

Boundary Layer Module Review

AATM 505

Exam Monday (3/6/2023)! (Modules 1 and 2)

- 1. Definition of ABL
- 2. Coupling between ABL and surface
- 3. Approach to understanding ABL
- 4. Observing the ABL
- 5. Introduction to the New York State Mesonet

- 1. Definition of ABL
- 2. Coupling between ABL and surface
- 3. Approach to understanding ABL
- 4. Observing the ABL
- 5. Introduction to the New York State Mesonet

- 1. Definition of ABL
- 2. Coupling between ABL and surface
- 3. Approach to understanding ABL
- 4. Observing the ABL

Lecture 3: Stability

- 1. Richardson number
- 2. Obukhov length
- 3. Diabatic wind profile
- 4. Homework assignment

14

- 1. Definition of ABL
- 2. Coupling between ABL and surface
- 3. Approach to understanding ABL
- 4. Observing the ABL

Lecture 3: Stability

- 1. Richardson number
- 2. Obukhov length
- 3. Diabatic wind profile
- 4. Homework assignment

High Resolution Z_0 (m)

Lecture 2: **Turbulence**

- 1.Randomness of
- turbulence
- 2. Variety of different
- sized eddies and swirls
- 3. Separate turbulent
 - from non-turbulent

Lecture 4: surface parameterizations

- bulk aerodynamic 1. formulas
- NYS Mesonet—wind 2. profiles

0.00 0.03 0.06 0.09 0.13 0.16 0.19 0.22 0.25 0.28 0.31 0.34 0.38 0.41 0.44 0.47 0.50

- 1. Definition of ABL
- 2. Coupling between ABL and surface
- 3. Approach to understanding ABL
- 4. Observing the ABL

Lecture 3: Stability

- 1. Richardson number
- 2. Obukhov length
- 3. Diabatic wind profile
- 4. Homework assignment

Lecture 5: Field measurements (offshore wind | NYSM)

1. NYSM measurements—land-atmosphere exchange 2. Marine Atmospheric Boundary Layer—offshore wind Lecture 2: **Turbulence**

1.Randomness of

turbulence

2. Variety of different

sized eddies and

swirls

3. Separate turbulent from non-turbulent

:ture 4: surface <u>ameterizations</u>

bulk aerodynamic formulas

NYS Mesonet—wind profiles

Diurnal cycle of the Atmospheric Boundary Layer (ABL)

Figure from Still (1988) Chapter 1

Local Time

Conceptual Model of the ABL (PBL)

z₀ - surface roughness

horizontally homogeneous

Fig. 2.2 Schematic spectrum of wind speed near the ground estimated from a study of Van der Hoven (1957)

J $\overline{m^2}\cdot$

scalar flux

$$rac{W}{s}=rac{W}{m^2}$$

Turbulent heat flux

 $H_s = \rho_a C_p \overline{w'T'}$

Measurement Approach

Control volume = atmospheric air below sensors

Example of CO₂ exchange above a forest

Law of the Wall, aka

$$\mathcal{L} = eK_{m} \frac{du}{dz}$$

 $eK_{m} \frac{du}{dz}$
 $eK_{m} \frac{du}{dz}$
 $eK_{m} \frac{du}{dz}$
 $eK_{m} \frac{du}{dz}$
 $\frac{du}{dz} = \frac{u}{Kz}$
 $\frac{u}{Kz}$
 $\frac{du}{dz} = \frac{u}{Kz}$
 $\frac{u}{Kz}$
 $\frac{u}{dz} = \frac{u}{Lz}$
 $\frac{u}{Kz}$
 $\frac{u}{dz}$
 $\frac{u}{Kz}$
 $\frac{u}{Kz}$
 $\frac{u}{Z}$
 $\frac{u}{Kz}$
 $\frac{u}{Z}$
 $\frac{u}{Kz}$
 $\frac{u}{Z}$
 $\frac{u}{Kz}$
 $\frac{u}{Z}$
 $\frac{u}{Kz}$
 $\frac{u}{Z}$
 $\frac{u}{Kz}$
 $\frac{u}{Z}$
 $\frac{u}{Z}$
 $\frac{u}{Kz}$
 $\frac{u}{Z}$
 $\frac{$

Logarithmic Wind Profile

st

when z=zo (roughness indary condition

of the wall

- measure of capability for convection
- considers buoyancy only (does not consider wind/mechanical turbulence)
- buoyancy flux

• local lapse rate (stability) insufficient - need the look at the whole profile or measure the

- measure of capability for convection
- considers buoyancy only (does not consider wind/mechanical turbulence)
- buoyancy flux

• local lapse rate (stability) insufficient - need the look at the whole profile or measure the

- measure of capability for convection
- considers buoyancy only (does not consider wind/mechanical turbulence)
- buoyancy flux

• local lapse rate (stability) insufficient - need the look at the whole profile or measure the

- measure of capability for convection
- considers buoyancy only (does not consider wind/mechanical turbulence)
- buoyancy flux

Static Stability

• local lapse rate (stability) insufficient - need the look at the whole profile or measure the

- measure of capability for convection
- considers buoyancy only (does not consider wind/mechanical turbulence)
- buoyancy flux

• local lapse rate (stability) insufficient - need the look at the whole profile or measure the

Obukhov Length

- L negative during daytime (unstable) and positive at night (stable)
- larger L magnitude corresponds to more shear and/or less heat flux
- L blows up when surface heat flux transitions pos/neg or neg/pos

Physical interpretation: scale height where buoyancy dominates over shear

Diabatic Wind Profiles

Stability Parameters

Gradient Ri

$$Ri = rac{(g/\overline{ heta_v})\,\partial\overline{ heta_v}/\partial z}{(\partial\overline{U}/\partial z)^2}$$

$Ri pprox rac{ ext{buoyancy forcing}}{ ext{shear forcing}}$

- predicts turbulent/laminar flow
- applies any height in PBL

- requires turbulence
- applies near-surface layer

Drag and Roughness, z₀ $rac{ au}{ ho} = u_*^2 = C_D \, U^2 \ C_D = rac{u_*^2}{U^2}$ Intuitively, the more rough the surface me more drag

Recall, for neutral conditions

Rewrite as
$$\frac{u_*}{U(z)} = k[ln\frac{z}{z_0}]^{-1}$$

 $C_D = \frac{u_*^2}{U(z)^2} = k^2[ln\frac{z}{z_0}]^{-2}$ (†z₀, †C_D)

$$s: \overline{U}(z) = \frac{u_*}{k} ln \frac{z}{z_0} (\uparrow z_0, \downarrow U)$$

-1

Bulk Flux Parameterizations

vertical flux = $Coeff \cdot [horizontal advective flux]$

- momentum: au =
- heat: H =
- moisture: $H_L =$

$$egin{aligned} & \mathrm{C}_{\mathrm{D10}} \cdot \left[U_{10} \cdot
ho_a U_{10}
ight] \ & \mathrm{C}_{\mathrm{H10}} \cdot \left[U_{10} \cdot
ho_a \mathrm{c}_\mathrm{p}(heta_s - heta_{10})
ight] \end{aligned}$$

$$= \mathrm{C}_{\mathrm{E10}} \cdot \left[U_{10} \cdot \rho_a \mathrm{L}_{\mathrm{v}} (q_s - q_{10}) \right]$$

 C_D, C_H, C_E depend on $z_0, z/L, ...$

Energy Balance: $R_n - G = H + LE$

$$-Q_s^* = Q_H + Q_E - Q_G + \Delta Q_S$$

 Q^*_{c} = net upward radiation at the surface

- Q_H
- QE =
- Q_{G} =
- ΔQ_{S} =

Surface Energy Balance (b) sun Q_{S}^{r} QG

Fig. 7.2 Contributions to the surface energy balance (a) for a finite thickness box and (b) for an infinitesimally thin layer. $-Q_s^2$ is the net radiative Stull 1988 contribution, Q_H is turbulent sensible heat flux, Q_E is turbulent latent heat flux, $-Q_G$ is molecular flux into the ground, and ΔQ_S is storage.

(7.2b)

represents the upward sensible heat flux out of the top represents the upward latent heat flux out of the top represents the upward molecular heat flux into the bottom denotes the storage or intake of internal energy (positive for warming and for chemical storage by photosynthesis).

Typical variation of terms of the surface energy balance for (a) daytime Fig. 7.3 over land; (b) nighttime over land; (c) oasis effect of warm dry air **Stull 1988** advection over a moist surface; and (d) daytime over the sea with no advection. Arrow size indicates relative magnitude.

Surface Energy Balance—Radiation Components

126 NYSM standard sites measure incoming solar 18 NYSM flux sites measure all 4 components (radiation)

face
$$\beta > 1$$
 for dry sur

Can you predict when surface inversion will erode? A homework problem!

Note: most flux stations in grassy areas—using Schuylerville here (previous slide)

Conceptual Model of the ABL But what about over the ocean?

PBL Structure wind, T, q profiles

Turbulence

z₀ - surface roughness

horizontally homogeneous(?)

Conceptual Model of the ABL But what about over the ocean?

horizontally homogeneous(?)

PBL Structure wind, T, q profiles

z₀ - surface roughness

Turbulence

$Q_{\rm H} = \rho c_{\rm p} C_{\rm h} u \left(T_{\rm s} - (T_{\rm a} + \gamma z) \right)$ $Q_E = \rho L C_e u (q_s - q_a)$

where ρ is the density of air; c_{ρ} , the specific heat capacity of air at constant pressure; L, the latent heat of vaporization; C_h and C_e , the stability and height dependent transfer coefficients for sensible and latent heat respectively; u, the wind speed; T_s , the sea surface temperature; T_a , the surface air temperature with a correction for the adiabatic lapse rate, γ ; z, the height at which the air temperature was measured; q_s , 98% of the saturation specific humidity at the sea surface temperature to allow for the salinity of sea water, and q_a , the atmospheric specific humidity.

Estimating H and LE over the ocean

Sea or lake breeze circulation: Daytime

Or if you prefer Stull....

Wantagh 01 July 2019 - 10min Averages

NY Bight McCabe and Freedman (MWR 2023)

1

Sea breeze and LLJ Climatology (McCabe and Freedman 2023)

Questions?

Horns Rev 12 February 2008 1010 UTC — Photo by Christian Steiness

