) 7 out of 10 tornado outbreaks were potentially predictable.
 - List of things to do
 - 1) Better understanding of the TNI differential advection linkage
 - 2) Seasonal predictability of TNI and associated teleconnection
 - 4) We need clean long-term tornado data (both obs- and proxy-based)