

				۹.				Particle_Size_D	istribution_C	assExample - E	xcel	- YE					
	File	Home		insert	Page L	nyout	Formula	s Data	Review	View A	ROBAT	🖓 Tel	me		Fangqu	n YU AS	hare
	Paste V Clipbe	X h - *		B 	I		- 10 A* A	Alignment	% Number ~	Format	as Table -	atting -	Cels	P Editing	2		,
N	28	٠		× v	f_{π}												
1	A	В	C	D	E	F	G	н	1	J Number size distribution	KL	Surfa		N	0	P Mass size distribution	¢
23	Bin #		terva µm	1	Dp µm	dDp pro	unitless	# cm ⁻³	cm ⁻³ um ⁻¹	dN/DlogDp # cm ⁻³	µm² cr	Si dS/d m ⁻³ µn	llogDp n² cm²		Mi µg m ⁻³		
4 5 6 7	1 2 3 4	0.010) -	0.020 0.040 0.070 0.100	0.015 0.030 0.055 0.085	0.010 0.020 0.030 0.030	0.301	2.00E+03 3.00E+03 1.20E+03 1.80E+02									
8 9 10 11	8	0.100	-	0.200 0.400 0.700 1.000	0.150 0.300 0.550 0.850	0.100 0.200 0.300 0.300	0.301	5.00E+02 1.20E+02 2.00E+01 1.00E+01									
12 13 14 15	10	1.000 2.500 7.000) -	2.500 7.000 10.000 15.000	1.750 4.750 8.500 12.500	1.500 4.500 3.000 5.000	0.447	2.50E+00 3.00E-01 5.00E-02 1.00E-02									
16 17 18							Number	Concentration	a (ii cm ³)					law Con		tions (µg m ⁻³)	
19 20 21		Particle Density		1.500			CN10 CN40 CN70	Concentration	~ CCN0.8 ~ CCN0.4				F F F	9M10 9M2.5 9M1.0		uom (yy m)	
22 23 24 25 26							CN100 CN400 CN1000		~ CCN0.2					9140.1			
27 28		-					a and the dist	meter < ## µn					-	-			

Thermodynamics of Aerosols
Gibbs free energy:
G = H - TS = U + PV - TS
<i>H</i> is the enthalpy, <i>S</i> is the entropy, and <i>T</i> is the absolute temperature, <i>U</i> is the internal energy, <i>P</i> is the pressure, and <i>V</i> is the volume.
Gibbs free energy of a system containing k chemical compounds can be calculated by summation of the products of the chemical potentials and the number of moles of each species
$G = \mu_1 n_1 + \mu_2 n_2 + \cdots + \mu_k n_k$

Chemical potential:

$$\mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{T,p,n_j} \qquad \qquad n_j \text{ the number of moles} \\ \text{of system species}$$

The chemical potential has an important function in the system's thermodynamic behavior analogous to pressure or temperature.

A difference in chemical potential can be viewed as the cause for chemical reaction or for mass transfer from one phase to another.

Conditions for Chemical Equilibrium

$$aA + bB \rightleftharpoons cC + dD$$

$$\sum_{i=1}^k \nu_i \mu_i = 0$$

 v_i is the corresponding stoichiometric coefficient (positive for reactants, negative for products)

Chemical Potentials of Ideal Gases and Ideal Gas Mixtures

The Single Ideal Gas

$$\mu(T, p) = \mu^{\circ}(T, 1 \text{ atm}) + RT \ln p$$

where μ° is the standard chemical potential defined at a pressure of 1 atm and therefore is a function of temperature only. *R* is the ideal gas constant. Pressure *p* actually stands for the ratio (*p*/1 atm) and is dimensionless. This definition suggests that the chemical potential of an ideal gas at constant temperature increases logarithmically with its pressure.

The Ideal Gas Mixture

$$\mu_i = \mu_i^{\circ}(T) + RT \ln p_i$$

the partial pressure of compound $i \qquad p_i = y_i p$

 y_i is the gas mole fraction of compound *i*.

Chemical Potentials of Solutions

Ideal Solutions A solution is defined as ideal if the chemical potential of *every* component is a linear function of the logarithm of its aqueous mole fraction x_i , according to the relation

$$\mu_i = \mu_i^*(T, p) + RT \ln x_i$$

The standard chemical potential μ_i^* is the chemical potential of pure species $i(x_i = 1)$ at the same temperature and pressure as the solution under discussion. Note that in general μ_i^* is a function of both T and p but does not depend on the chemical composition of the solution.

$$I(g) \rightleftharpoons I(aq)$$
 $\mu_i^{\circ}(T) + RT \ln p_i = \mu_i^*(T, p) + RT \ln x_i$

$$\mu_i(\mathbf{g}) = \mu_i(\mathbf{aq})$$
 $p_i = \exp\left(\frac{\mu_i^* - \mu_i^\circ}{RT}\right) x_i = K_i(T, p) x_i$

The standard chemical potentials μ_i^* and μ_i° are functions only of temperature and pressure, and therefore the constant K_i is independent of the solution's composition.

 $p_i = p_i^\circ x_i$

Chemical Potential of Water in Atmospheric Particles $H_2O(g) \rightleftharpoons H_2O(aq)$ $\mu_{H_2O(g)} = \mu_{H_2O(aq)}$

or

$$\mu_{\rm H_2O}^{\circ} + RT \ln p_w = \mu_{\rm H_2O}^* + RT \ln \alpha_w \tag{9.61}$$

where p_w is the water vapor pressure (in atm) and α_w is the water activity in solution. For pure water in equilibrium with its vapor, $\alpha_w = 1$ and $p_w = p_w^\circ$ (the saturation vapor pressure of water at this temperature); therefore

$$\mu_{\rm H_2O}^* - \mu_{\rm H_2O}^\circ = RT \ln p_w^\circ \tag{9.62}$$

Using (9.62) in (9.61) yields

$$\alpha_w = \frac{p_w}{p_w^\circ} = \frac{\mathrm{RH}}{100}$$

$$g_{l} - g_{v} = -kT \ln \frac{p_{A}}{p_{A}^{\circ}} \qquad \Delta G = -\frac{4}{3}\pi R_{p}^{3} \frac{kT}{v_{l}} \ln S + 4\pi R_{p}^{2}\sigma$$

$$S = \text{ratio of eq. vapor pressure around a droplet (p_{A}) \text{ relative to above a flat surface } (p^{\circ}_{A}) \qquad AG^{*} = \frac{2\sigma v_{l}}{kT \ln S}$$
For a droplet to exist, S>1. pcurved > p^{\text{flot always}} \qquad \text{FIGURE 9.10 Gibbs free energy change for formation of a droplet of radius } R_{p} \text{ for a vapor with saturation ratio } S.
$$Kelvin Equation \qquad \text{How does S vary with } R_{p}^{2}$$

$$p_{A} = p_{A}^{\circ} \exp\left(\frac{2\sigma v_{l}}{kTR_{p}}\right) \qquad p_{A} = p_{A}^{\circ} \exp\left(\frac{2\sigma M}{kT\rho_{l}R_{p}}\right)$$

Cloud droplet formation

- Supersaturations that develop in natural clouds due to the adiabatic ascent of air rarely exceed 1% (RH=101%)
- Consequently, droplets <u>do not</u> form in natural clouds by the homogeneous nucleation of pure water.
- Droplets can form and grow on aerosol at much lower supersaturations than are required for homogeneous nucleation.

Key knowledge points of Lecture 2:

1. Number, surface area, and mass size distributions:

CN, CCN, PM

2. Major microphysical processes controlling particle

properties in the atmosphere

- 3. Key thermodynamics driving gas-particle interactions
- 4. Kelvin effect importance of particle sizes