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Errors in numerical weather prediction grow from the 
smaller to the larger scales, and even if the initial-time 
errors are very small, they can eventually grow to affect 
the larger scales. The less faithful our model representation 
of the atmosphere is, the faster the error propagates and 
the sooner predictable signals coming from the initial 
conditions are lost. This destructive interaction between 
initial-time and model errors is a consequence of chaos in 
such predictions, as first noted by French mathematician 
Henri Poincaré in his book Science and Hypothesis (first 
published in 1902) and then developed by Lorenz in a 
series of landmark scientific papers (for example 1969a). It 
is often referred to as ‘the butterfly effect’ and quoted as 
the main reason why predicting the weather on particular 
days beyond two weeks is an extremely challenging, if not 
impossible, venture.

However, ECMWF has been issuing operational monthly 
forecasts since 2004 and seasonal forecasts since 1997. 
They show that two weeks can be exceeded provided care 
is taken in defining the scales one wants to predict. Indeed, 
some parameters can be predicted with extremely high 
skill, and average accuracy measures indicate skill definitely 
beyond two weeks. 

Results published in a recent paper (Buizza & Leutbecher, 
2015; hereafter BL15) and summarized in this article confirm 
earlier indications (see, e.g., Shukla 1998) that the ‘forecast 
skill horizon’, defined as the lead time when ensemble 
forecasts cease to be more skilful than a climatological 
distribution, is longer than two weeks. This conclusion can 
be reached if we follow a seamless approach to measure 
it for forecast fields with increasingly coarse spatial and 
temporal scales. Thanks to major advances in numerical 
weather prediction, for some weather parameters forecast 
skill horizons longer than two weeks are now achievable 
even on relatively fine scales. 

In other words, we have learned to live with the butterfly 
effect.

How did we manage to live with the butterfly effect?
One key aspect that has provided encouragement is the 
realisation that there are some large-scale/low-frequency 
phenomena that are more predictable than smaller-scale/
higher-frequency ones. These include Rossby waves, 
organized tropical convection (e.g. the Madden-Julian 
Oscillation, MJO), long-range teleconnections, El Niño, and 
boundary forcing due to long-lived anomalies (e.g. in sea-
surface temperatures, soil moisture and sea ice).

Living with the butterfly effect: a seamless view of 
predictability

Shukla (1998) talked about “predictability in the midst of 
chaos” to explain how skilful long-range predictions of 
phenomena such as El Niño were possible despite fast 
error growth rates from small to large scales. Hoskins (2013) 
talked about “discriminating between the music and the 
noise” and introduced the concept of a predictability 
chain, whereby, for example, “a large anomaly in the winter 
stratospheric vortex gives some predictive power for the 
troposphere in the following months”.

The second key aspect has been the adoption of an 
ensemble-based, probabilistic approach in operational 
weather forecasting. The shift from a purely deterministic 
to a probabilistic approach, with ensembles of numerical 
integrations used to estimate the probability density 
function of forecast states, has made it easier to extract 
predictable signals in the extended forecast range. Reliable 
ensembles have given us a scientifically sound way to 
assess when a long-range forecast can be trusted.  

Other factors that have helped to extract predictable 
signals in the extended time range include:

� model improvements, such as better convection 
schemes (see, e.g., Bechtold et al., 2012)

� the inclusion of more relevant processes, for example 
relating to the ocean

� higher model grid resolutions thanks to much faster 
supercomputers

� more accurate estimates of the initial conditions thanks 
to advances in the global observing system and data 
assimilation methods.

If we consider the ECMWF monthly ensemble, which is 
based on a coupled ocean–land–atmosphere model, 
forecast skill has improved significantly since operational 
production started in 2004, in particular for the prediction 
of large-scale, low-frequency events. Looking at the MJO, 
Vitart et al. (2014) showed that the 2013 version of the 
ECMWF monthly ensemble predicted it skilfully up to 
about 27 days, indicating a 1-day gain in skill per year 
since 2004. Considering the North Atlantic Oscillation 
(NAO), they reported that the ECMWF ensemble showed 
skill in 2013 up to about forecast day 13, compared to 
about day 9 ten years earlier.

On the longer, seasonal time scale, large-scale phenomena 
such as monthly-average sea-surface temperature 
anomalies linked to El Niño, or monthly-average 
ocean-basin tropical storm activities, can be skilfully 
predicted months ahead using the ECMWF seasonal 
System 4, operational since November 2011. It is time to 
move forward and shift our thinking from a two-week 
predictability limit to the idea that we can live with the 
butterfly effect.
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The concept of a skilful probabilistic forecast 
The concept of a skilful probabilistic forecast has been used as the 
basis to estimate the forecast skill horizon of ECMWF ensemble forecasts. 
The climatological (reference) probability density function (red line) has 
only a small overlap with the observation, represented by a probability 
density function which becomes arbitrarily narrow in the limit of zero 
observation error (black line). By contrast, the forecast probability density 
functions (violet, green and blue) match the observation probability density 
function increasingly well as the forecast time shortens. Consistently, the 
forecast cumulative distribution functions (defined by integrating the 
probability density functions; not shown) also approach the observation 
cumulative distribution function. To measure how close the forecast and 
observed distributions are, the Continuous Ranked Probability Score 
(CRPS), which is equal to the mean squared distance between the forecast 
cumulative distribution function and the observed cumulative distribution 
function, can be used.
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The forecast skill horizon
BL15 assessed the predictive skill of the ECMWF 
operational medium-range/monthly ensemble (ENS)  
from July 2012 to July 2013. At that time, ENS included  
51 members and was run with a spectral triangular 
truncation TL639 (corresponding to a horizontal 
resolution of about 32 km) up to forecast day 10, and  
with a TL319 spectral truncation (corresponding to  
a horizontal resolution of about 64 km) from day 10 to 
day 32. It had 91 vertical layers up to 0.01 hPa and  
was coupled to a dynamical ocean model from  
forecast day 10.

As is normal practice when issuing long-range forecasts, 
ENS forecasts were corrected by removing the model 
bias computed using the ENS re-forecast suite, which at 
that time included five-member ensembles covering the 
preceding 20 years.  As a reference forecast from which to 
compute a skill score, they used a climatological ensemble 
(ENSCLI), defined by 100 sequences of reanalyses covering 
the re-forecast period (see BL15 for more details). 

They looked at predictability in a seamless way by 
considering ensemble-based, probabilistic forecasts 
averaged over different spatial and temporal scales, and 
applying the same approach (i.e. the same metric to the 
same variables) to investigate whether the forecast skill 
was sensitive to the scale characteristics. Spatial- and 
time-averaging procedures were applied to extract the 
most predictable signal from the grid point fields. Spatial 
smoothing was obtained by applying spectral filters 
to the original fields, from T120 (spectral truncation 
with total wave number 120, corresponding to about 
170 km horizontal grid spacing) to T7 (about 3,000 km 
horizontal grid spacing). Time-averaging was obtained by 
considering instantaneous fields, or to be more precise 
fields defined for a 40-minute period (i.e. twice the 
time step used in the numerical integration), and fields 
averaged over 1, 2, 4, 8 and 16 days.

BL15 defined the ‘forecast skill horizon’ as the lead time 
when the bias-corrected ensemble forecast ceased to be 

more skilful than the climatological distribution. More 
precisely, the forecast skill horizon was computed as 
the forecast time when the average CRPS of the bias-
corrected ensemble stopped being statistically significantly 
lower, at the 99th-percentile level, than the CRPS of the 
climatological ensemble. 

Sensitivity to spatial and temporal scales
Figure 1 shows the annual-average CRPS of the bias-
corrected ensemble (ENSBC) and of the climatological 
forecasts (ENSCLI), and the skill score of ENSBC defined 
simply as the difference between the two, as follows:

Forecasts are for the 2-day time averages of 850 hPa 
temperature at T120 spectral truncation over the northern 
hemisphere (NH, points with latitude north of 30°N), the 
southern hemisphere (SH, points with latitude south of 
30°S) and the tropics (TR, points with latitude between 
20°S and 20°N), valid from 12 hours to 32 days, every 
12 hours. The CRPSS confidence intervals hit the zero line 
at forecast day 25 for the northern hemisphere, at day 18 
for the southern hemisphere and at day 26 for the tropics, 
indicating that the forecast skill horizon can be longer 
than two weeks.

Figure 2 shows the sensitivity of the forecast skill horizon 
to the temporal scale under consideration, for T120 
spatial fields. It shows that time-averaging reduces 
not only the difference between the climatology and 
observations (measured by CRPS(ENSCLI)) but also 
the error growth rate (the rate at which the difference 
between the forecast and observations grows as lead 
times increase, measured by the slope of CRPS(ENSBC)). 
The net effect is that, as the time-averaging period is 
progressively extended from 40 minutes to 16 days, the 
forecast time when the two average CRPS curves intersect 
moves to larger values. If we consider, for example, the 
northern hemisphere (Figure 2a), the forecast skill horizon 
increases from 23 days for 40-minute average fields 
to 24.5 days for 1-day average fields, 25 days for 2-day 
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Figure 1 CRPS of the bias-corrected 
ensemble (ENSBC) and the reference 
climatological ensemble (ENSCLI)  
for 850 hPa temperature fields,  
for a 2-day time average and a  
T120 spectral truncation (about  
170 km horizontal spacing) for  
(a) the northern hemisphere,  
(b) the southern hemisphere and  
(c) the tropics; and the CRPSS(ENSBC) 
(see text for definition) with 98th 
percentile confidence internals  
for (d) the northern hemisphere,  
(e) the southern hemisphere and  
(f ) the tropics.

Figure 2 Annual-average  
(107 cases) CRPS of the bias-
corrected ensemble (ENSBC, 
solid lines) and the reference 
climatological ensemble (ENSCLI, 
dashed lines), for 850 hPa 
temperature fields with a T120 
spectral truncation (about 170 km 
horizontal spacing) and with 
different degrees of time-averaging 
for (a) the northern hemisphere,  
(b) the southern hemisphere and 
(c) the tropics. Confidence intervals, 
which are essential to determine the 
forecast skill horizon, are not shown 
here for simplicity.
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Table 1 Forecast skill horizons for the probabilistic prediction of 850 hPa temperature over the northern hemisphere (NH), the southern 
hemisphere (SH) and the tropics (TR), for fields with increasingly larger spatial scales (T120, T30 and T7 spectral triangular truncation) and 
longer time averages (40-minute, 2-day and 8-day averages). The ‘greater than’ symbol (>) indicates that the forecast skill horizon is larger than 
the last time step that could be verified (i.e. 32 days for 40-minute average forecasts, 31 days for 2-day average forecasts and 28 days for 8-day 
average forecasts).

Temperature 
850 hPa

40-minute average 2-day average 8-day average

NH SH TR NH SH TR NH SH TR

T120
(170 km) 23.0 16.5 22.0 25.0 18.0 26.0 > 28.0 25.0 > 28.0

T30
(680 km) 24.0 17.0 23.0 25.0 18.0 27.0 > 28.0 25.5 > 28.0

T7
(3,000 km) > 32.0 23.0 26.5 > 31.0 23.5 28.0 > 28.0 > 28.0 > 28.0

average fields and more than 30 days for time-averaging 
periods of 4 days. 

Results shown in Table 1 for 850 hPa temperature forecasts 
over the three regions (NH, SH and TR) indicate that the 
sensitivity to time-averaging is stronger than the sensitivity 
to spatial filtering. It is worth pointing out that the forecast 
skill horizon depends also on the geographic area, the 
season and the forecast field.

Generally speaking, these results indicate that larger spatial 
and temporal scales are more predictable by between  
5 and 12 days than finer scales. They show that we should 
be more specific when we talk about the forecast skill 
horizon. The horizon is finite, but it is not the same for all 
scales, fields, areas and seasons.

Clearly, close to the forecast skill horizon the skill level 
is very small in absolute terms, and the number of users 
who can exploit this level of skill may be very limited. 
Nevertheless, our definition of the forecast skill horizon 
is objective, and, in line with general practice, defined by 
comparing the skill of a forecast with that of a well-defined 
unskilled reference forecast. 

Implications for forecasters
The results presented here show that ECMWF bias-
corrected ensemble forecasts over a wide range of spatial 
and temporal scales can have forecast skill horizons longer 
than the two weeks estimated by Lorenz (1969a, b). This 
result is not new: it confirms results published over the last 
20 years (e.g. Shukla, 1998) that were obtained by applying 
different methodologies and metrics and looking at some 
specific phenomena, such as the MJO, the NAO and El Niño. 
What is new in this work is that the forecast skill horizon 
has been measured in a seamless way for forecasts with 
different spatial and temporal scales, by applying the same 
metric from day 0 to forecast day 32. 

These results have clear implications for forecasters: 
large-scale features, such as the presence of blocking 
conditions over the Euro-Atlantic sector, can be predicted 
with some skill three to four weeks ahead. This means that 
forecasters can look at long-range forecasts of large-scale, 
time-average features to detect whether, for example, the 
weekly-average temperature distribution at the surface is 
shifted towards warmer or colder conditions. But at this 
forecast range they cannot expect to extract finer details, 
such as what the temperature at a specific location will 
be. They will have to wait until the forecast range is, for 
example, only a few days to be able to skilfully predict these 
finer details, such as the temperature on a specific day and 
at a precise location. In other words, as the forecast lead 
time shortens, the forecaster can zoom in on details at 
increasingly finer spatial and temporal scales. 

Visualising the forecast skill horizon 
Figure 3 introduces the forecast skill horizon diagram, 
which can be used to visualise seamlessly the fact that 
predictive skill depends on the spatial and temporal scales 
of forecast phenomena. In the diagram, the x-axis is the 
horizontal spatial scale of predicted aspects of the weather 
(in km), and the y-axis is the forecast skill range, in days. The 
grey rectangle to the left of x = 32 km identifies the scales 
that are definitely unresolved in the ECMWF ENS, which 
today has a grid spacing of about 32 km. It should be noted 
that the effective resolution, in the sense of the ability to 
represent a weather feature adequately, can be lower than 
the grid spacing by a factor of five or more.

In Figure 3, the forecast horizon skill diagram is applied 
to the ECMWF medium-range/monthly ensemble (ENS) 
forecasts studied in BL15. Each coloured line illustrates how 
the forecast skill horizon varies with the spatial scale after 
time averaging has been applied (from the most detailed, 
40-minute to the 8-day time-average). Each line represents 
an average forecast skill horizon, computed considering 
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seven upper-air variables (geopotential height at 500 hPa, 
temperature and wind components at 850 and 200 hPa) 
and three areas (NH, SH and TR). The 8-day average line 
is positioned higher in the vertical than the 40-minute 
line, reflecting the fact that time-averaged fields are more 
predictable than instantaneous fields. The lines for the 
other time-average periods (1, 2 and 4 days) lie between 
these two.

As shown in Figure 4, the diagram can be used to visualise 
the fact that the forecast skill horizon is seasonally 
dependent: over the northern hemisphere, for example, the 
forecast skill horizon is longer in winter than in summer. In 
other words, everything else being equal, ENS probabilistic 
forecasts for the period from December 2012 to February 
2013 had longer forecast skill horizons than forecasts for 

the period from June 2012 to August 2012. The fact that 
over the northern extra-tropics predictability is higher in 
winter than in summer could be linked to the fact that 
winter is dominated more by large-scale and slow-evolving 
phenomena such as blocking, while in summer fast and 
smaller-scale convection is more active. 

To give a more complete picture of where the forecast 
skill horizon of ECMWF ensemble forecasts lies, Figure 5 
shows skill estimates also for shorter-range and extended-
range forecasts, for example by including ECMWF seasonal 
forecasts. We have also included skill estimates for surface 
fields, such as 2-metre temperature, and for precipitation, as 
well as for indices of large-scale/low-frequency patterns of 
variability, such as the North Atlantic Oscillation (NAO), the 
Madden-Julian Oscillation and El Niño. 
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Figure 3 Forecast skill horizon diagram with the forecast skill horizon values for upper-level forecasts with different temporal characteristics, 
computed by BL15 for the ECMWF medium-range/monthly ensemble (ENS).

Figure 4 Forecast skill horizon diagram highlighting the fact that the forecast skill horizons of the ECMWF medium-range/monthly ensemble 
(ENS), shown here for the northern hemisphere, have a seasonal dependence.
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The forecast skill horizon challenge
The forecast skill diagram, built with a seamless approach 
to fields with different spatial and temporal characteristics, 
visualises our understanding of the predictability of 
different scales of atmospheric variability. It illustrates the 
fact that, thanks to scientific and model advances, a better 
estimation of initial conditions using more and better 
observations and more accurate assimilation methods, and 
the use of ensemble methods, we can extract predictable 
signals from the larger scales, notwithstanding the upscale 
error propagation from the small scales.

The interplay between the downscale propagation of 
predictability and the upscale error propagation – the 
battle between the sources and sinks of predictive skill – 
determines where the forecast skill horizon lies.

By further improving our ensembles, increasing the resolution 
of the models, reducing the initial error, and adding a better 
and more complete description of all relevant phenomena, 
we can aim to further push this line towards the top-left 
corner. In other words, we can live with the butterfly effect 
and further extend the forecast skill horizon. 
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Figure 5 visualizes the forecast skill horizon considering 
all these fields. The red lines relating to the instantaneous 
and finer-scale surface variables are closer to the x-axis, 
illustrating the fact that surface variables are less 
predictable. By contrast, the blue lines relating to large-
scale patterns identified by teleconnection indices (e.g. 
NAO and MJO) and to the average sea-surface temperature 
(SST) in the Pacific regions affected by El Niño are further 
away from the x-axis and closer to the top-right part of 
the diagram. This illustrates the fact that these large-scale 
patterns can be skilfully predicted months ahead. 

Two further features have been added to the diagram: a blue-
line envelope, drawn schematically to include all the individual 
lines, and a red ‘no-skill’ region. The blue line shows where 
the forecast skill horizon for the ECMWF ensemble forecast 
is today: relatively short, less than 10 days, for very detailed 
forecasts, but transitioning to very long horizons of up to a year 
for monthly-average SST forecasts for regions in the tropical 
Pacific. The blue line is not straight, parallel to the x-axis and 
with a value of about two weeks, as it would be if there were a 
fixed limit to predictability, but it is curved, reflecting the fact 
that the forecast skill horizon is scale-dependent, variable-
dependent, area-dependent, and season-dependent. 
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Figure 5 The forecast skill horizon of ECMWF operational forecasts, constructed using published skill measures of medium-range/monthly 
(ENS) and seasonal (S4) forecasts.


