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Employing the geostrophic ( fv, == 8¢/dxand — fu, = 8¢/dy)and the hydrostatic
{8¢p/3p = — RT/ p) relationships, this can be expressed as

2 RoOT RoT
e e S R G

or
2R aT oT
DEF = “% ) - R 6.33b
U Ces) (5] o)
Carrying out the indicated derivatives and then grouping like terms together yields
2R (@ ] *T  Bvg 3*T OET
DEF:#[(_""_%F&) _ﬁu#_a'_”é_] (6.33¢)
p dx dy J/ 8xdy 3y 0x*  dx 0y°

Denoting the geostrophic shearing deformation, (3v,/8x + 81, /dy), as SH, the
geostrophic stretching deformation, (31, /9x — dv,/dy), as ST, and employing the
non-divergence of the geostrophic wind, (6.33¢) can be rewritten as

2R T ST /8T AT
DEF = —— [(SH) + $7) — - (6.33d)
P dxdy 2 ax?  8y?

which illustrates that the deformation terms will be significant where second deriva-
tives of temperature are coincident with deformation (i.e. first derivatives) in the
geostrophic wind field. Mid-latitude frontal regions, as we will see, are defined by
such conditions. This fact has led to the historical assumption that the deformation
term is only large in frontal regions. As it turns out, a number of other recurrent
but non-frontal thermal structures in mid-latitude cyclones are also characterized
by these conditions — most notably the large-scale thermal ridge often associated
with occluded cyclones. From this perspective, neglect of the deformation term is
liable to lead to significant misdiagnosis in many cancnical mid-latitude cyclone en-
vironments {as we will show later), Next we will derive an alternative expression for
the forcing for quasi-geostrophic vertical motions that includes these terms, lends
additional insight into the nature of the mid-latitude atmosphere, and is amenable
to simple graphical evaluation.

6.4 The Q-Vector

The remainder of this chapter will be devoted to examining the so-called (-vector
form of the quasi-geostrophic omega equation introduced by Hoskins ef al, (1978).
Consideration of the Q-vector reveals an unexpected and intriguing characteristic
of the thermal wind balance that will serve as a cornerstone in the development
of a deeper conceptual understanding of the nature of quasi-geostrophic vertical
motions. We begin by investigating the geostrophic paradox.
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6.4 THE {-VECTOR 167

6.4.1 The geostrophic paradox and its resolution

Consider the jet entrance region depicted in Figure 6.8. The confluent, geostrophic
wind field depicted there acts to tighten the horizontal temperature gradient at C.
Any such increase in the magnitude of the temperature gradient forces an increase in
the geostrophic vertical shear via the thermal wind relationship. Simultaneously, the
geostrophic wind advects lower geostrophic momentum (quantified by the isotachs
of the y-direction geostrophic wind} into the jet core. The momentum advection
tends to decrease the wind speed at Cand, thus, contributestoa decrease in the vertical
shear of the geostrophic wind in that columan. Thus, the very same geostrophic flow
that serves to increase the magnitude of the horizontal temperature gradient at
also serves to decrease the vertical shear of the geostrophic wind at C via negative
geostrophic momentum advection. This set of circumstances presents a paracox: that
is, on the one hand, geostrophic temperature advection should increase the thermal
wind at C and, on the other, geostrophic momentum advection should decrease it
at C. So, the geostrophic wind actually destroys thermal wind balance by affecting
opposite signed changes to the two components of that balance. Since the thermal
wind balance is a form of the geostrophic balance, it can therefore be said that the
geostrophic wind destroys itselfl We will refer to this property of the geostrophic flow
as the geostrophic paradox.

Figure 6.8 Jet entrance region In the northern hemisphere, Thick solid lines are 500 hPa geopotential
height, dashed lines are 1000-500 hPa thickness, and thin solid lines are isotachs of the y-direction
geostrophic wind. Point Cis mentioned in the explanation given in the text
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Interestingly, however, observations suggest that the synoptic-scale flow in the
middle latitudes is very nearly in geostrophic balance at all times, How can this be in
the face of what we have just described? There must be another portion of the flow that
acts to maintain the geostrophic balance in the face of its self-destructive tendency.
That portion of the flow is the forced, ageostrophic, secondary circulation.” Since
the geostrophic flow tends to create thermal wind imbalance, the forced secondary
circulation must bring the flow back toward a state of geostrophic balance. This may
be accomplished if the secondary circulation counteracts the tendencies induced
by the geostrophic wind itself. Therefore, the secondary, ageostrophic circulation
operating in the vicinity of the jet entrance region depicted in Figure 6.8 must
simultaneousty (1) decrease the magnitude of the horizontal temperature gradient,
and (2) increase the vertical shear. We now examine a derivation that quantifies the
geostrophic paradox and in so doing leads to a description of the forced, secondary
circulation that resolves it.

We begin by considering both the thermodynamic energy equation and the
y equation of motion at the level of quasi-geostrophic theory:

d - ] - a¢
.(E—FV&,‘V)VS*{*ﬁ]MHg:O and (E'I"ng')(—a—p')—o"wio

Neglecting the ageostrophy for the moment, these expressions can be rewritten as

g -
(_ + Vg v) vg = 0 (6.34a)
ar
and
- 56
—t V-V -—— ) = 0. 6.35
(G 79) (-55) 6350
Recall that the thermal wind balance for the situation depicted in Figure 6.8 is given by
vy 8¢
Yap T axap

Now, fod/dp of (6.34a) is equal to
& d - a [ay Ay av
— =4V, ¥ = e %%y, %, Y
fo5p [(ar+ g )Vg] f"ap[at g T By}
g - v
(50 %7) (#5)

ﬁ[iﬁm+%%,
gp ox ap dy

% This How is referred to as ‘secondary’ in order to distinguish it from the primary, geostrephic flow.,
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Employing the thermal wind relationship and the non-divergence of the geostrophic
wind, this can be rewritten as

AT T I A dug | [ 8V o 90
g 7o V)] =5+ % ) (s ap)“{ax °( apﬂ‘
(6.34b)

Interestingly, —8/8x of (6.35a) is equal to
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Examination of the last lines of (6.34b) and (6.35b) proves that the geostrophic
tendencies of fodv,/dp and 92¢/0x3p (the two components of the thermal wind
balance) have equal magnitude but opposite sign! Thus, the geostrophic wind de-
stroys itself by changing the two parts of the thermal wind balance equally, but in
opposite directions. Let us denote the magnitude of this geostrophic tendency as Oy

50 that
AV, 3¢
=t v[-=].
Q dx ( Bp)

[fwe now reinsert the ageostrophic terms that we previously neglected in developing
(6.34a) and (6.35a), we get

3r(8 - NS Bvg\ _ 2 Oag
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Multiplying (6.37) by -1 and adding it to (6.36) eliminates the time derivatives (since
folvg/dp = 8°¢/0xd p by the thermal wind) and yields
8 8 g
i rikirry

F
The same set of operations can be performed on the x equation of motion and the
thermodynamic energy equation resulting in

20, = (6.38)

Vay
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av, d¢p
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@ ay ( Bp)

Finally, taking 3/8x of (6.38) and adding it to 8/8y of {6.39) produces

G| 3 : G] ag OV

-2 i@l_i__gi):g _w+8w R Bug_l___L:g
ax ay gx* = 3y? dp \ dx dy

which becomes, upon substituting from the contmmty equation,
0 ¢ 9 a*
-2 ( Q& +- &) =0 ( a: d fo = 2 IQ_ @
dx oy ax? 8y E)pz g ap?
(6.40)

The RHS of (6.40) is identically the 3-D Laplacian operator found on the LHS of the
classical quasi-geostrophic omega equation (6.26). The forcing function in this form
of the quasi-geostrophic omega equation is given by twice the convergence ofa2-D
horizontal vector quantity, the Q vector, defined as Q (Q, Q) or

s [ (2% g (00 : (L2Ye o (2 ;
Q_|:( St v( ap))"( 5 v( ap))”’]' (6.41)

Using the hydrostatic relationship (8¢/8 p = — RT/ p} we can rewrite this expression

(6.39)

dw
Yo L
h=a 5y fe

where

" in a more convenient form as

. R|fav, . {0V .
Ll R S v 8,

which is easier to employ with real weather maps. Looking again at (6.40), we see
that if @ is convergent (divergent) then upward (downward) vertical motion results.
Also, note that in deriving (6.40) there was ne neglect of the deformation terms as
we had been forced to do in prior derivations of an omega equation.

Now let us return to our original example of confluent flow superimposed upon
a temperature gradient shown in Figure 6.8. The traditional approximations to the
quasi-geostrophic omega equation might not be of much help in diagnosing omega
in this environment since vorticity advection is rather difficult to determine here. The
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nee : completeness of the C_jﬁvector comes at the price of increased complication, however.
Therefore, we examine the full expression of the O-vector in order to determine if
18 3 a simplification, applicable to the example shown in Figure 6.8, is possible. The full
) 5 expression of Q is given by
[
the ﬁ . R[(BugaT avgaT)+ (BugaT nga'P) }
T e B R e T L L
P dx dx  dx ady dy dx dy dy
39)
ﬁ But there is no 87/dy in Figure 6.8 so, again employing the non-divergence of the
2 geostrephic wind, Q simplifies to
o () (- ) o )
p dx 0x dy dx p\Ox ay dy * /.
__R (ﬁi) Ex el - (643)
P\ dx oy
So if one measures the change in the geostrophic wind vector along isotherms (i.e.
a along the y-axis), then the direction of the resulting Q-vector is determined as the
vertical cross-product of that vector change with its magnifude modulated by the
40) intensity of the x-direction temperature gradient.
Pigure 6.9(a) shows the Q-vectors for the confluent jet entrance of Figure 6.8. This
‘the configuration of @vectors results in é convergence in the warm air and O diver-
wim H gence in the cold air. Consequently, we have diagnosed a thermally direct, secondary,
2-D : vertical circulation in which the warm air rises and the cold air sinks (Figure 6.9b).
: Such a secondary ageostrophic circulation achieves two important modifications of
z the environment. First, adiabatic cooling of the rising warm air and adiabatic warm-
A1) 7 ing of the sinking cold air decrease the magnitude of V T'. This exactly counteracts the
‘ ; tendency of the geostrophic temperature advection in the confluent flow! Second,
ion 4 under the influence of the Coriolis force, the horizontal branches of this secondary
: ageostrophic circulation tend to increase the vertical wind shear - exactly counter-
acting the tendency of the geostrophic momentum advection in the confluent flow!
Thus, the secondary ageostrophic circulation diagnosed with the Q-vectors is pre-
cisely that necessary to restore the thermal wind balance in the face of the geostrophic
see wind’s tendency to destroy the balance.
alts,
sas
6.4.2 A natural coordinate version of the §-Vector
pon ‘
the ‘ As we havejustseen, the (_j-vector isa rather bulky expression but A é represents
€pa a complete form of the forcing in the quasi-geostrophic omega equation. Here we g
The consider an expression for the O-vector distilled into a natural coordinate version
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Figure 6.9 (a) @ -vectors for the confluent jet entrance region depicted in Figure 6.8. Vertical cross-

section along line A-Bis shown In (b). (b) Vertical cross-section along line A-B in (a). Black arrows
represent the vertical and horlzontal branches of the secondary, ageostrophic circulation associated with
the §-vector distribution in (a). Gray arrows represent the direction of the horizontal branch of the
forced circulation before the Coriofis force turns in to the right. See text fer explanation

that is easily applied to weather maps.® We begin with (6.42)
§--=% %éﬁﬁwfﬁ)u Bug BT | 8w, 9T
P dx dx  0x dy dy 6x  dy 3y

6 This discussion follows work originally done by Sanders and Hoskins {1990).
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¢ -0

Figure 6.10 Zonally oriented, confluent jet entrance region in the northern hemisphere, Thick solid
lines are 500 hPa geopotential height, dashed lines are 1000500 hPa thickness. Note that for this flow

configuration, 8T /8x =0

and consider, independently, two extreme examples in which 8T/dx =0 and
aT/8y = 0.For the case of  T/8x = 0 we consider the confluent entrance region of
a zonally orjented jet as in Figure 6.10. In such an environment, the above expression

reduces to

- R /aT Vg IV o R8T\ [dvg. iy,
Q:w—' —_— —_—1 '-+— —_— = —— —_— —_] - —
p A\ dy ax ay p A\ Ay dx dx

R/7aTN|, 8V
P\ ay dx

since the geostrophic wind is non-divergent and
Dves  Olg 4 . av
el x —=,
dx dx dx

Note that in this example, the x-axis is in the along-flow direction and the y-axis is

in the across-flow direction, pointing toward colder air.
For the case of 3 T/3y = 0, we appeal to the confluent jet entrance in Figure 6.8
used to illustrate the utility of the Q-vector. In that example, we found that the

expression for Q reduced to

éz_ﬁ(ﬂ)[ﬁxm]
p o\ dx ay

and the y-axis was in the along-flow direction with the x-axis in the across-flow
direction pointing toward warmer air.
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Let us now adopt natural coordinates (3, #2} such that § is directed along the
isotherms and # is directed across the isotherms toward warmer air. For the case of
9T/dx = 0 (Figures. 10)wec0uldsaythat3T/8y = —|aT/0n| (since 8T/3y < 0).

Analogously, we could say that 3 % ¢/8x = 8V, /8s so that our natural coordinate '

expression for Q would be

- R\|aT
0=yl

ds

For the cascof 8T /3y = 0, we could say that 8 7/8x = |8 T/dn| (since 8 T/8x > 0.

Also, we could say that @ v /Ay =10 Vg /s so that our natural coordinate expression
for Q would be, again,

R|aT

e i:fc X %{%J , (6.44)
$

plon

demonstrating that this expression serves as the general natural coordinate expression
for (. Tn order to apply this expression, we simply denote the vector change in the
geostrophic wind along isotherms, take the vertical cross-product of that vector, and
flip the resultant direction by 180° (as we must multiply by —1) to determine the
direction of Q. The magnitude is modulated by |3T/3#).

Now we examine some examples for which the answers should be fairly familiar.
First, let us consider a pattern of sea-level isobars and isotherms for an idealized
train of cyclones and anticyclones, illustrated in Figure 6.11. Choosing the middle
isotherm as our §-axis, we need only consider the vector change in the geostrophic
wind.along that isotherm. Upon doing so we find that the Q-vectors converge (o
the east of the sea-level low-pressure center and diverge to its west. Thus, we have
diagnosed ascent to the east of the cyclone and descent to the east of the anticyclone.

Figure 6,11 Schematic train of lows and highs in the northern hemisphere. Thin solid lines are sea-
level isobars, black dashed lines are 1000-500 hPa thickness, biacj& arrows are surface geostrophic
winds, light gray arrows represent 8V /83, and shaded arrows are Q -vectors, See text for explanation
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Figure 6.12 Isotherms in a region of geostrophic deformation. Curved gray arrows are geostrophic
streamlines, dashed lines are isotherms or thickness isopleths, biack arrows are geostrophic winds at the
indicated circles. This aray arrows represent 8V ,/&s, and the shaded gray arrows are the (-vectors

In this way, the train of cyclopes and anticyclones propagates to the east, in the
direction of the thermal wind — a result we noted earlier in the chapter.

Next we consider a zonally oriented bundle of isentropes placed in a region of
pure geostrophic deformation as iltustrated in Figure 6.12. Clearly, this environment
would not be casily diagnosed using the traditional form of the quasi-geostrophic
omega equation nor any of the approximations to it that we have examined. Picking
the middle isotherm as the §-axis, we need only consider the geostrophic wind varia-
tion along that isotherm. The resulting O-vectors are uniformly pointed toward the
warm side of the barodlinic zone, indicating rising warm air and sinking cold air —
a thermally direct vertical circulation. The differential thermal advection occurring
in this deformation zone would tend to bring the isotherms closer together in the
horizontal, thereby increasing the thermal wind shear. This same undetlying dy-
namical principle was discussed in reference to Figure 6.4(b). In the next chapter we
will more fully discuss the relationship between changes in the temperature gradient
and attendant vertical circulations as we discuss frontogenesis. Finally we consider a
hypothetical field of uniform geostrophic temperature advection as depicted in Fig-
ure 6.13. It is easy to demonstrate that since there is no variation of the geostrophic
wind along any isotherm, there is no O-vector field and, hence, no quasi-geostrophic
vertical motion.

We have said that the Q-vector form of the quasi-geostrophic omega equation is a
complete form of the forcing. This distinguishes it from the Sutcliffe and Trenberth
approximations wherein the deformation terms are neglected. Two reasonable ques-
tions to ask at this point in our discussion are (1) where are the deformation terms
hiding in the O-vector forcing, and (2) are they really negligible? The first question
is rather academic but the second is crucially important to operational forecasting.
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Figure 6.13  Geopotential heights (thick black lines) and isotherms (dashed lines} in a field of uniform
geostrophic warm air advection, Arrows are the geostrophic wirds al the indicated points. Since the
geostrophlc flow is uniform, 8V /05 1s zero at the black dot and hence there is no {-vector and no
{-vector divergence

Recall that the forcing for @ in the Q-vector form of the quasi-geostrophic omega
equation is given by

(6.43)

Forcing = -2V . Q=2 (an s &) )

dx oy

Using (6.42), this can be written as

R| B BV d BV
Forcing = —2— | — VT i+ — VT
plox ax oy By

which expands to four terms after applying the chain rule to yield

, R d BV 3 BV
Porcing = —2— 1| — VT + — -VT
P 9x B dy 8}/

LoV, _er 8V, 8T
+ AN AT BELAN I (6.46)
ax dx ay gy

Tt is left as an exercise to the reader to show that the first square bracketed term on
the RHS of (6.46) is exactly equal to the Suicliffe/Trenberth approximation to the
forcing function of the quasi-geostrophic omega equation. Of course, that means
that the second square bracketed term on the RIS of (6.46) represents the oft ne-

 glected deformation terms. As pointed out previously, these terms will be significant

any time a second derivative of temperature is coincident with a first derivative of
the geostrophic wind. Frontal zones fit this description but many other character-
istic thermal structures observed in mid-latitude cyclones do as well. Figure 6.14
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illustrates the quasi-geostrophic {QG) omega resulting from both the Suscliffe/
Trenberth forcing terms (Figure 6.14a) and the deformation terms (Figure 6.14b)
for a modest occluded cyclone. Note that the occluded thermal ridge, a non-frontal

© thermal structure, is the seat of significant QG vertical motions associated with the

deformation terms. This ascent would not be accounted for in the Suicliffe/ Trenberth
apptoximation to the QG omega equation.

6.4.3 The along- and across-isentrope components of 7}

A final word concerning the physical meaning of the Q-vector is appropriate before
we begin to discuss frontogenesis in Chapter 7. This comment begins by rewrit-
ing the hydrostatic equation in the form —8¢/dp = fy 0 where 8 is the potential
temperature and y is a constant on isobaric surfaces, i,

_ R (g)’
fra\ p ’

with pp usually taken to be 1000 hPa. Employing this form of the hydrostatic equation
allows (6.41) to be rewritten as

oV, . 8V, )
0= fy [( rr -VB) 1, (—a—y -V@) j] (6.47)

Now let us consider the Lagrangian rate of change of V& following the geostrophic
flow, in symbols,

d .{a o a3 ag, a9,
VO = —+ V, V|V = V -V 14—, 6.48
dtg (8t+ § ) (8 + )(Bx 8yj> (6.48)

It is left to the reader to show that, under adiabatic conditions,

d o
—Ve = Q.
fydt 6=0Q

4

Thus, a profound physical meaning can be ascribed to the Q-vector: that is, Q
describes the rate of change of V8 following the geostrophic flow. This property of the
G-vector will be exploited in our subsequent discussions of both frontogenesis and
cyclogenesis. For now, it is enough that we take advantage of this physical fact to
develop additional insight from the Q-vector.

Given that

d
V8,
Q= fy i,

it is useful to consider separ ately the along- and across-isentrope components of Q,
denoted as Qs and Q,, (where Q QS + Q,,), respectively, illustrated in schemntm
form in Figure 6.15. Before deriving mathematical expressions corresponding to Qs
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Figure 6.15 Natural coordinate partition of the ¢} -vector into its along-isentrope (ﬁs} and across-
jsentrope ({ ,) components. See text for explanation .

and Q,,, let us consider their respective physical meanings. Noting that the vector

V4, like all vectors, has both magnitude and direction, it is clear that Q,,, Whmh
ts directed along V8, can only affect changes in the magnifude of V&. Since Q. is
directed perpendicularly to V@ it can only affect changes in the direction of V8. Now,
Q,i is simply the component of Q along the vector V8 and simple vector calculus
yields 2 mathematical expression for Q, as

«  (Q-ve\ vo
Qn-“( Vo] ) £z (6.49)

Allowing the umt vector in the V@ direction (V8/|V8}) to be written as #, and the
magmtude of Q,1 (Q V@ /IV81) to be wr 1tten as Q,, (6.49) can be rewritten as
Q, = Qu#. Similarly, Q, is the component of Q along the vector k x V0 and so can

be written as
- O -kxvey|kxwve
= 6.50
Q { ol ] T2 (6:50)

where we have taken advantage of the fact that |k % V@L = |VE|. Allowing the
unit vector in the k x V@ direction to be denoted as § and the magnltude of Qs

Q (k x v8)/|V0|) to be denoted as Qs, (6 50) can be written as Qs = (3,3, Sub-
stituting the expressions for both Q” and Qs, we can write

Q = Quft+ Q5. (6,51}

Since the total QG vertical motion is related to —2V Q, the foregoing partition
allows ustosee that total as the sum of two orthogonalparts assoc1ated with—2V - Qy
and -2V - Qs, respectively. Given the orientations of Q,, and Qs, these components
of the total vertical motion will be distributed in couplets across the thermal wind
(transverse) and along the thermal wind (shearwise), respectively.

It will be shown in the next chapter that the transverse component of the QG
omega is directly related to the dynamics of the frontal zones that characterize the
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Figure 6.16 The 700 hPa éra veciors (black arrows) and associated QG vertical moticn at 0060 UTC
13 November 2003. Vertical motion shown in units of £ bar s~1 (dPa s~1) contoured every 2p bar 571
with dark shading showing upward vertical motions and light shading showling downward vertical motion

mid-latitude cyclone. Insight into the nature of the shearwise component arises by
considering an alternative form of the Trenberth approximation to the QG omega
equation in which the thermal wind advection of geostrophic absolute vorticity was
the principal forcing mechanism for vertical motions. Starting with (6.32)

, oy b avy
U(V+Uap3 w2 fo op Vg + )

and taking advantage of the non-divergence of the geostrophic wind while neglecting

the contribution of the planetary vorticity to the geostrophic absolute vorticity, we
note that the RHS can be written in a flux divergence form as

fa & v,
v S w2V | =
G( -+ o 958 w2V | f 5 e |- i6.52a)
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But since
av,
e _ F v_f"- = —y(k x V0),
Bp f ap
(6.52a) can be rewritten as
2 "82 .
o (W + b , o) w = =2V« Qg (6.52b)
o dp?

where Qm = foril (k x V@), Thus, the approximate Trenberth fomm of the QG
omega equation can be written in a form that is identical to the (-vector form
of the full cmega equation, Note that the vector Qrp must be * everywhere par al-

lel to isentropes and thus Q']  Tepresents at least a portion of Q,.” An illustration
of the distribution of QTR vectors and the associated QG vertical motions from
the developing cyclone previously examined in Figure 6.6 are illustrated in Fig-
ure 6.16. The distinction between such shearwise and transverse vertical motions
will prove valuable when we discuss the process of mid-latitude cyclogenesis
Chapter 8.

Selected References

Sutcliffe (193%) offers an illuminating discussion of the ageostrophic wind and its role in producing
vertical motions.

Sutcliffe (1947} describes his famous development theorern.

Trenberth (1978) describes the cancellation among terms in the traditional QG omega equation.

Hoskins et al. (1978) provide the seminal derivation and discussion of the Q vector.

Martin {19985) examines the appropriateness of neglecting the deformation terms in the QG
omega equation from the perspective of the Q-vector.

Probiems

6.1. (a) For the mid-latitude, upper tropospheric wave train shewn in Figure 6.14, indicate
where the regions of ascent and descent are found. Explain your answer,

Figure 6.1A

? A full description of both the Q,, and QS componens of the Q vector, along with their application to the
diagnosis of vertical motions in the occluded quadrant of mid-latitude cyclones, is given in Martin (1999}




