MODULE 3: Atmospheric Aerosols

Lecture 2:

Aerosol Characterization: Hands-on
Exercise of Particle Size Distributions

Particle Microphysics Overview and
Thermodynamics

Aerosol Characterization: Hands-on Exercise of Particle Size Distributions
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Particle Microphysics Overview and Thermodynamics

Aerosol climatic and environmental impacts

depends on

Concentrations, Emission, Deposition,

Sizes, Nucleation, Growth,
Compositions, <: Coagulation,
Mixing States Scavenging,

Aqueous Chemistry

which have large spatial and temporal variations.
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Physical processes controlling aerosol properties
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Primary particles: Generally dominate particle mass concentration
Secondary particles: Generally dominate particle number concentration
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Evolution of PinnacIeIS.Itéte Park _(PSP)
particle size |
distribution
in the
atmosphere
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Data from James Schwab
Secondary particles dominate particle number concentrations
in most part of the troposphere

Key Aerosol Microphysical Processes

Evaporation
Nucleation . @ i
o - @ ’ .
Condensation N

+ Coagulation
Deposition @

Several important physical concepts:

(1) Particles are suspended in gaseous medium and interact with gas molecules;

(2) Particles are constantly moving due to Brownian motion and other forces;

(3) A difference in chemical potential causes mass transfer from one phase to another.
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Key Aerosol Microphysical Processes

Evaporation

T e ®

Condensation
+ Coagulation

Deposition @

Effect on different microphysical processes on particle number and
mass concentrations: Increase, Decrease, or No Change

Nucleation Condensation Evaporation Coagulation Deposition

Particle 272 27 22 27 272
Number

Particle 22 22 27 22 22
Mass

Thermodynamics of Aerosols
Gibbs free energy:

G=H-TS=U+PV-TS

H is the enthalpy, S is the entropy, and T is the
absolute temperature, U is the internal energy,
P is the pressure, and V is the volume.

Gibbs free energy of a system containing k chemical compounds can be
calculated by summation of the products of the chemical potentials and
the number of moles of each species

G = pny + wany + -+ pgny
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Chemical potential:

oG

_ n. the number of moles
K = y

on; T,p,n; of system species

The chemical potential has an important function in the system's
thermodynamic behavior analogous to pressure or temperature.

A difference in chemical potential can be viewed as the cause for
chemical reaction or for mass transfer from one phase to another.

Conditions for Chemical Equilibrium

aA + bB = cC+dD Zuiﬂ-i:O

V. is the corresponding stoichiometric coefficient (positive for reactants,
negative for products)

Chemical Potentials of Ideal Gases and Ideal Gas Mixtures

The Single Ideal Gas

w(T,p)=u°(T,1atm) + RT In p

where i is the standard chemical potential defined at a pressure of 1 atm and therefore is
a function of temperature only. R is the ideal gas constant. Pressure p actually stands for
the ratio (p/1 atm) and is dimensionless. This definition suggests that the chemical poten-
tial of an ideal gas at constant temperature increases logarithmically with its pressure.

The Ideal Gas Mixture
pi = 1. (T) + RT In p;

the partial pressure of compound i pi = Yip

y; is the gas mole fraction of compound ;.

ATMS15




Chemical Potentials of Solutions

Ideal Solutions A solution is defined as ideal if the chemical potential of every
component is a linear function of the logarithm of its aqueous mole fraction x;, according
to the relation

i = 1; (T, p) + RT In x;

The standard chemical potential yu; is the chemical potential of
pure species i (x; = 1) at the same temperature and pressure as the solution under discus-
sion. Note that in general wf is a function of both 7 and p but does not depend on the
chemical composition of the solution.

I(g) = laq)  ui(T)+RTInp; = u}(T, p) + RT Inx;

*_

B — K
wi(g) = wifaq) pi = ¢exp (—RTW) xi = Ki(T, p)x;

The standard chemical potentials p' and p;" are functions only of temperature and pressure,
and therefore the constant K; is independent of the solution’s composition.

Di = prx;
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FIGURE 10.2 Equilibrium partial pressures of the components of an ideal binary mixture as a
function of the mole fraction of A, x,.
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(Non ideal Solutions Atmospheric aerosols are usually concentrated aqueous solutions
that deviate significantly from ideality. This deviation from ideality is usually described by
introducing the activity coefficient, y;, and the chemical potential is given by

w; = w; (T, p) + RT In(y;x;)
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FIGURE 9.3 Equilibrium partial pressures of the components of a nonideal mixture of A and H
Dashed lines correspond to ideal behavior

Chemical Potential of Water in Atmospheric Particles

H>0(g) == H>0(aq)

HH0(g) = HH,0(aq)
or
ti,o + RTIn py, = pjp o + RT Ina, (9.61)

where p,, is the water vapor pressure (in atm) and «,, is the water activity in solution. For
pure watet in equilibrium with its vapor, o, = 1 and p,, = p}, (the saturation vapor pres-
sure of water at this temperature); therefore

M0 ~ Mo = RT Inpj, (9.62)
Using (9.62) in (9.61) yields
o = v _RH
Y opy 100
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Gibbs free energy change for the
formation of a single droplet of
pure A of radius Rp containing n
molecules

AG = Gdropiet - Gpure vapor

AG =n(g — gy) +4nR§a
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FIGURE 9.10  Gibbs free cnergy change for formation of a droplet of radius R, from a vapor with
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Kelvin Effect
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Cloud droplet formation

 Supersaturations that develop in natural clouds due to the
adiabatic ascent of air rarely exceed 1% (RH=101%)

» Consequently, droplets do not form in natural clouds by the
homogeneous nucleation of pure water.

* Droplets can form and grow on aerosol at much lower
supersaturations than are required for homogeneous
nucleation.

How does Cloud
‘7
acrosol form Aerosols = Cloud droplets
Next lecture
Aerosol particle o« .- CCN that activates
that does not activate\f.... into a cloud drop
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Key knowledge points of Lecture 2:

1. Number, surface area, and mass size distributions:
CN, CCN, PM

2. Major microphysical processes controlling particle
properties in the atmosphere

3. Key thermodynamics driving gas-particle interactions

4. Kelvin effect — importance of particle sizes
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