
i 
Stability and Scaling 

Turbulence kinetic energy (TKE) is one of the most important variables in 
micrometeorology, because it is a measure of the intensity of turbulence. It is directly 
related to the momentum, heat, and moisture transport through the boundary layer. 
Turbulence kinetic energy is also sometimes used as a starting point for approximations of 
turbulent diffusion. 

The individual terms in the TKE budget equation describe physical processes that 
generate turbulence. The relative balance of these processes determines the ability of the 
flow to maintain turbulence or become turbulent, and thus indicates flow stability. Some 
important dimensionless groups and scaling parameters are also based on terms in the 
TKE equation. For these reasons, our study of turbulence kinetic energy will begin with 
the TKE budget equation, and end in a general discussion of stability and scaling. 

5.1 The TKE Budget Derivation 

The definition ofTKE presented in section 2.5 is TKE/m = e = 0.5 (u ,2 + v,2 + w'\ 

Using summation notation, it is easy to rewrite this as e = M K R ú K = We recognize 
1 

immediately that TKE/m is nothing more than the summed velocity variances divided by 
two. Therefore, starting with the prognostic equation for the sum of velocity variances 
(4.3. lg) and dividing by two easily gives us the TKE budget equation: 
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represents local storage or tendency of TKE. 
describes the advection of TKE by the mean wind. 

VI 
(5.la) 
VII 

is the buoyant production or consumption term. It is a 

production or loss tenn depending on whether the heat flux u.'9 ' is 
I v 

positive (during daytime over land) or negative (at night over land), 
is a mechanical or shear production/loss term. The momentum 

flux u.'u.' is usually of opposite sign from the mean wind shear, 
I J 

because the momentum of the wind is usually lost downward to the 
ground. Thus, Tenn IV results in a positive contribution to TKE when 
multiplied by a negative sign. 

Term V represents the turbulent transport of TKE. It describes how TKE 
is moved around by the turbulent eddies uf 

Tenn VI is a pressure correlation term that describes how TKE is 
redistributed by pressure perturbations. It is often associated with 
oscillations in the air (buoyancy or gravity waves). 

Tenn VII represents the viscous dissipation of TKE; i.e., the conversion of 
TKE into heat. 

If we choose a coordinate system aligned with the mean wind, assume horizontal 
homogeneity, and neglect subsidence, then a special fonn of the TKE budget equation can 
be written 

- ú E J I F = 1 ú E ï D é D F =-,-, au d\. wed\. 
u w az -az - p --=--a-z---'- - e (5.lb) 

III IV v VI VII 

Turbulence is dissipative. Tenn VII is a loss tenn that always exists whenever 
TKE is nonzero. Physically, this means that turbulence will tend to decrease and 
disappear with time, unless it can be generated locally or transported in by mean, 
turbulent, or pressure processes. Thus, TKE is not a conserved quantity. The boundary 
layer can be turbulent only if there are specific physical processes generating the 
turbulence. In the next subsections, the role of each of the tenns is examined in more 
detail. 
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S.2 Contributions to the TKE Budget 

5.2.1 Term 1: Storage 

Fig 2.10 shows that there can be substantial variation in the magnitude of TKE with 
time at anyone height. Fig 5.1 shows a simulation of TKE over a two day period, where 
a dramatic increase and decrease of TKE occurs within each diurnal cycle. An increase in 
TKE from a small early morning value to a larger early afternoon value represents a net 
storage ofTKE in the air. In panicular, nonturbulent FA air just above the ML top must 
be spun up (i.e., its turbulence intensity must increase from near zero to the current ML 
value) as entrainment incorporates it into the ML. 

Over a land surface experiencing a strong diurnal cycle, typical order of magnitudes 
for this tenn range from about 5 x to·s m2 s·3 for surface-layer air over a 6 h interval, to 
about 5 x to-3 m2 s-3 for FA air that is spun up over 15 min (i.e., over a time interval 
corresponding to t.). Fig 5.2 shows sample observations of TKE made in the surface 

layer, where TKE varies by about two orders of magnitude. 
During the later afternoon and evening. a corresponding spin down (i.e., decrease 

of TKE with time) occurs where dissipation and other losses exceed the production of 
turbulence. The storage tenn is thus negative during this transition phase. 
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Fig. 5.1 Modeled time and space variation of e (turbulence kinetic energy. 
units m2S'2 ). for Wangara. From Yamada and Mellor (1975). 
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Fig. 5.2 
Sample diurnal 
variation of observed 
range of turbulence 
kinetic energy, 'ii,in the 
surface layer during 
November. After 
Louis, et al. (1983). 

Night 

10" 

9 

Local Time (h) 

Fig 5.3 indicates that the vertical profile ofTKE can sometimes increase to a maximum 
at a height of about z/z; == 0.3 when free convection dominates, as modeled for the 
Wangara experiment. When strong winds are present, the TKE might be nearly constant 
with height within the BL, or might decrease slightly with height as shown in Fig 5.3 for 
BLX83 data. At night, the TKE often decreases very rapidly with height, from a 
maximum value just above the surface. 

Over surfaces such as oceans that do not experience a large diurnal cycle, the storage 
term is often so small that it can be neglected (i.e., steady state can be assumed). This is 
not to say that there is no turbulence, just that the intensity of turbulence is not changing 
significantly with time. 

Fig. 5.3 
The lines show 
modeled vertical 
profiles of turbulence 
kinetic energy, e, 
during Day 33, 
Wangara, (after 
Therryand 
Lacarrere, 1983). 
The shaded profile 
applies when both 
shears and 
buoyancy are active 
(after Hechtel, 1988). 
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5.2.2 Term II: Advection 

Little is known about this tenn. When averaged over a horizontal area larger than 
about 10 Ian by 10 km, it is often assumed that there is little horizontal variation in TKE, 
thereby making the advection tenn negligible. This is probably a good assumption over 
most land surfaces. 

On a smaller scale, however, it is clear that this tenn must be important. For example, 
picture a reservoir of water cooler than the surrounding land. The lack of heating over the 
reservoir would allow turbulence to decay in the overlying air, while air over the adjacent 
land surfaces could be in a state of active convection. A mean wind advecting air across 
the shores of this reservoir would thus cause significant change in the TKE budget. Over 
ocean surfaces, the advection tenn would probably be negligible even on the small scales. 

5.2.3 Term III: Buoyant Production/Consumption 

Production. Fig 5.4 shows the variation of a number of TKE budget terms with 
height within a fair-weather convective ML. The most important part of the buoyancy 

tenn is the flux of virtual potential temperature, w '9 v ' • As we have already studied in 
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Terms of the TKE Budget 

Fig. 5.4 Normalized terms in the turbulence kinetic energy equation. 
The shaded areas indicate ranges of values. All terms are 
divided by w!1 ZI ' which is on the order of 6x 1 l ’ P ã O ë ’ ú =Based 
on data and models from Deardorff (1974), ^ å Ç ê ú =et al. (1978), 
Therry and Lacarrere (1983), Lenschow (1974) , Pennell and 
LeMone 1974 , Zhou, et al. 1985 and Chou, et al. 1986 . 
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Range of terms in the turbulent kinetic energy budget for a cloud -
topped tropical boundary layer. The transport term is split into the 
pressure correlation (PC) and turbulent transport in parts. After 
Nicholls, et al. (1982). 

the previous chapters, this flux is positive and decreases roughly linearly with height 
within the bottom 2/3 of the convective ML. Near the ground, term III is large and 
positive, corresponding to a large generation rate of turbulence whenever the underlying 
surface is warmer than the air. 

When positive, this term represents the effects of thermals in the ML. Active 
thermal convection is associated with large values of this term, as large as 1 x 10,2 m2 s' J 

near the ground. Thus, we often associate this term with sunny days over land, or cold 
air advection over a warmer underlying surface. For cloudy days over land, it can be 
much smaller. 

In convective boundary layers capped with actively growing cumulus clouds, the 
positive buoyancy within the cloud can contribute to the production (term Ill) of TKE (see 
Fig 5.5). Between this cloud layer contribution and the contribution near the bottom of 
the subcloud layer. there may be a region near cloud base where the air is statically stable 
and the buoyancy term is therefore negative. 

Because Term III is so important on days of free convection, it is often used to 
normalize all the other terms. For example. using the definitions of w. and Zj presented 

earlier, it is easy to show that Term III = (wY / Zj at the surface. Dividing (5.1b) by 

(wy / Zj gives a dimensionless form of the TKE budget equation that is useful for free 

convection situations: 
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(5.2.3) 

vn 

By definition. the dimensionless Tenn III is unity at the surface. Equations that are made 
dimensionless by dividing by scaling parameters are said to be normdized. The 
nonnalization scheme expressed by (5.2.3) is used in most of the figures in this section. 
and indeed has been used in the previous chapter too. 

As is evident in (4.3.1j). the buoyancy tenn acts only on the vertical component of 
TKE. Hence. this production term is anisotropic (Le .• not isotropic). The return-to-
isotropy terms of (4.3.1h-j) are responsible for moving some of the vertical kinetic energy 
into the horizontal directions. Again. the anisotropic nature of Tenn 1lI confinns our 
picture of strong up and downdrafts within thermals. 

Consumption. In statically stable conditions, an air parcel displaced vertically by 
turbulence would experience a buoyancy force pushing it back towards its staning height. 
Static stability thereby tends to suppress, or consume, TKE, and is 
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Fig. 5.6 MOdeled turbulence kinetic energy budgets at t-18 h and t,,02 h 
during Night 33·34, Wangara. After Andre et al. (1978). 
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associated with negative values of tenn III. Such conditions are present in the SBL at 
night over land. or anytime the surface is colder than the overlying air. An example of the 
decay of turbulence in negatively buoyant conditions just after sunset is shown in the 
budget profiles of Fig 5.6. 

This same type of consumption can occur at the top of a ML. where warmer air 
entrained downward by turbulence opposes the descent because of its buoyancy (Stage 
and Businger. 1981). This is related to the negative values of the buoyancy tenn near the 
top of the ML in Fig 5.4. 

5.2.4 Term IV: Mechanical (Shear) Production 

When there is a turbulent momentum flux in the presence of a mean wind shear. the 
interaction between the two tends to generate more turbulence. Even though a negative 
sign precedes Tenn IV. the momentum flux is usually of opposite sign from the mean 
shear. resulting in production. not loss. of turbulence. 

Fig. 5.4 shows case studies of the contribution of shear production to the TKE budget 
for convective situations. The greatest wind shear magnitude occurs at the surface. Not 
surprisingly. the maximum shear production rate also occurs there. As shown in 
Chapters 1 and 3. the wind speed frequently varies little with height in the ML above the 
surface layer. resulting in near zero shear and near zero shear production of turbulence. 
Shear production is often associated with the surface layer because of its limited venical 
extent. 

A smaller maximum of shear production sometimes occurs at the top of the ML 
because of the wind shear across the entrainment zone. In that region. the subgeostrophic 
winds of the ML recover to their geostrophic values above the ML. 

The relative contributions of the buoyancy and shear tenns can be used to classify the 
nature of convection (see Fig 5.7) Free convection scaling is valid when the 
buoyancy tenn is much larger than the mechanical tenn, forced convection scaling is 
valid when the opposite is true. 

, 
SP. 

Buoyant Production (BPL) of Turbulence Kinetic Energy (TKE) 

Fig. 5.7 Approximate regimes of free and forced convection. 
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a) Mechanical 

Distance (m) 

b) Thermal 

Distance (m) 

Fig, 5,8 Radar images of turbulence near the boundary layer top, showing (a) 
forced convection, and (b) free convection . After Noonkester (1974) . 
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Magnitudes of the shear production term in the surface layer are obviously greatest on 
a windy day, and are small on a calm day. In synoptic-scale cyclones the strong winds 
and overcast skies suggest that forced convection is applicable. On many days, turbulence 
is neither in a state of free nor forced convection because both the shear and buoyancy 
terms are contributing to the production of turbulence. 

At night over land, or anytime the ground is colder than the air, the shear term is often 
the only term that generates turbulence. We have seen from Fig 5.4 that the shear term is 
active over just a relatively small depth of air, so it is not surprising that, over land, the 
NBL is usually thinner than the ML. 

The greatest shears are associated with the change of V and V components of mean 
wind with height. Except in thunderstorms, shear of W is negligible in the BL. Looking 
back on (4.3.1h-j), the shear production is greatest into the x and y components of TKE. 
Hence, shear production is also an anisotropic forcing - strongest in the horizontal. 

Both the buoyant and shear production terms can generate anisotropic turbulence. The 
difference is that shear generation produces turbulence primarily in the horizontal 
directions, while buoyant generation produces it primarily in the vertical. These 
differences are evident in Fig. 5.8, where a high powered vertically pointing continuous-
wave radar was used to observed the time evolution of eddy structure within the BL. This 
instrument senses moisture contrasts between dry and moist air. The boundary between 
regions of different moisture appear white in the photographs, while regions of more 
uniform high or low humidity appear black. Taylor's hypothesis has been used to convert 
from time-height graphs to vertical cross sections. 

In Fig 5.8b for free convection, the "inverted V-shaped" tops of thermals shows up as 
white because they separate the dry FA air from the moister ML air. These structures are 
predominantly vertical. In Fig 5.8a for forced convection, the eddies are sheared into a 
much more horizontal or slanting orientation, with a much more chaotic appearance. 
Similar structures are apparent in the lidar-generated images shown in the frontispiece 
figure on page xiii, for (a) free and (b) forced convection. 

5.2.5 Term V: Turbulent Transport 

The quantity w'e represents the vertical turbulent flux of TKE. As for other vertical 
fluxes, the change in flux with height is more important than the magnitude of flux. Term 
V is a flux divergence term; if there is more flux into a layer than leaves, then the 
magnitude of TKE increases. 

On a local scale (i.e., at anyone height within the ML), Term V acts as either 
production or loss, depending on whether there is a flux convergence or divergence. 
When integrated over the depth of the ML, however, Term V becomes identically zero, 
assuming as bottom and top boundary conditions that the earth is not turbulent, and that 
there is negligible turbulence above the top of the ML. Overall, Term V neither creates nor 
destroys TKE, it just moves or redistributes TKE from one location in the BL to another. 

Fig 5.9 shows vertical profiles of w' e for daytime, convective cases. Most of these 
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Range of vertical profiles of the normalized vertical flux of 
turbulence kinetic energy using mixed layer scaling (left) and 
surface·layer scaling (right) where L is the Obukhov length. 
After Lenschow, et al. (1980), Andre, et al. (1978), Therry and 
Lacarrere (1983), and Pennell and LeMone (1974). 
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(c), and the ratio of the two during daytime. After Lenschow, 
et aI. (1980). 
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profiles show a maximum of w'e at z/zj = 0.3 to 0.5 . Below this maximum, there is 
more upward flux leaving the top of anyone layer than enters from below. making a net 
divergence or loss of TKE. Above the maximum, there is a net convergence or 
production of TKE. The net effect is that some of the TKE produced near the ground is 
transported up to the top half of the ML before it is dissipated, as confmned in Fig 5.4. 
Transport across the surface layer is illustrated in the right portion of Fig 5.9, where the 
Obukhov length L will be defined in section 5.7. 

If one splits the vertical turbulent transport of total TKE into transport of w·2 and 
(u·2+v·2), then one finds that it is the vertical transport of w·2 that dominates in the middle 
of the ML, and the transport of (u'2+v'2) that dominates near the surface. Fig 5.10 
shows these transports, as well as their ratio. 

5.2.6 Term VI: Pressure Correlation 

Turbulence. Static pressure fluctuations are exceedingly difficult to measure in the 
atmosphere. The magnitudes of these fluctuations are very small, being on the order of 
0.005 kPa (0.05 mb) in the convective surface layer to 0.001 kPa (0.01 mb) or less in the 
ML. Pressure sensors with sufficient sensitivity to measure these static pressure 
fluctuations are contaminated by the large dynamic pressure fluctuatio'ns associated with 
turbulent and mean motions. As a result, correlations such as w'p' calculated from 
experi!Uental data often contain more noise than signal. 

Fig. 5.11 (a) 150 
(a) CompoSite 01 
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circulation patterns 110 --" .. in a vertica 
cross-section thru .§. 90 --,,¥ 
convective thermals. N 70 -V Velocity vectors are 
deviations from the 50 
mean wind. Solid 
lines denote the 30 

boundaries of the 10 
temperature ramp 
associated with a 
thermal updraft; they (b) 130 
are separated by a 
physical distance on 110 
the order of 100 m. 
(b) Contour x-z plot E 90 01 w'p' I é ì ú =, where N the horizontal axis 
represents a 70 

composite of many 
thermals. Contour 50 
interval is 10.0. 
After Wilczak and 30 
Businger (1984). 
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Normalized 
Doppler- radar 
derived standard 
deviation of 
perturbation 
pressure. After 
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What little is known about the behavior of pressure correlation terms is estimated as a 
residual in the budget equations discussed previously. Namely, if all of the other terms in 
a budget equation are measured or parameterized, then the residual necessary to make the 
equation balance includes an estimate of the unknown term(s) together with the 
accumulated errors. An obvious hazard of this approach is that the accumulated errors 
from all of the other terms can be quite large. 

Estimates of w 'p , in the surface layer are shown in Fig 5.11 using this method, 

composited with respect to a large number of convective plume structures. We see quite a 
variation both in the vertical and horizontal. Here, the plume is defmed by its temperature 
ramp signal. Fig 5.12 shows estimates of pressure variance based on Doppler radar 
measurements of motion within the ML. 

Waves. Recall from chapters 1 and 2 that perturbations from a mean can describe 

waves as well as turbulence. Given measured values of w 'p , , it is impossible to separate 

the wave and turbulence contributions without additional information. 

Work in linear gravity wave theory shows that w 'p , is equal to the upward flux of 

wave energy for a vertically propagating internal gravity wave within a statically stable 
environment. This suggests that turbulence energy can be lost from the ML top in the 
form of internal gravity waves being excited by thermals penetrating the stable layer at the 
top of the ML. The amount of energy lost may be on the order of less than 10% of the 
total rate of TKE dissipation, but the resulting waves can sometimes enhance or trigger 
clouds. 

Turbulence within stable NELs can also be lost in the form of waves. One concludes 
that the pressure correlation term not only acts to redistribute TKE within the BL, but it 
can also drain energy out of the BL. 
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5.2.7 Term VII: Dissipation 

As discussed in section 4.3.1, molecular destruction of turbulent motions is greatest 
for the smallest size eddies. The more intense this small-scale turbulence, the greater the 
rate of dissipation. Small-scale turbulence is, in tum, driven by the cascade of energy 
from the larger scales. 

Daytime dissipation rates (see Fig 5.13) are often largest near the surface, and then 
become relatively constant with height in the ML. Above the ML top, the dissipation rate 
rapidly decreases to near zero. At night (see Fig 5.14), both TKE and dissipation rate 
decrease very rapidly with height. Because turbulence is not conserved, the greatest 
TKEs, and hence greatest dissipation rates, are frequently found where TKE production is 
the largest - near the surface. However, the dissipation rate is not expected to perfectly 
balance the production rate because of the various transport terms in the TKE budget. 
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Fig. 5.15 
Example of variation 
of dissipation rate with '(tJ 

time from night to day. 1. 
After Louis, et al. 
(1983). w 

Local Time (h) 

The close relationship between TKE production rate, intensity of turbulence, and 
dissipation rate is shown in Fig 5.15. At night where only shear can produce turbulence, 
the dissipation rate is small because the associated TKE is small (refer back to Fig 5.2). 
After sunrise, buoyant production greatly increases the turbulence intensity, resulting in 
the associated increase in dissipation seen in Fig 5.15. 

S.2.8 Example 

Problem: At a height of z = 300 m in a 1000 m thick mixed layer the following 

conditions were observed: iiu/az = 0.01 S-l, 9 v = 25°C, w'9 v' = 0_15 K mis, and 

u 'w ' = -0.03 m2s-2. Also, the surface virtual heat flux is 0.24 K mls. If the pressure and 

turbulent transports are neglected, then (a) what dissipation rate is required to maintain a 
locally steady state at z = 300 m; and (b) what are the values of the normalized TKE 
terms? 

Solution: (a) Since no information was given about the V -component of velocity or 
stress, let's assume that the x-axis has been chosen to be aligned with the mean wind. 
Looking at the TKE budget (5.1b), we know that term I must be zero for steady state, and 
terms V and VI are zero as specified in the statement of the problem. Thus, the remaining 
terms can be manipulated to solve for £: 

£ g w'9' 
9 v 

y 

Plugging in the values given above yields: 

-, -, au 
uw -az 
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e (9.8 m·s·2) / [(273.15+25)K]) . (0.15 K·m·s·l) (-0.03 m2s·2)·(0.01 s·l) 

e 4.93 x 10-3 + 3 X 10.4 (m2s·3) 

e = 5.23 x 10-3 (m2s-3) 

(b) To normalize the equations as in (S.2.3), we first use (4.2a) to give w.3/ Zj 

(glev)·w 'e v' , which for our case equals 7.89 x 10-3 (m2s-3). Dividing our terms by this 
value, and rewriting in the same order as (S.2.3) yields: 

Term: 
o 
J 

0.625 + 0.038 - 0 - 0 - 0.663 
III IV V VI VII 

Discussion: This buoyant production term is about an order of magnitude larger 
than the mechanical production term, meaning that the turbulence is in a state of free 
convection. In regions of strong turbulence production, the transport term usually 
removes some of the TKE and deposits it where there is a net loss of TKE, such as in the 
entrainment zone. Thus, we might expect that the local dissipation rate at z = 300 m is 
smaller than the value calculated above. 

5.3 TKE Budget Contributions as a Function of Eddy Size 

As will be shown in chapter 8, the TKE budget equation can be written in a spectral 
form where the the contributions of each term in (S.I) can be examined as a function of 
wavelength or eddy size. Fig S.16b shows the following terms as a function of 
wavenumber: buoyant production (Term III), shear production (Term IV), and 
dissipation (Term VII), all measured at one height in the BL. The turbulent transport and 
pressure redistribution term calculations were inaccurate, and hence left out of these 
figures. 

One additional term appears in the spectral form of the TKE equation: the transfer of 
energy across the spectrum. In this case, as in most atmospheric cases, the transfer is 
from large size eddies (low wavenumbers) to small sizes (high wavenumbers). The 
concept behind this cascade of energy was introduced in Chapter 2. The rate of flow of 
this energy, shown in Fig 5.16a, is greatest for middle size eddies. Not only is it largest 
there, but it is also relatively constant with wavenumber. Hence, there is no net 
divergence or convergence of energy in the middle of the spectral domain, but there is a 
large amount of energy flowing through that domain . The slope of the curve in Fig S.16a 
determines the magnitude of the transport term in FigS.16b. 

Large size eddies are presented on the left side of these figures, and small on the right. 
We see in Fig 5.16b that there is liule energy at the very largest sizes, corresponding to the 
spectral gap. Once we get down to a normalized wavenumber of 0.01, we see large 
magnitudes of the shear and buoyant production terms. The production is not dissipated 
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at these sizes however. Instead, there is the cascade or transport of energy away from the 
large size eddies towards the smaller sizes where it is deposited. At the small-eddy end of 
the spectrum (large wavenumber of 100-1000), the production terms are near zero. 
Instead, dissipation is large. 

One measure of the smallest scales of turbulence is the Kolmogorov microscale, 11, 

given by: 11 = (v3/e) 1/4. This scaling assumes that the smallest eddies see only turbulent 

energy cascading down the spectrum at rate e, and feel only the viscous damping of v. 

For the example of Fig 5.16, 11 == 1 rom, which occurs at a normalized frequency of about 
3000. 

The nature of the atmospheric turbulence spectrum is directly related to the fact that 
production and dissipation are not happening at the same scales. Production is feeding 
only the larger size eddies (anisotropically, as we learned earlier), but dissipation is acting 
only on the smaller sizes. Thus, the rate of transport across the middle part of the 
spectrum is equal to the rate of dissipation, e, at the small-eddy end. Such transfer can be 
thought of as happening inertially - larger eddies creating or bumping into smaller ones, 
and transferring some of their inertia in the process. This middle portion of the spectrum 
is called the inertial subrange. 
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Example 01 spectral energy budget terms lor zlL = -0.29. 
Shown in (b) are the shear and buoyant production and the 
dissipation terms as lunctions 01 Irequency f. The shaded 
curve (labelled ilTr(l) / ill) is equal to minus the sum 01 the 
shear, buoyant production and dissipation terms. The Tr(l) 
curve (a) was obtained by integrating ilTr(l) / ill. Here Tr(l) is 
the transler 01 energy in I space required to balance the 
production and dissipation. The symbol I is Irequency and K 
is wave number. After McBean and Elliott (1975 . 
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5.4 Mean Kinetic Energy and Its Interaction with Turbulence 

Term N in the TKE budget (S.l) involves the production of TKE by interaction of 
turbulence with the mean wind. One might expect that the production of TKE is 
accompanied by a corresponding loss of kinetic energy from í Ü ú =mean flow. 

To study that possibility, start with the prognostic equation for mean wind in turbulent 

flow (3.4.3c), multiply by U j ,and use the chain rule to derive the following equation for 
-2 =-.2 =-.2 - 2 mean kinetic energy per unit mass [MKE/m = O.5(U + V + W ) = 0.5 Uj ]: 

I 

Term I 
Termll 
Termm 

TermN 
TermY 

Term VI 
Term X 

-U - d2-U :.(Ii'U" 
- - - j dP - j - U j j) 

= J Ö ú á P r I = + fe"3 U, U. --:- :;-+vU. -- -U.-':"":.::---,"':' 
1 C IJ 1 J " ux. ' 1 d 2 1 UX. 

1 ú = J 

(S.4a) 
II III N Y VI X 

represents storage of MKE. 
describes the advection of MKE by the mean wind. 

. indicates that gravitational acceleration of vertical motions alter the 
MKE. 
shows the effects of the Coriolis force. 
represents the production of MKE when pressure gradients 
accelerate the mean flow. 
represents the molecular dissipation of mean motions. 
indicates the interaction between the mean flow and turbulence. 

When the Coriolis term (IV) is summed over all values of the repeated indices, the 
result equals zero. This confmns our observation that Coriolis force can neither create nor 
destroy energy; it merely redirects the winds. Using the product rule, the last term (X) 
can be rewritten as 

ú r Wr Wr X F =
dXj 

This leaves 

ú =o.Su j
2) _ ú =o.Su j

2) _ U. ap _ a2u j __ au. 
::l. +u.--'--:::.:--.!...!.- = -gW - -:!--:.- +vU. -2- +u.'U.'-:._l 
Ul J UXJ. " uX . 1 d 1 J uX . 

J Xj J 

i.U:U;U;) 
dXj 

(S.4b) 
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If we compare the TKE equation (5.1) with the MKE equation (5.4b): 

aC TKElm) 
at 

cJ..MKFIm) 
at 

_au. 
+ u: u.' __ 1 

• • • 1 J ax. 
J 

we see that they both contain a tenn describing the interaction between the mean flow and 
turbulence. The sign of these terms differ. Thus, the energy that is mechanically 
produced as turbulence is lost from the mean /low, and vice versa. 

5.5 Stability Concepts 

Unstable flows become or remain turbulent. Stable flows become or remain laminar. 
There are many factors that can cause laminar flow to become turbulent, and other factors 
that tend to stabilize flows. If the the net effect of all the destabilizing factors exceeds the 
net effect of the stabilizing factors, then turbulence will occur. In many cases, these 
factors can be interpreted as tenns in the TKE budget equation. 

To simplify the problem, investigators have historically paired one destabilizing factor 
with one stabilizing factor, and expressed these factors as a dimensionless ratio. 
Examples of these ratios are the Reynolds number, Richardson number, Rossby number, 
Froude number, and Rayleigh number. Some other stability parameters such as static 
stability, however, are not expressed in dimensionless form. 

5.5.1 Static Stability and Convection 

Static stability is a measure of the capability for buoyant convection. The word 
"static" means "having no motion"; hence this type of stability does not depend on wind. 
Air is statically unstable when less-dense air (warmer and/or moister) underlies more-
dense air. The flow responds to this instability by supporting convective circulations 
such as thennals that allow buoyant air to rise to the top of the unstable layer, thereby 
stabilizing the fluid. Thennals also need some trigger mechanism to get them started. In 
the real boundary layer, there are so many triggers (hills, buildings, trees, dark fields, or 
other perturbations to the mean flow) that convection is usually insured, given the static 
instability. 

Local Definitions. The traditional definition taught in basic meteorology classes 
is local in nature; namely, the static stability is detennined by the local lapse rate. The 
local definition frequently fails in convective MLs, because the rise of thennals from near 
the surface or their descent from cloud top depends on their excess buoyancy and not on 
the ambient lapse rate. 
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As an example, in the middle 50% of the convective ML the lapse rate is nearly 
adiabatic, causing an incorrect classification of neutral stability if the traditional local 
definition is used. We must make a clear distinction between the phrases "adiabatic lapse 
rate" and "neutral stability". An adiabatic lapse rate (in the virtual potential 
temperature sense) may be statically stable, neutral, or unstable, depending on convection 
and the buoyancy flux. Neutral stability implies a very specific situation: adiabatic 
lapse rate AND no convection. The two phrases should NOT be used interchangeably, 
and the phrase "neutral lapse rate" should be avoided altogether. 

We conclude that measurement of the local lapse rate alone is 
INSUFFICIENT to determine the static stability. Either knowledge of the 

whole 8 y profile is needed (described next), or measurement of the turbulent buoyancy 

flux must be made. 

Nonlocal Definitions. It is better to examine the stability of the whole layer, and 
make a layer determination of stability such as was done in section 1.6.4. For example, if 

w'8 'at the earth's surface is positive, or if displaced air parcels will rise from the ground y 

or sink from cloud top as thermals traveling across a BL, then the whole BL is said to be 

unstable or convective. If w'8 ' is negative at the surface, or if displaced air parcels 
y 

return to their starting point, then the BL is said to be stable. 
If, when integrated over the depth of the boundary layer, the mechanical production 

term in the TKE equation (5.1) is much larger than the buoyancy term, or if the buoyancy 
term is near zero, then the boundary layer is said to be neutral. In some of the older 
literature, the boundary layer of this latter case is also sometimes referred to as an 
Ekman boundary layer. During fair weather conditions over land, the BL touching 
the ground is rarely neutral. Neutral conditions are frequently found in the RL aloft. In 
overcast conditions with strong winds but little temperature difference between the air and 
the surface, the BL is often close to neutral stability. 

In the absence of knowledge of convection or measurements of buoyancy flux, an 

alternate determination of static stability is possible if the e profile over the whole BL is 
y 

known, as sketched in Fig 5.17. As is indicated in the figure, if only portions of the 
profile are known, then the stability might be indeterminate. Also, it is clear that there are 
many situations where the traditional local defmition fails. 
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5.5.2 Example 

Problem. Given the sounding at right, identify the static 

stability of the air at z = 600 m. 

Solution. Using a local definition in the absence of heat 
fluxes, if we look downward from 600 m until a diabatic layer 
is encountered, we find a stable layer with cooler temperatures 
at 200 m. Before we reach any hasty conclusions, however, 
we must look up from 600 m. Doing so we find cooler unstable 
air at 1000 m. Thus, the static stability is ú =at 600 m. 

z (m) 6/K) 

1000 298 
800 299 
600 299 
400 299 
200 298 

o 295 

Discussion. The whole adiabatic layer is unstable, considering the nonlocal 
approach of a cool parcel sinking from above. This sounding is characteristic of 
stratocumulus. 

5.5.3 Dynamic Stability and Kelvin-Helmholtz Waves 

The word "dynamic" refers to motion; hence, dynamic stability depends in part on the 
winds. Even if the air is statically stable, ú Dá å Ç =shears may be able to generate turbulence 
dynamically. 

Some laboratory experiments have been performed (Thorpe, 1969, 1973; Woods 
1969) using denser fluids underlying less-dense fluids with a velocity shear between the 
layers to simulate the stable stratification and shears of the atmosphere. Fig 5.18 is a 
sketch of the resulting flow behavior. The typical sequence of events is: 

(I) A shear exist$ across a density interface. Initially, the flow is laminar. 
(2) If a critical value of shear is reached (see section 5.6), then the flow becomes 

dynamically unstable, and gentle waves begin to form on the interface. The crests 
of these waves are normal to the shear direction 

(3) These waves continue to grow in amplitude, eventually reaching a point where 
each wave begins to "roll up" or "break". This "breaking" wave is called a 
Kelvin-Helmholtz (KH) wave , and is based on different physics than 
surface waves that "break" on an ocean beach. 

(4) Within each wave, there exists some lighter fluid that has been rolled under denser 
fluid, resulting in patches of static instability. On radar, these features appear as 
braided ropelike patterns, "cat's eye" patterns or breaking wave patterns. 

(5) The static instability, combined with the continued dynamic instability, causes each 
wave to become turbulent. 

(6) The turbulence then spreads throughout the layer, causing a diffusion or mixing of 
the different fluids. During this diffusion process, some momentum is transferred 
between the fluids, reducing the shear between the layers. What was formerly a 
sharp, well-defined, interface becomes a broader, more diffuse shear layer with 
weaker shear and static stability. 
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(7) This mixing can reduce the shear below a critical value and eliminate the dynamic 
instability . 

(8) In the absence of continued forcing to restore the shears, turbulence decays in the 
interface region, and the flow becomes laminar again. 

This sequence of events is suspected to occur during the onset of clear air 
turbulence (CAT). These often occur above and below strong wind jets, such as the 
nocturnal jet and the planetary-scale jet stream. In these situations, however, continued 
dynamic forcings can allow turbulence to continue for hours to days. These regions of 
CAT have large horizontal extent (hundreds of kilometers in some cases), but usually 
limited vertical extent (tens to hundred of meters). They can be visualized as large 
pancake-shaped regions of turbulence. Aircraft encountering CAT can often climb or 
descend into smoother air. 

Although KH waves are probably a frequent occurrence within statically stable shear 
layers, they are only rarely observed with the naked eye. Occasionally, there is sufficient 
moisture in the atmosphere to allow cloud droplets to act as visible tracers. Clouds that 
form in the rising portions of the waves often form parallel bands called billow clouds. 
The orientation of these bands is perpendicular to the shear vector. One must remember 
that the wind SHEAR vector need not necessarily point in the same direction as the mean 
wind vector. 

For both static and dynamic instabilities, and many other instabilities for that matter, it 
is interesting to note that the fluid reacts in a manner to undo the cause of the instability. 
This process is strikingly similar to LeChatelier's principle of chemistry, which 
states that "if some stress is brought to bear upon a system in equilibrium, a change occurs 
such that the equilibrium is displaced in a direction which tends to undo the effect of the 
stress". Thus, turbulence is a mechanism whereby fluid flows tend to undo the cause of 
the instability. In the case of static instabilities, convection occurs that tends to move more 
buoyant fluid upward, thereby stabilizing the system. For dynamic instability, turbulence 
tends to reduce the wind shears, also stabilizing the system. 

With this in mind, it is apparent that turbulence acts to eliminate itself. After the 
unstable system has been stabilized, turbulence tends to decay. Given observations of 
turbulence occurring for long periods of time within the boundary layer, it is logical to 
sunnise that there must be external forcings tending to destabilize the BL over long time 
periods. In the case of static instability, the solar heating of the ground by the sun is that 
external forcing. In the case of dynamic instabilities, pressure gradients imposed by 
synoptic-scale features drive the winds against the dissipative effects of turbulence. 

By comparing the relative magnitudes of the shear production and buoyant 
consumption terms of the TKE equation, we can hope to estimate when the flow might 
become dynamically unstable. The Richardson number, Ri, described in the next 
subsection, can be used as just such an indicator. 
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• 

Fig. 5.18 

.. 

Schematic diagram of Kelvin-Helmholtz instability in a laboratory 
experiment where shear flow has been generated. The upper 
layer, water, flows to the right, and the lower more dense fluid, 
dyed brine, flows to the left. The figures are about half a second 
apart. After Thorpe (1969,1973) and Woods (1969). 
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5.6 The Richardson Number 

5.6.1 Flux Richardson Number 

In a statically stable environment, turbulent venical motions are acting against the 
restoring force of gravity. Thus, buoyancy tends to suppress turbulence, while wind 
shears tend to generate turbulence mechanically. The buoyant production term (Term 1lI) 
of the TKE budget equation (5.1 b) is negative in this situation, while the mechanical 
production term (Term IV) is positive. Although the other terms in the TKE budget are 
cenainly imponant, a simplified but nevenheless useful approximation to the physics is 
possible by examining the ratio of Term III to Term IV. This ratio, called the flux 
Richardson number, Re, is given by 

(:) (w'9 y ') 

Re = _y_ au. (5.6.1 a) 
(u.'u.') ...-!. 

I J dx. 
J 

where the negative sign on Term IV is dropped by convention. The Richardson number is 
dimensionless. The denominator consists of 9 terms, as implied by the summation 
notation. 

If we assume horizontal homogeneity and neglect subsidence, then the ahove equation 
reduces to the more common form of the flux Richardson number: 

(:J (w'9 v ') 

Rr = J J K WK K K I J K X ú J J J Z =
(-'-') au (-'-') av uw Tz+ vw az 

(5.6.1b) 

For statically unstable flows, Rr is usually negative (remember that the denominator is 
usually negative). For neutral flows, it is zero. For statically stable flows, Rr is positive. 

Richardson proposed that Rr = + I is a critical value, because the mechanical 
production rate balances the buoyant consumption of TKE. At any value of Rr less than 
+ 1, static stability is insufficiently strong to prevent the mechanical generation of 
turbulence. For negative values of Rr• the numerator even contributes to the generation of 
turbulence. Therefore, he expected that 

Row IS turbulent (dynamically unstable) when Rf < +1 
Row BECOMES laminar (dynamically stable) when Rf > +1 

We recognize that statically unstable flow is, by definition, always dynamically unstable. 
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5.6.2 Gradient Richardson Number 

A peculiar problem arises in the use of Rf ; namely. we can calculate its value only for 

turbulent flow because it contains factors involving turbulent correlations like w'e '. In 
y 

other words. we can use it to determine whether turbulent flow will become laminar. but 
not whether laminar flow will become turbulent. 

Using the reasoning of section 2.7 and Fig 2.13. it is logical to suggest that the value 

of the turbulent correlation - w 'e y , might be proportional to the lapse rate iJe yfiJz. 

Similarly. we might suggest that -u 'w ' is proportional to iJU/iJz. and that -v 'w ' is 

proportional to iJY/dz. These arguments form the basis of a theorylknown as K-theory or 
eddy diffusivity theory. which will be discussed in much more detail in chapter 6. For 
now. we will just assume that the proportionalities are possible. and substitute those in 
(5.6.1b) to give a new ratio called the gradient Richardson number. Ri : 

Ri = (5.6.2) 

When investigators refer to a "Richardson number" without specifying which one. they 
usually mean the gradient Richardson number. 

Theoretical and laboratory research suggest that laminar flow becomes unstable to 
KH-wave formation and the ONSET of turbulence when Ri is smaller than the critical 
Richardson number. Re. Another value, RT• indicates the termination of turbulence. 
The dynamic stability criteria can be stated as follows: 

Laminar flow becomes turbulent when Ri < Rc. 
Turbulent flow becomes laminar when Ri > RT• 

Although there is still some debate on the correct values of Rc and RT• it appears that Rc = 
0.21 to 0.25 and RT = 1.0 work fairly well. Thus. there appears to be a hysteresis 
effect because RT is greater than Re. 

One hypothesis for the apparent hysteresis is as follows. Two conditions are needed 
for turbulence: instability. and some trigger mechanism. Suppose that dynamic instability 
occurs whenever Ri < RT. If one trigger mechanism is existing turbulence in or adjacent 
to the unstable fluid. then turbulence can continue as long as Ri < RT because of the 
presence of both the instability and the trigger. If KH waves are another trigger 
mechanism. then in the absence of existing turbulence one finds that Ri must get well 
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below RT before KH waves can fonn. Laboratory and theoretical work have shown that 
the criterion for KH wave fonnation is Ri < Re' This leads to the apparent hysteresis, 
because the Richardson number of nonturbulent flow must be lowered to Rc before 
turbulence will start, but once turbulent, the turbulence can continue until the Richardson 
number is raised above RT. 

5.6.3 Bulk Richardson Number 

The theoretical work yielding Re == 0.25 is based on local measurements of the wind 
shear and temperature gradient. Meteorologists rarely know the actual local gradients, but 
can approximate the gradients using observations made at a series of discrete height 

intervals. If we approximate 'CJS/iJz by t:.S/t:.z, and approximate 'CJU/'CJz and 'CJV/'CJz by 

t:.U/t:.z and t:.V/t:.z respectively, then we can define a new ratio known as the bulk 
Richardson number, RB : 

(5.6.3) 

It is this fonn of the Richardson number that is used most frequently in meteorology, 
because rawinsonde data and numerical weather forecasts supply wind and temperature 
measurements at discrete points in space. The sign of the finite differences are defined, 

for example, by t:.U = U(z[Op) - U(Zboltom)' 
Unfonunately, the critical value of 0.25 applies only for local gradients, not for finite 

differences across thick layers. In fact, the thicker the layer is, the more likely we are to 
average out large gradients that occur within small subregions of the layer of interest. The 
net result is (1) we introduce uncertainty into our prediction of the occurrence of 
turbulence, and (2) we must use an artificially large (theoretically unjustified) value of the 
critical Richardson number that gives reasonable results using our smoothed gradients. 
The thinner the layer, the closer the critical Richardson number will likely be to MK O ú K =
Since data points in soundings are sometimes spaced far apart in the vertical, 
approximations such as shown in the graph and table in Fig 5.19 can be used to estimate 
the probabili.y and intensity of turbulence (Lee, et aI., 1979). 

Table 5-1 shows a ponion of a rawinsonde sounding, together with the corresponding 
values of bulk Richardson number. The resulting turbulence diagnosis is given in the 
rightmost column of Table 5-l. Note that the Richardson number itself says nothing 
about the intensity of turbulence, only about the yes/no presence of turbulence. 
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Fig. 5.19 100% 

(a) Relationship between the 
bulk Richardson number, Ri, ú =over a layer and the probability (J 
of turbulence within that layer. '0 This curve was developed 
empirically. (b) Empirically ú =
denved relationship between i turbulence intensity and the 
wind speed and shear. "N" o. 
indicates none, "L" is light, "M" 0. 

is moderate, oS' is severe, and 0% 
025 10.25 

"X' is extreme turbulence. Bulk Richardson Number 

Wind Vector wind she.r .. , (ktll000 'eel) 
Speed .00 .. ·.0118 .0118· .0168 .0188· .033. .0338· .0508 .0506· .0844 .0844+ 
mI. (kl) (5,7) (7'10) (10·20) (20·30) (30·50) (50.) 

20.30 N L L-M M M-S S (40.80) 

30·60 
L L·M M M·S S S·X (80·'20) 

80. 
L L·M M M·S S X (120.) 

Fig 5.20 show examples of the evolution of the Richardson number during some 
nighttime case studies. Regions where the Richardson number is small are sometimes 
used as an indicator of the depth of the turbulent SBL. e É ê ú =we see low Richardson 
numbers close to the ground, in addition to patches of low Richardson number aloft. 

Fig. 5.20 

Time (h) 

Example of the evolution of local Richardson number with height and 
time during one night. Regions with Richardson number less than 
1.0 are shaded, and are likely to be turbulent. After Mahrt (1981). 
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Table 5·1. Example of a nighttime rawinsonde sounding analyzed to give stability, shear, 
Richardson number, and the probability and intensity of turbulence. Probabilities are expressed 
as a percent, and intensities are abbreviated by: 

N = no turbulence, L " light (0.5 G), M = moderat'3 (1 G), S=S9vere (2 G) 
These Intensity levels correspond to the turbulence reporting recommendations used in 
aviation, where the vertical acceleration measured in Gs (number of times the pull of gravity) is 
relative to the center of gravity of the aircraft. For practical purposes, a probability greater than 
50% AND an intensity greater than L were required before a CAT forecast would be issued. 

z Wind Speed T e Lapse Shear Ra CAT CAT 

(m) Dlr (0) (m/s) (K) (K) (Kim) (8"1) Prob(%) Inten. 

1591 154 9.8 281 294.4 0.0021 0.0034 6.19 41 N 
1219 150 10.7 0.0021 0.0045 3.43 68 N 
914 144 9.7 0.0021 0.0091 0.86 94 N·L 
702 287.8 292.5 0.0020 0.0091 0.81 94 N-L 
610 134 7.4 0.0020 0.0170 0.23 100 L-M 
393 290.2 291 .9 0.0204 0.0170 2.37 79 L-M 
305 95 3.5 0.0204 0.0137 3.64 66 N 
222 79 2.7 288.4 288.4 0.0133 0.0071 8.92 13 N 

4 45 2.5 287.6 285 .5 

5.6.4 Examples 

Problem A: Given the same data from problem 5.2.8, calculate the flux Richardson 
number and comment on the dynamic stability. 

Solution. Since the flux Richardson number is defined as the ratio of the buoyancy 
term to the negative of the shear term, we can use the values for these terms already 
calculated in example 5.2.8: 

R = buoyancy term 
f _ shear term 

0.00493 
-0.0003 

= -16.4 

Discussion. A negative Richardson number is without question less than + 1, and 
thus indicates dynamic instability and turbulence. This is a trivial conclusion, because any 
flow that is statically unstable is also dynamically unstable by definition. 
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Problem B: Given a fictitious SBL where (glav ) = 0.033 m s-2 K-I, iJU/iJz = [u. / 

(O.4·z)] S-I, u. = 0.4 mis, and where the lapse rate, cl' is constant with height such that 

there is 6°C a v increase with each 200 m of altitude gained. How deep is the turbulence? 

Solution. We can use the gradient Richardson number as an indicator of dynamic 
stability and turbulence. Using the prescribed gradients, we find that: 

ú =iJay g 

e iJz = cI (0.033)·(0.03) a 2 -2 2 Ri v v z (0.00099 m ) z 

E ú ú ê = E X ú ò ê =
2 (0.4 /0.4) 

If we use Rc = 0.25, then we can use this critical value in place of Ri above and solve for 
z at the critical height above which there is no turbulence: 

z = J ( 1010 m2) Rc = J 252.5 m2 = 15.9 m 

Discussion. If we has used a critical termination value of RT = 1.0, then we would 
have found a critical height of 31.8 m. Thus, below 15.9 m we expect turbulence, while 
above 31.8 m we expect laminar flow. Between these heights the turbulent state depends 
on the past history of the flow at that height. If previously turbulent, it is turbulent now. 

5.7 The Obukhov Length 

The Obukhov length (L) is a scaling parameter that is useful in the surface layer. To 
show how this parameter is related to the TKE equation, first recall that one definition of 
the surface layer is that region where turbulent fluxes vary by less that 10% of their 
magnitude with height. By making the constant flux (with height) approximation, one 
can use surface values of heat and momentum flux to define turbulence scales and 
nondimensionalize the TKE equation. 

Start with the TKE equation (5.1 a), multiply the whole equation by (-k z/u.3), assume 
all turbulent fluxes equal their respective surface î ~ ä ì ú ë W= and focus on just terms III, IV, 
and VII: 

k z g (w'a v ')s kz(u.'u') iJU. k z fls 
+ I J s I + (5.7a) 

a 3 3 ax. u2 v u. U. J 

IT! IV VII 
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Each of these tenns is now dimensionless. The last tenn, a dimensionless dissipation 
rate, will not be pursued funher here. 

The von Karman constant, k, is a dimensionless number included by tradition. 
Its importance in the log wind profile in the surface layer is discussed in the next section. 
Investigators have yet to pin down its precise value, although preliminary experiments 
suggest that it is between about 0.35 and 0.42. We will use a value of 0.4 in most of 
this book, although some of the figures adopted from the literature are based on k=O.3S. 

Tenn III is usually assigned the symbol, ú I ~ å Ç =is further defined as ú X W= z/L, where L 
is the Obukhov length. Thus, 

Z -k z g (w'9 ') 
ú Z | Z = v s 

L 9 3 

The Obukhov length is given by: 

L 
(m) 

v U. 

-9" u 3 
L = __ .:..v_·_ 

Local Time (h) 

Fig. 5.21 Typical ranges of Obukhov length (L) evolution over a diurnal cycle. 

(S .7b) 

(S .7c) 
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One physical interpretation of the Obukhov length is that it is proportional to the height 
above the surface at which buoyant factors first dominate over mechanical (shear) 
production of turbulence. For convective situations, buoyant and shear production terms 
are approximately equal at z = -0.5 L. Fig 5.21 shows the typical range of variations of 
the Obukhov length in fair weather conditions over land. 

The parameter S turns out to be very important for scaling and similarity arguments of 
the surface layer, as will be discussed in more detail in a later chapter. It is sometimes 
called a stability parameter, although its magnitude is not directly related to static nor 
dynamic stability. Only its sign relates to static stability: negative implies unstable, 
positive implies statically stable. A better description of S is "a surface-layer scaling 
parameter". 

We can write an alternative form for S by employing the definition of w.: 

_ Z _ k z w.3 

S - L - - Zi u.3 (5 .7d) 

Fig. 5.22 shows the variation of TKE budget terms with S, as ú = varies between 0 
(statically neutral) and -1 (slightly unstable). The decrease in importance of shear and 
increase of buoyancy as ú = decreases from 0 to -1 is particularly obvious. 

-2 r---------------r---------------, 
Residual (maybe 
pressure term) 

Buoyant Production .E _ t """" +" ., ......... ..... , .. ú =.. , .. -" .. " Fig. 5.22 
Behavior of the terms 
(made dimensionless 
with kzlu ;) in the 
unstable surface-layer 
turbulence kinetic 

(!) 

energy budget. After <Il 

Wyngaard (1973). ú =

o ú p | Ü | É ~ | ê | m | ê ç | Ç | ì | Å í | ä ç | å =________________ J Z J ú =

TurbUlent q ê U ê X á á é ú ê í ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? D ? D D D D D D D D D D D D D D =
.................... 

ú í ú K l J J J J J J J J J J J J J J ú ú ú R ú J J J J J J J J J J ú l =
z/L 

Figs. 5.23 shows the variation of Ri with ú = from slightly unstable to slightly stable 
conditions . For un stable situations, Ri == S. One must keep in mind that S can be 
calculated only for turbulent flow , thus this figure shows only the subset of all data that 
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was turbulent. Nonturbulent flow can occur in stable situations, but it does not appear in 
this figure. 

RI 
.25 

- 0.5 

-1.0 

5.8 Dimensionless Gradients 

RI. ú =10.74 + Q K T ú F = Stabl. BL 
11 + Q K T ú F = 2 

Fig. 5.23 
The dependence of the 
Richardson number on zlL in 
the surface layer. Solid lines 
correspond to the equations, 
while the shaded region 
indicates the range of values 
observed in the data. After 
Businger, et al. (1971). 

We can simplify term IV of the dimensionless TKE equation (5.7a) by choosing a 
coordinate system aligned with the mean wind, assuming horizontal homogeneity, 

neglecting subsidence, and using the definition that u.2 = -(u 'w ')s 

-kz au 
Term IV - -- u.- az 

Based on this dimensionless term, we can define a dimensionless wind shear, G>M, 
by 

kz au 
$=--

M u. az (5 .8a) 

This parameter is primarily useful for studies of surface-layer wind profiles and 
momentum fluxes. In chapter 9 we will use $M in similarity theory to estimate momentum 
flux (as given by u*) from the local mean wind shear. This is particularly valuable 

because it is easy to measure mean wind speeds at a variety of heights in the surface layer, 

but much more difficult and expensive to measure the eddy correlations such as u' w' . 

By analogy, a dimensionless lapse rate, $H' and a dimensionless humidity 
gradient, $E ' can be defined: 
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(5.8b) 

(5.8c) 

These dimensionless gradients are equally as valuable as the dimensionless shear, because 
using similarity theory we can estimate the surface layer heat flux and moisture flux from 
simple measurements of lapse rate and moisture gradient, respectively. 

5.9 Miscellaneous Scaling Parameters 

5.9.1 Definitions 

A few additional dimensionless scaling groups have been suggested in the literature to 
help explain boundary layer characteristics. Again, these are often inappropriately called 
stability parameters. One parameter that is useful in the surface layer is: 

SL k u. 
J..L = fc L 

2--
g k (w'ev' )s 

e f (u'w') v C s 

Another scaling parameter that is useful in the ML is 

3 u. 

(5.9.1a) 

(5 .9.lb) 

(5.9.1c) 

(5 .9. ld) 

(5.9.1 e) 
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(5.9.1f) 

It's important not to confuse either of these two parameters with the dynamic viscosity, 
which traditionally uses the same symbol. 

Another parameter occasionally used is: 

(5.9.1g) 

which looks like a modified Richardson number. Additional scaling parameters and 
dimensionless groups will be introduced in later chapters where appropriate. 

5.9.2 Example 

Problem: Given surface measurements: u* = 0.2 m·s- I , g/ev = 0.0333 m's-'K-', 

and w'e; = -0.05 K-m·s-I ; and at 10 m: aU/az = 20 m'S-' /lOOm, and aeli)z = 
v 

20°C/100m. Find scaling parameters L, ú I É K p i I =IPM' IPH' and ú p i =at z = 10 m, at a 
latitude where fc = 10-4 s-, . 

Solution: L = 

3 
- u. 

- w'e ' 
v s 

u. 

(0.2/ 
(0.4) (0.0333) (0.05) 

0.83 

(0.4) (10) (02) 
(0.2) . 

0.05 
OT 0.25 K 

4.0 

12.0m 
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q>H 

SL k u. 
1..1. =-

fc L 

(0.4) (10) (02) 
(0.25) . 

(0.4) (0.2) 

(104 ) (12) 
66.7 

5.10 Combined Stability Tables 

3.2 

Static and dynamic stability concepts are intertwined, as sketched in Fig 5.24a. 
Negative Richardson numbers always correspond to statically and dynamically unstable 
flow. This flow will definitely become turbulent. Positive Richardson numbers are 
always statically stable, but there is the small range of 0 < Ri < 1 where positive 
Richardson numbers are dynamically unstable, and may be turbulent depending on the 
past history of the flow. Namely, nonturbulent flow will become turbulent at about Ri = 
0.25, while flow that is presently turbulent will stay turbulent if Ri < 1. 

(8) 

(b) 10' ,....------r-----r------..-----.------. 

RI 

10· 

0.25 

10·' 

Alway. 
LamInar 

(VI.coslty) 

Always LamInar 
(stability) 

CharacterIstics LamInar II RI ,. 1 prevIously 
of both -

Fig. 5.24 Stability parameter relationships (see text) . (After Woods, 1969) . 
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The effects of viscosity and stability in suppressing turbulence are also intertwined, as 
sketched in Fig 5.24b. In Section 3.5.1 we defined the Reynolds number as the ratio of 
inertial to viscous forces, with no mention about buoyancy. In section 5.5.3, we defined 
a Richardson number as the ratio of buoyant to inertial or mechanical forces, with no 
mention of viscosity. In the atmosphere, the Reynolds number is usually so large that it 
corresponds to the rightmost edge of Fig 5.24b. Thus, we can essentially ignore viscous 
effects on stability in the atmosphere, and focus on the static and dynamic stability instead. 

In conclusion, we see that the TKE equation is critical for determining the nature of 
flow in the BL. The relative contributions of various turbulence production and loss terms 
can be compared when rewritten as dimensionless scaling é ~ ê ~ ã É ú É ê ë K = These parameters 
can be used to define layers within the BL where the physics is simplified, and where a 
variety of similarity scaling arguments can be made (see chapter 9 for details of similarity 
theory). 
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5.12 Exercises 

1) Why doesn't turbulent energy cascade from small to large eddies (or wavelengths) in 
the boundary layer? 

2) Refer to the TKE equation. Which term(s), if any, represent the production of 
turbulence during a day when there are light winds and strong solar heating of the 
boundary layer? 

3) Given the following wind speeds measured at various heights in the boundary layer: 

LUnl 1J.....CmLIl 
2000 10.0 
1000 10.0 
500 9.5 
300 9.0 
100 8.0 
50 7.4 
20 6.5 
10 5.8 
4 5.0 
1 3.7 

Assume that the potential temperature increases with height at the constant rate of 6 
KJkrn. Calculate the bulk Richardson number for each layer and indicate the static and 
dynamic stability of each layer. Also, show what part of the atmosphere is expected to 
be turbulent in these conditions. 

4) Derive an expression for the kinematic heat flux w '9' in terms of the dimensionless 

wind shear ú =and dimensionless lapse rate $H' 
5) Given the following TKE equation: 

ae -U ae -,-, au g (-:--9 ,) -+ -=-uw-+- w at j ax. az e v 
J v 

- e 

,A BCD E F G 
a. Which terms are always loss terms? 
b. Which terms, neither create nor destroy TKE? 
c. Which terms can be either production or loss? 
d. Which terms are due to molecular effects? 
e. Which production terms are largest on a cloudy, windy day? 
f. Which production terms are largest on a calm sunny day over land? 
g. Which terms tend to make turbulence more homogeneous? 
h. Which terms tend to make turbulence less isotropic? 
i. Which terms describe the stationarity of the turbulence? 
j. Which terms describe the kinetic energy lost from the mean wind? 
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6) Very briefly define the following, and comment or give examples of their use in 
micrometeorology. 
a. inertial subrange f. convective velocity scale 
b. friction velocity g. Reynold's stress 
c. Obukhov length h. turbulence closure problem 
d. retum-to-isotropy term i. Richardson number 
e. static stability j. TKE 

7) Fill in the table based on the regions A-H labeled on the attached diagram. 

Property: Lapse Heat Static Turbulent? Name 
Rate Flux Stability 

Choices : Subadiab. Up Stable Yes Noel. inversion 
Adiabatic Zero Neutral Unknown Cloud layer 
Superad. Down Unstable No Mixed layer 

Sporadic Entrainment Zone 
Capping inversion 

Region Free atmosphere 

A I I I Surface Iqyer 
B I I I 
C I Subadiab. I I I 
D I I I I 
E I I I I Residuallayer 
F I I Zero I I 
G I I I I Unknown I 
H I I I Stable I I 

1000 G G 

F 

:[ 
l: E 
ú =500 • % 

D 

0 

Sunrl •• Sun •• t Sun,' .. Sun ... 
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8) It has been suggested that in regions of strong static stability, the lower end of the 
inertial subrange (long wavelength, small wavenumber) occurs at a wavenumber, lCb, 

given by: ú === k > ú = e- l12, where NBV is the Brunt-V1Hsiila frequency, and e is the 

TKE dissipation rate. Within the buoyancy subrange sketched below, would you 
expect turbulence to be isotropic? (Hint, buoyancy effects are important in a statically 
stable environment.) 

In(E) 

9) a) Rewrite the conservation equation for mean kinetic energy in terms of the 
geostrophic wind. 

b) Suppose that u'w ' = -0.05 m2 s-2 and au/az = 5 s-l and V = 0 within the 

surface layer. If there are no pressure gradients, then what is the value of the rate of 
change of mean kinetic energy, and what does it mean concerning the change in mean 
wind speed during a 1 minute period? 

10) On the planet Krypton suppose that turbulent motions are affected by a strange form 
of viscosity that dissipates only the vertical motions. How would the TKE be 
affected? 

11) What is the Reynolds stress? Why is it called a stress? How does it relate to u*? 
12) Define the following types of convection. Under what weather conditions is each 

type of convection most likely? What term in the TKE equation is small under each 
condition? 
a) Free convection 
b) Forced convection. 

13) Given the term: U. a( 1.. y2)1ax., which represent the advection of total horizontal v-
J 2 J 

component of kinetic energy. Expand the variables Uj and Y into mean and turbulent 
pans, Reynolds average, and simplify as much as possible. 

14) Observations: z(m): 12 8 2 O. I=zo 

9 (K): 

V(m/s) 

300 

5.4 

301 

5.0 

303 

3.4 

308 

o 
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Situation: Daytime boundary layer over land. 
a) Find RB at 2, 4, and 10m. 
b) Comment on the static and dynamic stability of the air. Is the flow turbulent? 

15) If the TKE at 10m is at steady state, and if e = 0.01 m2 s·3, then is the transport tenn 
supplying or removing TKE from the air at z = 10m? 

16) What is the static stability 
of each of the layers in the 
diagram at right? 

17) This problem is best saved until after the log-wind profile has been introduced. Given 
the following data: 

w'S' = 0.2 K mls 

Zj =500m 

gj9 = 0.0333 m s·2 K'I 
Zo = O.oI m = roughness length 
Find: 

u ... = 0.2 mls 

k = 0.4 

z =6m 
no moisture 

a) L f) Rf at 6m (make assumptions to find this) 
b) z/L g) Ri at 6m (make assumptions to find this) 
c) w ... h) dynamic stability 

i) flow state (turbulent or not) 
e) static stability 

18) Given the following sounding in the morning boundary layer. Detennine whether 
each layer is stable or unstable (in both the static and dynamic sense), and state if the 
flow is turbulent. Indicate your results in the table to the right of the figures. 

1500.---,----.-----r-.--_.., N ú Mê J J J J | I J J J J J J ú =
RI Static Dynam. Turb. 

E 1000 WWWWWWWWWWWWWWWWWWWK ú K WWWWW=....... ::::::::: ... ...... ... . 

N 

o ú í WWá WWWè WWWWá WWWá WWWWWWá WWá ú =o 5 10 
u(m'a) 



TURBULENCE KINETIC ENERGY 193 

19) Given the following turbulence statistics. 
Where: Location A 
When (UTC): 1000 11 00 
Statistic 

U,2 (m2 s·2) 0.50 0.50 

v,2 (m2 s·2) 0.25 0.50 

-2 
w' (m2 s·2) 0.70 0.50 

Where and when is the turbulence 

Location B 
1000 

0.70 

0.25 

0.70 

1100 

0.50 

0.25 

0.25 

a) Stationary b) Homogeneous c) Isotropic? 
20) What boundary layer flow phenomena or characteristics have scale sizes on the order 

of: a) 1 mm, b) 10 m, c) 1 Ian ? 
21) Fill in the blanks in the table below: 

Characteristic: 
• Name of (or symbol for) a 

characteristic depth scale: 
• Name of (or symbol for) a 

characteristic velocity scale: 

Phenomenon: 

• Name of the type of convection 
associated with this phenomenon: 

• Dominant production term in the 
TKE equation: 

• Sign of the gradient Richardson 
number: 

• Direction (horizontal or vertical) of the 
dominant anisotropic component of turbulence: 

Convective 
turbulence 
In the BL 

Mechanical 
turbulence 
In the BL 

22) a) Is 9v Conserved during adiabatic ascent of an unsaturated air parcel? If not, does it 
increase or decrease with height? 
b) Same question, but in saturated (cloudy) air. 
c) If a saturated air parcel at 80 kPa (800 mb) has T = 4°C (thus, rs = 6.5 g/kg) and 
has a total water mixing ratio of rT = 8.0 g/kg, then calculate the virtual potential 
temperature at that altitude. 
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23) Given the TKE equation with tenns labeled A to E below: 
-,----, 

ae - au g -- a (p' ) - = -u'w' - + - w'e' - -w ' -=-+e 
at az e v az P 

v 

- e 

ABC D E 
and given 4 regions of the stable boundary layer, labeled I to IV in the figure below, 
detennine the sign (+ , - , or near zero) of each tenn in each region. (Assume: that 
tenn A is always zero; i.e., steady state.) 

ZLt · · ·· · ·· ,, · ,.· ·· ·.· ·. · ·.··.v ·· · · ·.·,,·· 

.. -.. " .. , ... -, ............ .... ... . " ' 

HHH H.H _ 

• 

Zl2= Raglon IV 
••••• •• ••• • • • • • • •• •• • ••• • H •• ••• • • • • ••• ··.IiC 
.. .. ........ ...... ...... H.....li 

ii 

_ 3/2 
24) The dissipation rate of TKE is sometimes approximated by e = e / / , where I is 

the dissipation length scale. It is often assumed that I = 5 z in statically neutral 
conditions (Louis, et aI., 1983). If the TKE shown in Fig 2.9b is assumed as an 
initial condition, there is no shear or buoyancy production or loss, and no 
redistribution nor turbulent transport, then at z = 100m: 
a) What is the initial value of the dissipation rate? 
b) How long will it take the TKE to decay to 10% of its initial value? 

25) Given w'e v ' = 0.3 K mis, u 'w ' = -0.25 m2 S·2, and Zj = 1 km, find: 

a) u. e) e. SL 

b) w. f) Rf (assume au/az = 0.1 s·l) 

c) t.ML g) Obukhov length (L) 

d) e.ML 

26) Given the following sounding, indicate for each layer the 
a) static stability 
b) dynamic stability 
c) existence of turbulence (assuming a laminar past history). 
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z(m) 9v (K) U (rn/s) 

80 305 18 
70 305 17 
60 301 15 
50 300 14 
40 298 10 
30 294 8 
20 292 7 
10 292 7 
0 293 2 

27) Which Richardson number (flux, gradient, bulk) would you use for the following 
application? (Give the one best answer for each question). 
a) Diagnose the possible existence of clear air turbulence using rawinsonde data. 
b) Determine whether turbulent flow will become laminar. 
c) Determine whether laminar flow will become turbulent in the boundary layer. 

28) What is the difference between free and forced convection? 
29) What is the Reynolds number? Of what importance is it to boundary layer flows? 
30) What is the closure problem? 
31) Given isotropic turbulence with u ... = 0.5 rn/s and TKE/m = 0.9 m2 s·2, find the 

correlation coefficient, r, between w and u. 
32) Given the TKE equation, name each term and describe how you could determine the 

value of each term. 
33) Indicate the nature of the flow (laminar or turbulent) for each cell in the table below: 

R. 
2°r-__ D ú MMú Mú ú ú ú MMq J ú P Mú Mú M=__ ú Q ú MMú MJ I =

0.251-----------+-------------/ 
01-----------+-------------/ 

’ N ú =________ _4 __________ _J 


