
For a number of boundary layer situations, our knowledge of the governing physics is 
insufficient to derive laws based on first principles. Nevertheless, boundary layer 
observations frequently show consistent and repeatable characteristics, suggesting that we 
could develop empirical relationships for the variables of interest. Similarity theory 
provides a way to organize and group the variables to our maximum advantage, and in 
tum provides guidelines on how to design experiments to gain the most information. 

9.1 An Overview 

9.1.1 Definitions and Methodology 

Similarity theory is based on the organization of variables into dimensionless 
groups. Fortunately, there is a dimensional.analysis procedure called 
Buckingham Pi theory that aids us in forming dimensionless groups from selected 
variables. It is hoped that the proper choice of groups will allow empirical relationships 
between these groups that are "universal" - namely, that work everywhere all the time 
for the situation studied. 

The four steps in developing a similarity theory are: 
(1) select (guess) which variables are relevant to the situation, 
(2) organize the variables into dimensionless groups, 
(3) perform an experiment, or gather the relevant data from previous 

experiments, to determine the values of the dimensionless groups, 
(4) fit an empirical curve or regress an equation to the data in order to 

describe the relationship between groups. 

347 
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The result of this four-step process is an empirical equation or a set of curves which 
show the same shape - in other words the curves look self similar. Hence, the name 
similarity theory. If this empirical result is indeed universal, then we can use it on 
days and locations other than those of the experiment itself. Such expectations should be 
tested with an independent data set, before the results are disseminated to the rest of the 
scientific community. 

If we selected in step (1) more variables than were necessary, the data will "tell us" of 
our mistake by indicating no change of the other dimensionless groups with respect to the 
group that is irrelevant. If we selected too few variables, or excluded an important 
variable, the. data will also indicate our error by showing a large scatter or no repeatable 
patterns between the dimensionless groups. 

Step (2) can often be performed by inspection of the relevant variables. In fact. based 
on the classes of similarity theory frequently used in meteorology (see Section 9.3.3). we 
can anticipate the dimensionless groups, although we can not always anticipate the 
relationship between the groups. For the very complex problems, we can employ 
Buckingham Pi Theory to identify the appropriate dimensionless groups. 

Similarity theory does not tell us the form of the equation or the relationship between 
the dimensionless groups. Instead. we must use trial and error. physical insight. or 
automated techniques to select the form that qualitatively "looks the best". For example. 
we might express one group as a power law function of another group. as a logarithmic 
relationship, or as a constant that is not a function of other groups. The chosen equation 
usually contains unknown coefficients. which can then be solved by regression against the 
observed data. 

The resulting equations are called similarity relationships (or relations), or 
sometimes, improperly, similarity laws. Frequently, the dimensionless data graphs or 
curves are presented without a corresponding regression equation, because no simple 
equation could be found. For these cases. one can use the graph directly to determine the 
value of one dimensionless group as a function of the values of the other groups. We 
normalize an important variable when we divide it by other variables to make it 
dimensionless; hence. these graphs represent normalized data. 

Similarity relationships are usually designed to apply to equilibrium (steady-state) 
situations. They are frequently used to yield equilibrium profiles of mean variables and 
turbulence statistics as a function of height or position. Rarely is time included as one of 
the relevant variables. Some variables. such as depth of the boundary layer. are so 
strongly dependent on time that no successful similarity expressions have been found to 
diagnose them. Instead. boundary layer depth must be ca!culated or measured using other 
techniques. This depth is used as input into dimensionless groups to diagnose other 
variables that do reach a quasi-steady state. 

Finally. similarity theory is a type of zero-order closure. Once the similarity 
relationships have been identified, they can be used to diagnose equilibrium values of 
mean wind, temperature, moisture. and other variables as a function of height without any 
turbulence closure assumptions being made. 
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9.1.2 Example 

Problem. Find a similarity relationship for the buoyancy flux, w '9 v " as a function 

of height in the convective mixed layer. 

Solution. First (step 1), guess the relevant variables. Based on the problem 

statement, we already know that two of the variables of interest are w '9' and z. The 
v 

depth of the mixed layer, z,', and the strength of the heat flux near the sur'.ace, w'9 ' , 
v s 

might also influence the flux within the interior of the mixed layer. Thus, we will use 
four variables for this analysis. 

Step (2), group these four variables into dimensionless groups. By inspection, we 

can easily produce two dimensionless groups: (zlZ;] and [w'9 ' / w '9 ' ]. We have thus v v s 

reduced our degrees of freedom from four to two. 
In performing our experiment for step (3), dimensional analysis tens us that we need 

not measure all combinations of z, Zj , w '9 v ' , and w '9 v ' .. Instead, we need only 

measure various combinations of the two groups: £zlzj] and [w'9 v ' / w'9 v 's]' This 

greatly simplifies the design and conduct of our experiment. 
Suppose the heat flux data from Fig 3.7 (reproduced as Fig 9.1a) represents the 

results of our experiment. The curves in this data set exhibit a common shape: there is a 
nearly-linear decrease of heat flux from the surface value to a small negative value near the 
top of the mixed layer. Above that, the flux reduces toward zero. As we shan soon learn 
in Chapter 11, the average depth of the mixed layer is frequently taken as the height where 
the heat flux is most negative. When each of the data curves is replotted in terms of the 
two dimensionless groups, as shown in Fig 9.1b, we happily find that an of the data is 
closely clustered around a single curve. 

For step (4), an obvious choice of curve is a straight line between the surface and the 
top of the mixed layer. By definition we want the intercept of this line to equal 1, and by 
inspection it looks like the slope is roughly 1.2. This results in: 

w'9 ' 
v 

w '9 ' 
v • 

= I -

which is also plotted in Fig 9.1 b. As an independent test, the buoyancy flux data from 
Figs 3.1 b, 3.2b, and 3.3b confirm the validity of our curve. 
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Raw heat flux data from a simulation of Wangara Day 33 (a) replotted 
in a dimensionless framework (b). The empirical straight line estimate 
from similarity theory is also shown in (b). 

Discussion. We hope to be able to use this equation to diagnose the value of the 
buoyancy flux at any height within the interior of a convective mixed layer on any other 
day at any other location, assuming we know the surface flux and the mixed layer depth. 
Even without this equation, we could use Fig 9.1b to determine the flux at any height. 

For example, suppose the aircraft-measured buoyancy flux of w 'e v ' = 0.1 K·ms·1 at 

a height of z = 200 m when the mixed layer depth was Zj = 1300 m. We can used this 

data along with the similarity relation above to estimate the surface buoyancy flux : w '9 v ' $ 

= 0.123 K·ms· l . 

9.2 Buckingham Pi Dimensional Analysis Methods 

In 1914 Buckingham proposed a systematic approach for performing dimensional 
analysis. He called the resulting dimensionless groups Pi groups, which later caused 
the theory to be known as Buckingham Pi Theory (Perry, et al ., 1963). 

For each step of his approach we will first define the general procedure (in 
bold/ace), and then give an example (in normal type face). The example is that of fluid 

flow through a pipe, and involves the question: "How does the shear stress, t, vary?" 
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Step 1. Hypothesize which variables could be important to the flow. 
Example: stress, density, viscosity, velocity, pipe diameter, pipe roughness 

Step 2. Find the dimensions of each of the variables in terms of the 
fundamental dimensions. The fundamental dimensions are: 

L = length 
M = mass 
T = time 
K = temperature 
A '" electric current 
1 = luminous intensity 

The dimensions of any variable can be broken into these fundamental 
dimensions. 

Example: ú =

fluid density 
fundamental dimensions 

ML-3 

ú = dynamic viscosity M L-I T-1 

U velocity L "['-I 

't shear stress M L-I T-2 
D pipe diameter L 
Zo pipe roughness length L 

The fIrst two variables describe fluid characteristics, the next two describe flow 
characteristics, and the last two describe pipe characteristics. 

Step 3: Count the number of fundamental dimensions in our problem. 
Example: There are 3 dimensions: L, M, T. 

Step 4: Pick a subset of your original variables to become "key 
variables", subject to the following restrictions: 

(a) The number of key variables must equal the number of fundamental 
dimensions. 

(b) All fundamental dimensions must be represented in the key 
variables. 

(c) No dimensionless group must be possible from any combination of 
these key variables. 

Example: Pick 3 variables: p, D, and U to be the key variables. 
Note that there are many other equally valid choices for key variables, such as: 

p, zO' U; or D í I ú I =D, etc. It does not matter which three are picked, assuming that 
all of the above restrictions are satisfIed. An invalid set would be U, D, zO' because 
D/zo is dimensionless, and also because the fundamental dimension M is not 

represented. Another invalid set is 't, p, U, because 't/(pU2) is dimensionless. 
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Step 5. Form dimensionless equations of the remaining variables in terms 
of the key variables. 

Example: t = (p)a (D)b (U)C 

1.1 = (p)d (D)e (Ul 
Zo = (p)8 (D)h (U)i 

where a-i are unknown powers. 

Step 6. Solve for the powers a, b, c, . . . to yield dimensionally 
consistent equations. 

Example: Solve each equation independently. For the fIrst equation: 

t = (p)8 (D)b (U)C 

or M L-I T-2 = (M L-3)8 (L)b (L -r-l)c 
or M L-I -r-2 = M8 L-38+i>t<: T-<: 
The dimensions on the left hand side must equal the dimensions on the right. Thus: 

M: 1 =a 
L: -1 = -3a+h+c 
T: -2 = -c 

These three equations can be solved for the three unknowns, yielding: 
a=1 b=O c=2_ 

Thus, a dimensionally consistent equation is: t = (p)1 (D)o (U)2, or t = p U2 . 

Similarly, we fInd that d = 1, e = 1, f = 1: yielding 1.1 = P U D. 
Also: g = 0, h = 1, i = 0: yielding Zo = D . 

Step 7. For each equation, divide the left hand side by the right hand 
side to give dimensionless (Pi) groups. The number of Pi groups will 
always equal the number of variables minus the number of dimensions. 

Example: 

x = I 
---lL.-
pUD 

We started with 6 variables in our example, and reduced our degrees of freedom down 
to 3 dimensionless groups. 

Step 8. (Optional) If desired, alternative Pi groups can be formed from 
the ones derived in the previous step, as long as: the total number of Pi 
groups does not change, all variables are represented, and no one Pi 
group can be formed from any combination of the remaining groups. 

Example: One alternative set of Pi groups might be: XI, X4 (=1tz/x3), Xs (=I/X3)' 
This new set is: 
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D 

In fact, regardless of which set of primary variables were chosen, we can always 
arrive at the same set of Pi groups via this Pi-group manipulation process. 

You might ask which set of Pi groups is the "correct" set. They are all equally valid, 
although some Pi groups have become more popular than others in the literature. Our 
pipe example is a case in point. We can recognize 1t1 as identical to the definition of 
drag coefficient, Co, while 1t2 is just the inverse of the Reynolds number, Re 

= p U D / Il. The 1t3 group is called the relative roughness. 

This is the end of the formal cookbook procedure for Buckingham Pi Theory. Of 
course, it is really only the second step of the overall similarity procedure. The next step 
would be to perform the necessary experiments to discover the relationships between the 
Pi groups. An example of laboratory pipe flow data is shown in Fig 9.2. 

í ç D O ú ú í ú l ú P J J ú ú ú i r ú í l ú D J J ú ú ú t r ú D J ú ú ú ú ú ú ú =

Re=U Dlv 
Fig . 9.2 Pipe flow drag verses Reynolds number and relative roughness. 

Discussion: Several very important facts can be learned from this data. First, the 
stress decreases as the Reynolds number increases, until a critical Reynolds number of 
about 2100 is reached. This critical Reynolds number marks the transition from laminar to 
turbulent flow. At lower Reynolds number (laminar flow), the stress is NOT dependent 
on the relative roughness. As suggested in Section 9.1, the data is telling us that pipe 
roughness is not relevant for laminar flow. 

Second, at Reynolds numbers just larger than critical, the stress increases again. 
Third, as Reynold's number increases further, the stress again decreases with Reynolds 
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number, independent of the pipe roughness. Fourth, this roughness independence fails 
when some roughness Reynolds number (given by 1t4) is reached. Fifth, at even 
larger Reynolds number, the stress is a constant depending only on relative roughness and 
not on the Reynolds number itself. 

This last observation is of important consequence for the atmosphere. As previously 
discussed, the Reynolds number for the atmosphere is very large, on the order of 106 to 
108, even within the boundary layer. Fig 9.2 shows us that large Reynolds number 
flow is independent of the Reynolds number! Hence, we can usually ignore molecular 
viscosity and the associated Reynolds number in descriptions of the boundary layer. 
However, for the very smallest size eddies and in the very thin microlayer near the 
surface, molecular viscosity continues to be important for TKE dissipation and transport 
across the surface, respectively. 

9.3 Scaling Variables 

9.3.1 Choice of Key Variables 

Within the constraints of Buckingham Pi theory, there is a wide variety of variables 
that could be chosen as the key variables. Usually, it is better to pick variables that 
represent forcings on the boundary layer, or variables that reflect aspects of the non-steady 
condition of the boundary layer. For example, most surface fluxes represent forcings that 
are (partially) controlled by external factors. The depth of the boundary layer, as 
mentioned before, is one important non-steady condition of the boundary layer. 

9.3.2 Lists of Scaling Variables 

Experience has shown that some key variables frequently appear in common classes of 
similarity problems, and hence are known as scaling variables for that class. As you 
might guess, a large variety of scaling variables have been suggested over the years (sec 
Table 9-1). In any dimensional analysis problem, you must select only those scales 
appropriate to the situation. Recommendations for relevant scales were given in Figs. 
5.26 and 5.27. Usually, you should pick only one length scale, one velocity scale, and if 
needed one temperature scale and one humidity scale to be your key variables. No time 
scale is usually picked, because a time scale can be formed from the length and velocity 
scales. 

9.3.3 Combining Variables to Make New Scales 

Some variables always appear grouped in the same arrangements, allowing us to 
define new scaling variables based on the combination of variables. For example, we 
have already encountered the friction velocity and other scales in Section 2.10 for the class 
of problems relating to the surface layer. In Section 4.2 we discussed the convective 
velocity and other scales related to the class of mixed-layer problems. 
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Table 9-1. Summary of boundary layer scales. 

Length: 

Velocity: 

Z 

h or zi 

H 

L 

= height above the surface 
= depth of the boundary layer (or mixed layer) 
= SBL integral length scale = heat-nux-history scale 

= -[u'w ,2 + v'w' 2]3/4/[k'(gl9)-(w 'a ')] = Obukhov length 
s s v v 5 

=_[U'W,2+V'W,2]3/4/[k.(glav>.(w'ay')] =local Obukhov length 

= uJfc = Ekman layer depth 

= Wavelength corresponding to peak in turbulence spectrum 
= height of obstacle 
= width of obstacle 
= aerodynamic roughness length 
= scale of surface features or roughness 

w. = [(glay )·w 'ay 's Zj]l/3 = convective velocity scale 

WLf = [(glay )·w 'ay '. z]l/3 = local free convection velocity scale 

uL = [u'w ,2+v'w ,2]1/4 = local (friction) velocity scale 

VB = x E Ö f ú ~ ó =s)·w'ay'. H]I/3 = SBL buoyancy velocity scale 

VM = (ZJp)I/2[(dP!dx)2+(dP!dy)2]s 1/4 = mechanical forcing scale 

u. ML = u.2 /w. = convective stress scale velocity 

a or U g = geostrophic wind speed 

as = geostrophic wind speed at the surface 

0Zi = geostrophic wind at the top of the boundary layer 

<0> = geostrophic wind speed averaged over the boundary layer 

U or M = wind speed 

Ms = wind speed at the surface 
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Time: 

Mzi '" wind speed at the top of the boundary layer 

<M> '" wind speed averaged over the boundary layer 

s.. or au '" standard deviation of U-wind 

(TKE) If}. or elf}. '" square root of turbulence kinetic energy 

(k z £ )2f3 '" dissipation velocity scale in the surface layer 

:: inertial period. where fc is the Coriolis parameter 
'" buoyant period, where NBV is the Brunt-Vliislilli frequency 
'" eddy period. where fmax is the frequency at the peak in the 

turbulence spectrum 
= Zj I w. = convective (ML) time scale 

= z I u. = surface-layer time scale 

'" time required for wind to move distance x 

Temperature: 9. ML = w '9 v 's Iw. = convective (ML) temperature scale 

9 SL . '" -w '9 y 's/u. '" surface-layer temperature scale 

= w '9 v '/wu = local free-convection temperature scale 

= -w '8 v ' /uL = local temperature scale 

9. '" w '9 y 's I(any other velocity scale) 

= mixed-layer average of 9v 

'" <9> -9 '" SBL surface cooling (inversion strength) 
v vs 

Moisture: q.ML '" w 'q 's Iw. '" convective (ML) humidity scale 

q. SL '" -w 'q '. lu. '" surface-layer humidity scale 

CJu = w 'q , Iwu '" local free-convection humidity scale 
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'lL = -w'q' /uL = local humidity scale 

q. = w 'q 's /(any other velocity scale) 

As an example of the power of combining variables into new scales, we might expect 

z,', w'a " and maybe gl9 to always be important in convection, because heating, 
y s y 

convection, and buoyancy cause thermals to rise to the top of the mixed layer. In fact, 

these key variables are often grouped as [(glay )·w'a y ' .. zil during a dimensional 

analysis. We recognize this group to be the basis for the definition of the convective 

velocity scale w.; namely, w.3= [(glay )·w'a y ' .. Zj] as defined in Section 4.2. 

By using such a scaling variable in dimensional analysis, we can often reduce the total 
number of variables in our problem and greatly simplify the analysis. For example, if we 

wish to find a relationship for w,2 as a function of height in the ML, we might choose 

w ,2, Z, w'a ' , Zi' and gl9 as the relevant variables for the first step in the analysis. 
y s y 

Alternately, by using the combined scaling variables, we would choose w ,2, w., z, and 

Zj instead. With this last set of variables, we can easily identify the dimensionless groups 

by inspection: [w ,2/w•l and [z/z;]. 

9.3.4 Classes of Similarity Scales 

The most common classes of similarity scaling are Monin-Obukhov similarity, 
mixed-layer similarity, local similarity, local free convection, and 
Rossby-number similarity. When dealing with one of these well-defined classes of 
problems, it is appropriate to use the associated scaling variables as the key variables in a 
dimensional analysis. 

Monin-Obukhov Similarity. This class is usually applied to the surface layer 
(Monin and ObukhoY, 1954; Wyngaard, 1973; Sorbjan, 1986), and hence is sometimes 
called surface-layer similarity. Earlier we defined the surface layer as that part of the 
boundary layer where the fluxes vary by less than 10% of their magnitude with height. 
To a first order approximation, this layer is a constant flux layer. We can thus 
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simplify our description of the surface layer by utilizing the flux at just one height -
usually the surface. 

Monin-Obukhov similarity works only when the winds are not calm, and u. not zero. 
Relevant scales based on these surface fluxes and their typical orders of magnitude are 
listed here: 

L Order (1 m to 200 m) 
zo Order (1 mm to 1 m) 
u. Order (0.05 to 0.3 m/s) 

9. SL Order (0.1 to 2.0 °C) 

q. SL Order (0.1 to 5 gwate!kgair) 
Scales for pollutant concentration can be patterned after the humidity scale. Lists of 
Monin-Obukhov similarity relationships are tabulated in Sections 9.4 to 9.6, and a more 
detailed analysis ofthe log-wind profile in the surface layer is given in Section 9.7. 

Mixed-Layer Similarity. This class is applied to mixed layers that are in a state of 
free convection (Deardorff, 1972; Deardorff, et al. , 1980; Sorbjan, 1986), assuming calm 
or light winds. Free convection conditions can occur during cold air advection over a 
wanner surface, or with solar heating of the land during the daytime in light wind 
conditions. The relevant scales and typical orders of magnitude for the mixed layer are: 

Zj Order ( 0.2 to 2 km) 
w. Order (2 m/s) 

9. ML Order (0.1 K) 

q. ML Order (0.1 glm3) 

u. ML Order (0.02 m/s) 
Other scales, such as for pollutant concentration, can be defined in analogy to the moisture 
scale. More details are discussed in Section 9.6. 

Local Similarity. For statically stable boundary layers, this class recognizes that 
turbulence in the mid and upper SBL may not be in equilibrium with the surface fluxes 
(Wyngaard, 1973; Nieuwstadt, 1984; Sorbjan, 1987). Hence, local fluxes, shears and 
stability are more important than surface fluxes. The relevant scales are: 

LL Order (0 to 50 m) 
uL Order (0 to 0.3 m/s) 
9L Order (0 to 2.0 0c) 
ú = Order (0 to 5 gware/kgair) 

Dimensionless groups formed with the above scales are not a function of height above 
ground; hence, this scaling is also called z-less scaling. Although the dimensionless 
groups are independent of height, the individual variables that make up these groups 
(including the scaling variables above) vary significantly with height. 
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Local Free Convection Similarity. In statically unstable surface layers, 
buoyancy is the driving force behind the turbulence. However, turbulence in the surface 
layer might "feel" the influence of the ground more than the influence of the capping 
inversion (Wyngaard, et al., 1971; Tennekes, 1973; Wyngaard, 1973; Caughey and 
Palmer, 1979; Sorbjan, 1986). As a result, z; is not a relevant parameter, but z is. The 
list of relevant scales becomes: 

z Order (0 to 50 m) 
wu Order (0 to 0.5 mls) 
9Lf Order (0 to 2.0 0c) 
<Iu Order (0 to 5 gwate.!kgair) 

This similarity approach is useful for surface layers in conditions of calm mean winds. 
In that case the Obukhov length is zero, and is not an appropriate measure of the amount 
of turbulence being generated. Thus, Monin-Obukhov similarity will not work. 

Rossby-number Similarity. In some situations such as large-scale modeling, it is 
desirable to relate surface fluxes to external forcings . In this regard, it is necessary to 
match the wind and temperature profiles higher in the boundary layer with those in the 
surface layer (Tennekes, 1973; Yamada, 1976). As a result, relevant scales include both 
surface scales ( Zo, L, u., 9. SL, q. SL) and scales appropriate to the upper boundary layer 

(h2, G2, 92, Q2)' 
In early work (see review by Tennekes, 1982), it was suggested that the h2 scale be 

described by G/fe. When this "outer" scale is combined with the "inner" scale, zo' the 
result is the surface Rossby number, G/(fezo) . Unfortunately, this approach was not 
completely successful, resulting in a search for better outer scales. Although still not 
perfect, the following outer scales are now more widely accepted (Zj , <G>, 69., 6q.) . 
Details of this approach are reviewed in Section 9.8. 

9.3.5 Similarity Relationships 

Many of the figures in Chapters 4 and 5 are already presented in similarity form using 
the above scales, with one dimensionless group plotted as a function of other 
dimensionless groups. These curves represent graphical representations of similarity 
relationships, and can be used directly to estimate the values of variables at any height, 
within the limitations of the data (e.g., free convection within the mixed layer). Similarity 
graphs are presented for unstable, neutral and stable boundary layers in those chapters. 

Analytical equations have been suggested in the literature for some of the graphical 
similarity results. In some of these cases, curves are fit to only a subdomain of the 
turbulence, or apply under only certain conditions. Many of the analytical similarity 
relationships that have proved successful are summarized in Sections 9.4 through 9.6. 

We will start in Section 9.4 by listing similarity relationships for stable (nocturnal) 
boundary layers, and then proceed to the neutral and unstable (convective) boundary 
layers in Sections 9.5 and 9.6, respectively. Subsections for mean variables, fluxes, 
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variances, and other miscellaneous variables will be presented. Each of these subsections 
will include relationships for both the boundary layer, and the surface layer. 

Occasionally, different investigators have suggested different values for the regression 
coefficients (Le., the universal constants). For these situations a variety of values are 
listed, separated by commas. 

Finally, an example will be presented in each Section to demonstrate the application of 
a similarity relationship. 

9.4 Stable Boundary Layer Similarity Relationship Lists 

In the stable surface layer, Monin-Obukhov similarity has allowed us describe the 
vertical profiles of some variables as a function of the dimensionless group z/L (Businger, 
et aI., 1971; Wyngaard, et aI., 1971; Caughey, et aI., 1979). Higher in the SBL, z-less 
scaling is more appropriate (Wyngaard, 1973; Nieuwstadt, 1984; Lascer and Arya, 1986; 
Sorbjan, 1986, 1987). Sorbjan (1987) has shown how it is possible to develop SBL 
similarity expressions from the corresponding surface layer expressions. 

All of these relationships assume that the SBL is continuously turbulent in time and 
space, with no gaps or patches of nonturbulent air. Since real SBLs can have sporadic, 
patchy turbulence, we must recognize the 'limitations of the expressions below. 

9.4.1 Mean Variables and Their Gradients 

In many cases it is difficult to describe the profiles of mean variables because of the 
influence of initial and boundary conditions. However, the profiles often exhibit a 
common shape, allowing similarity expressions to be derived for the gradients of mean 
variables. 

Boundary-Layer Relationships: 

2.5, 4.7, 5.22 (9.4.1a) 

4.7, 5.0 (9.4.1b) 

Surface· Layer Relationships: 

(9.4.1 c) 
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z 
0.74 + 4.7 L (9.4.1d) 

These last two expressions are known as Businger-Dyer flux-profile 
relationships, because they relate mean profile gradients to the fluxes in u. and 9. SL. 
These relationships are plotted in Fig 9.9, and are discussed in more detail in Section 9.7. 

9.4.2 Fluxes 

Boundary-Layer Relationships: 

[
_2 _2JI12 
u'9' + v'9' 

uL 9L 

-1.0 

= 3.5, 

(9.4.2a) 

4.0, 5.0 (9.4.2b) 

The above expressions are z-Jess. In order to make these more useful, some 
parameterizations have been proposed for the fluxes upon which uL and <lL are 
based: 

-u'w' 
1 UdO.7 

-2 
U. 

(9.4.2c) 

-u'w' 
[ 1 

_ If or 2 

2 
U. 

(9.4.2d) 

w'(j' [1 -E ú ê =r --
w'e' s 

(9.4.2e) 

w'(j' [ z r t03 1 - --- = h 
w'e' 

(9.4.2f) 

s 
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-u'e' 
w'e' s 

[ ]

1.7 

3.2 1-(If' (9.4.2g) 

These last five expressions are obviously not z-Iess, and are likely to be valid for only a 
small subset of real SBLs. 

Surface-Layer Relationships: 

9.4.3 Variances 

2 u. 
constant 

(
_2 _2 )1/2 
u'e' + v'e' 

SL 
u. e. 

Boundary-Layer Relationships: 

4 

[_2 _2] 1/4 

u,2 + v,2 
= 2.6, 3.1, 4 

1.5, 1.6, 2.0 

[ 
_] 1/2 
e,2 

2.4, 3.5, 4.0 

constant 

(9.4.2h) 

(9.4.2i) 

(9.4.3a) 

(9.4.3b) 

(9.4.3c) 

(9.4.3d) 

As before, the above z-less expressions are difficult to use unless the local scaling 
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variables are known as a function of height. As an alternative, the following height-
dependent relationships have been suggested: 

U,2 
= +-(f] 2 

u. 

ú =w 
2 u. 

9 ,2 

SL2 
9. 

Surface-Layer Relationships: 

-e 
2 

u. 

9.4.4 Miscellaneous 

25 [ 1 - E ú F ? =] 

[ r 6.0 1 _ (I) 0 .4 

ú =w 
2 

u. 

= 8.S 

= 2.5 

4.0 

= constant 

Boundary-Layer Relationships: 

= 3.7 

(9.4.3e) 

(9.4.30 

(9.4.3g) 

(9.4.3h) 

(9.4.3i) 

(9.4.3j) 

(9.4.3k) 

(9.4.4a) 
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Surface-Layer Relationships: 

kLe 
3 

u. 

9.4.5 Example 

3.7 (9.4.4b) 

Problem: Find the local value of the heat flux at a height of z = 50 m in a SBL, 
where the local lapse rate is 0.025 KIm and the local scaling velocity is uL = 0.1 mls. 

Solution: Equation (9.4.1b) can be manipulated, using the definition for LL' to read 

__ 2 

w'e' 

where the value of the universal constant was taken as 4.7. Assuming that (gle) = 0.0333 

m·s·2·K· 1, we find that w'e' = 3.4 x 10.3 K mls. 

Discussion: Such a small value of heat flux is typical of the upper SBL. 

9.5 Neutral Boundary Layer Similarity Relationship Lists 

Although boundary layers are rarely exactly neutral, there are situations such as strong 
winds and overcast skies where the boundary layer is approximately neutral. In a neutral 
boundary layer the only (or dominant) TKE generation mechanism is mechanical, 
associated with wind shear and surface stress. Thus. we expect u. to be important. 
Rarely is the Obukhov length used, because it is infinite in statically neutral conditions. 

Some investigators (Sorbjan, 1986) have suggested similarity parameterizations based 
on pseudo-local scaling (using scales uL' eL, but including z instead of LL),while others 
(Nicholls and Readings, 1979; Grant, 1986) have applied surface-layer similarity 

relationships higher in the boundary layer (using scales u., e., and z,). Occasionally. it 

is assumed that a well defined top of the turbulent boundary layer can be identified, 
allowing Zj to be used. 

Surface layer parameterizations are often based on the limiting cases of diabatic 
similarity relationships, for the case where z!L goes to zero (Wyngaard and Cote, 1971; 
Merry and Panofsky, 1976; Panofsky et ai, 1977; Nicholls and Readings, 1979; Smith, 
1980; Grant, 1986; and Sorbjan, 1986). 



9.5.1 Mean Variables and Their Gradients 

Boundary-Layer Parameterizations: 

kz au 
ú ~ ò =

kz ae e az 
L 

Surface-Layer Parameterizations: 

kz aU 
ú ~ ò =

kz ae 
eSL az 
• 

9.5.2 Fluxes (boundary layer) 

0.74 

= 0.74 

[_2 _2] 1/2 
u'e' + v'e' 

- w'e' 

9.5.3 Variances 

Boundary-Layer Relationships: 

,2 w 
2.5 

z 
Z. 

1 

8.5 
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(9.5.1a) 

(9.5.1b) 

(9.5.1 c) 

(9.5.1d) 

4 (9.5.2a) 

(9.5.2b) 

(9.5.3a) 

(9.5.3b) 
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= 4 (9.5.3c) 

-;2 

6 ( 1 - :ir -;2 
u + ú =U lOp 

2 Z. 2 
U. I U. 

(9.S.3d) 

v,2 
3 ( 1 -ú Ñ = -;2 

= H ú ú =
2 Zj z. 2 

U. I U. 
(9.S.3e) 

W,2 
= ( 1 

_ ú F =1/2 

2 Z. 
U. 

I 
(9.S.3D 

Equations (9.S.3 d and e) include an additional ratio for the variance at the top of the 
boundary layer (assuming a well-defined top) nonnalized by the surface stress. Although 
this ratio is expected to vary from situation to situation, during the KONfUR experiment 
(Grant, 1986) it was found to equal 2.0 for both equations. 

Surface-Layer Relationships: 

ú =v 
2 u. 

-;2 
u 

2 
u. 

--;2 
w 

2 u. 

= 6.1, 

2.9, 

1.0, 

0,2 

SL2 
O. 

6.2, 6.S (9.5.3g) 

3.0, 4.3, 6.1 (9.5.3h) 

= 8.5 (9.5.3i) 

1.7, 2.S (9.S.3j) 

= 4 (9.5.3k) 



9.5.4 Miscellaneous 

Boundary-Layer Relationships: 

kz£ 
3 

uL 

Surface-Layer Relationships: 

kz£ 
3 u. 

kz£ 
3 u. 

3 u. 
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= (9.5.4a) 

(9.5.4b) 

(9.5.4c) 

(9.5.4d) 

These last two relationships are designed for near neutral situations. 

9.5.5 Example 

Problem: In a neutral surface layer with u. = 0.2 mis, find the TKE dissipation rate 
as a function of height. 

Solution: Rearranging equation (9.5.4b), we can see that the dissipation rate 
decreases inversely with height: 

£ = 
3 

u. 
kz 

0.04 2·3 = --fiS 
z 

for z in meters. 

Discussion: As verified by the TKE budget figures in Chapter 5, the dissipation rate 
is indeed very large near the ground. However, the equation above suggests that the 
dissipation rate is infinite at the surface, which is clearly unrealistic. 
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9.6 Convective Boundary Layer Similarity Relationship Lists 

When turbulence in a mixed layer is driven by buoyancy and capped at a well defined 
height. it is obvious that w. and Zj are important scales for all variables. In addition. 

when considering heat. moisture. and momentum fluxes we should include the e.ML• 

q. ML. and u.ML scales. respectively. Many investigators have examined the convective 

mixed layer and unstable surface layer (Businger. et.a!.. 1971; Lenschow. 1974; 
Lenschow. et a!.. 1980; Caughey and Readings. 1974. 1975; Caughey and Palmer. 1979; 
Kaimal. et a!., 1976; Smedman and Hogstrom. 1983; Wyngaard. et.a!.. 1971; LeMone 
and Pennell. 1976; Brost. et.a!.. 1982; Berkowicz and Prahm. 1984; Webb. 1982; Zhou, 
et.al .• 1985; and Sorbjan. 1986). 

In the surface layer. local free-convective or Monin-Obukhov similarity can be applied 
depending on the relative importance of surface heating and stress (Wyngaard. et.a!.. 
1971; Berkowicz and Prahm. 1984; Sorbjan, 1986). 

9.6.1 Mean Variables and Their Gradients 

Mixed-Layer Relationships: 

2 aU = 0 
w. az 

1.4 

for 0.1 Zj S Z S 0.9 Zj 

for O.lzj S Z S O.9zj 

for 0.1 Zj S Z S 0.9 Zj 

(9.6.la) 

(9.6.lb) 

(9.6.lc) 

Investigators (Mahrt and Andre. 1983) have become more aware that forcings can 
occur at the top of the mixed layer that are quasi-independent of the forcings at the ground. 
Entrainment can introduce fluxes at the top of the mixed layer. and shear across the 
entrairunent zone can generate additional turbulence that does not scale with w •. 

Wyngaard and Brost (1984) and Moeng and Wyngaard (1984) have suggested a 
conceptual model called top down - bottom up diffusion, which models the 
contributions of mixing down from the top of the ML separately from mixing up from the 
ground. One result of this approach is a similarity relationship for gradients of mean 
variables within the middle 80% of the ML. The relationship for pollutant concentration is 
given below. but it can be applied just as easily to temperature. moisture, or wind 
gradients. More details of this method are discussed in Chapter II. 
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( )
-3/2 

w'e' z = -0.4 __ 5;:- + 
w. Zi I 

( )
-3/2 

w 'e' Z 
ú =1- ;:-
w. Zi I 

(9.6.ld) 

The gradient on the left of the equal sign is not nonnaJized into a dimensionless group, 
because there is no single pollutant scale. Pollutant fluxes at both the top and bottom of 
the ML are relevant, and would yield two different pollutant scales. 

Surface-Layer Relationships: 

ú = = ú =dU 
M u. dZ 

( )
-1/4 

1 - N R ú = (9 .6.le) 

kz de 0.74 (1 _ 9_L
z )-1/2 

ú e == eSL az = 
• 

(9 .6.1f) 

The above two flux-profile relationships apply when surface stress is nonzero, and have 
been plotted in Fig 5.24. Alternative relationships that have been proposed for zero stress 
situations are: 

(9.6.1g) 

(9.6.1h) 

where ex is a universal constant in the range 1.2-1.5, and Jli = zi / L. 

9.6.2 Fluxes for Both the Mixed Layer and Surface Layer 

Because the flux profiles are linear with height in the ML, we propose here the 
following similarity relationships: 

w 'e' 

w'e' s 

1 -

I -

z u'w' z 
J H ú J
z. u'w' Z. 

I S I 

Z. 
I w'e ' s 

Z. 
I 

(9.6.2a) 

(9.6.2b) 
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(9.6.2c) 

In the absence of shear or other independent fOlcings in the entrainment zone, the flux 
at the top of the mixed layer can be related to the flux at the bottom, resulting in the 
following simplified similarity relationships: 

w'e' 

w'e' 
I 

9.6.3 Variances 

u'e' 

w'e' 
I 

where a = 1.2 to 1.5 (9.6.2d) 

= 0.5 ( 1 - 2.2 :j ) (9.6.2e) 

Mixed.Layer Relationships: All of the following expressions fail in and near the 
entrainment zone at the top of the mixed layer, where locally generated turbulence and 
buoyancy waves can contribute to the variance. 

= constant (9.6.3a) 

constant (9.6.3b) 

(9.6.3c) 

( ) 
-2/3 

1.8 :j (9.6.3d) 



q,2 

ML2 
q. 

( )
-2/3 

= 1.8 :j 
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(9.6.3e) 

One might expect that relationships similar to (9.5.3 d & e) would work well for the 
mixed layer, assuming that the variance at the top of the mixed layer could be 
parameterized. This approach has not been explored in the literature. 

Surface-Layer Relationships: When stress is nonzero, the following 
expressions are appropriate: 

E ú F =1/2 

u. 
= 1.9· (- i-f/3 (9.6.3f) 

( )
-1/3 

= -0.95· - i- (9.6.3g) 

1n cases of local free convection (calm winds) the following expressions are useful: 

8,2 

,2 
W 

= 1.85, 

1.21. 

2 (9.6.3h) 

1.6 (9.6.3i) 

The following expressions combine mixed layer scaling with local free convection: 

)
2/3 

1.2 !:.-
z. 

I 

= 1.6 (:J 2
/
3

( 1-

413 
(1 - 1.2 z / Zj ) 

2 -----213-:'-. -
(z/ z) 

(9.6.3j) 

(9.6.3k) 
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( )
.2/3 

1.8 :j 

9.6.4 Miscellaneous 

Mixed.Layer Relationships: 

w,3 Z(11.1Z) 0.8 - ---
3 

w. 
Z z. j , 

constant with height above the surface layer 

2 

w'e = 0.8 ú =( 1 - 0.9 : .) 
3 z. , 

w. ' 

1.4 - 2 ú =
z. , 

= 3.1 ( 1 _ ú F =3 
Zj 

W,2 6 , ( z) = 0.5 1 - 1.2 z,' 
2 ML 

w.6. 

-2 ( -) ( ) 2/3 ( ) 2 ú =ae = 2.5':" 1 - 0.8':" 
2 ML az z. z. 

w.6. 'I. I 

-5 + 2.5 ú =
Zj 

(9.6.31) 

(9.6.4a) 

(9.6.4b) 

(9.6.4c) 

(9.6.4d) 

(9.6.4t) 

(9 .6.4f) 

(9.6.4g) 

(9.6.4h) 
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t ú O =ú = = 0.6 ( 1 - 0.4 :J 
w. q. 

Zi w,2 (aq) 
2 ML aZ 

w. q. 

e'q' 
eML ML • q. 

= -9 ( :J 2n ( 1 - 2 :J 2 

= l.8 (:J2n ( 1 - 2 :J 
This last equation has also been applied to the surface layer. 

(9.6.4i) 

(9 .6.4j) 

(9.6.4k) 

Surface· Layer Relationships: The first equations apply to surface layers with 
nonzero stress. 

3 
u. 

Z 
-2.3 L 

ú = (z)ln 
2 eSL = -1.3 - L 

u. • 

k z w,2 (aU) z 
3 az = 1.2 - 0.5 L 

u. 

k z w,2 (ae) = 0.9 
2 eSL dz u. • 

(9.6.41) 

(9.6.4m) 

(9.6.4n) 

(9.6.40) 

The next ,equations work best when the stress is very small and buoyancy dominates: 

2 ML 
w. e. 

W,2 q' 
2 ML 

w. q. 
= 0.9 ( :J 1/3 (9 .6.4p) 

(9.6.4q) 
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( )
-4/3 

0.43 :; (9 .6.4r) 

9.6.5 Example 

Problem: Use similarity theory to develop an expression for vertical velocity 

variance, w ,2, as a function of height given the (synthetic) measurements in Table 9-2. 

Table 9-2. Synthetic vertical velocity variance data. 

Z 

(m) 

1500 
1400 
1300 
1200 
1100 
1000 
900 
800 
700 
600 
500 
400 
300 
200 
100 
o 

Zj (m) 

w'e ' (K mls) 
v s 

Day 1 

0 .6 
0 .9 
1.2 
1.5 
1.6 
1.5 
1.2 
0.8 

750 

0.33 

Day 3 

0.10 
0.16 
0.22 
0.30 
0.37 
0.39 
0040 
0040 0.20 
0.36 0.36 
0.28 0040 
0.20 0.20 

1000 350 

0.03 0.09 

Day 4 

0.4 
0.6 
0.8 
1.0 
1.1 
1.3 
1.4 
1.4 
1.5 
1.6 
1.6 
1.5 
1.4 
1.2 
1.0 
0.8 

1500 

0.16 
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Solution: Although this data set exhibits a variety of magnitudes over a range of 
heights, each of the individual data curves has the same shape (see Fig 9.3a) - a clue that 
they are created by a common physical process that could possibly be described 
empirically. 

(a) 

1.5 

SI 
C 
N 

0.5 

o 

Fig. 9.3 

(b) 

0.8 

0.6 
Z -
ZI 0.4 

0.2 

0.5 

W,2/W2 

* (a) Hypothetical sample of vertical profiles of w:' (b) Profiles of w" 
from (a) scaled by free convection similarity. The range of the curves 
is shaded. 

The tabulated data includes mixed layer depth and surface heat flux. From these, we 

can calculate the length and velocity scales, ú =and w., assuming glav = 0.0333 ms-2K- 1. 

Using Buckingham Pi analysis, or by inspection for this simple case, we can create the 

following dimensionless groups: z!zi, and w,2/w.2. When the original data is replotted 

in this dimensionless framework, 10 and behold most of the data points collapse into a 
single curve, as plotted in Fig 9.3b. Thus, all of the data are similar, allowing us to use 
similarity theory. 

By trial and error using simply power laws, we find that the following equation 
approximates the shape of the data, and is ploued as the curve in Fig 9.3b: 

2 
w. 

17 (:,J 2fJ ( I _ 0.8 :,J 2 

This equation is almost identical to (9.6.3c), except for the value of the regression 
coefficient (Le., 1.7 vs. 1.8). 

Discussion: The hope is that this equation, and the corresponding curve in Fig 
9.3b, are "universal"; that is, they should work just as well for other free convection 
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situations. For example, on a different day with Zj = 1200 m and w'9 ' = 0.2 K mis, v s 

we might wish to know the venical velocity variance at z = 500 m without performing an 
experiment to measure it ourselves. At that height, z/zi = 0.42, which can be used in the 

above equation or with Fig 9.3b directly to give us w,2/w•2 = 0.42. Since w. = 2 mls 

based on flux and zi data given at the start of this example, we can easily solve for w,2 = 

1.68 m2 s·2. 
The above example was more than just a contrived didactic case. If you look back at 

Fig 4.2a, you will see that venical velocity variance measurements do indeed vary with 
height as described here. 

9.7 The Log Wind Profile 

One imponant application of similarity theory is to the mean wind profile in the surface 
layer. Since people spend most of their lives within the surface layer, the variation of 
wind speed with height affects their daily lives. The nature of this profile dictates the 
structure of buildings, bridges, snow fences, wind breaks, pollutant dispersion, and wind 
turbines, for example. Also, the surface layer wind profile has been studied extensively 
because of its accessibility to surface· based measurements. 

As shown in Fig 9.4, the wind speed usually varies approximately logarithmically 
with height in the surface layer. Frictional drag causes the wind speed to become zero 
close to the ground, while the pressure gradient forces cause the wind to increase with 
height. 

z 

:I 
J 

} 
j 

I 
/ 

/' 

------
Fig. 9.4 Typical logarithmic variation 

of wind speed with height in 
the neutral surface layer. 
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When plotted on semi-log graph paper (Fig 9.5). a logarithmic relationship such as the 
wind profile in statically neutral situations appears as a straight line. For non-neutral 
situations. the wind profile deviates slightly from logarithmic. In stable boundary layers. 
the wind profile is concave downward on a semi-log plot. while unstable boundary layers 
are concave upward (see Fig 9.5). 

Fig. 9.5 
Typical wind 
speed profiles 
VS. static 
stability in the 
surface layer. 

1 I<m 
Neutral 

100m 

10m 

1: 
.21 1m 
GI 
:I: 

10 em 

1 mmO 2 3 4 5 6 7 8 9 10 11 12 
Wind Speed (m/s) 

9.7.1 Wind Profile in Statically Neutral Conditions 

To estimate the mean wind speed. M. as a function of height. z. above the ground, we 
speculate that the following variables are relevant: surface stress (represented by the 
friction velocity. u.), and surface roughness (represented by the aerodynamic 
roughness length, zo)' Upon applying Buckingham Pi Theory, we find the 

following two dimensionless groups: Mlu •• and z/zo' Based on the data already plotted 
in Figs 9.4 and 9.5, we might expect a logarithmic relationship between these two groups: 

- - - In -M ( 1) (z) u. - k Zo 
(9.7.1a) 

where (Ilk) is a constant of proportionality. As discussed before, the von Karman 
constant, k, is supposedly a universal constant that is not a function of the flow nof of the 
surface. The precise value of this constant has yet to be agreed on, but most investigators 
feel that it is either near k = 0.35 or k = 0.4. 

For simplicity. meteorologists often pick a coordinate system aligned with the mean 

wind direction near the surface, leaving V = 0 and iJ = M. This gives the form of the 
log wind profile most often seen in the literature: 
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(9.7.lb) 

An alternative derivation of the log wind profile is possible using mixing length 

theory. Recall from Chapter 6 that the momentum flux in the surface layer is: u 'w ' = 

_k2 z2 lau/azl au/az. But since the momentum flux is approximately constant with 

height in the surface layer, u'w'(z) = u'w'(z=O) = u.2. Substituting this into the mixing 

length expression and taking the square root of the whole equation gives 

(9.7.lc) 

When this is integrated over height from z = Zo (where M=O) to any height z, we again 
arrive at (9.7.lb). This derivation is more sound than that of Buckingham Pi, because it 
predicts a log wind profile theoretically, without resorting to empirical arguments. 

If we divide both sides of (9.7.1c) by [u./(kz»), we find that the dimensionless 

wind shear (<PM, see Chapter 5 or Appendix A) is equal to unity in the neutral surface 
layer: 

(9.7 .ld) 

This result was previously listed as (9.S .lc). Equations (9.4.lc) and (9.6.le) also 
approach the above expression in the neutral limit of (zlL) approaching zero. In essence, 
each of these equations describes a log wind proflle. 

9.7.2 Aerodynamic Roughness Length 

The aerodynamic roughness length, zo' is defined as the height where the wind speed 
becomes zero. The word aerodynamic comes about because the only true 
determination of this parameter is from measurements of the wind speed at various 
heights. Given observations of wind speed at two or more heights, it is easy to solve for 
Zo and u. . Graphically, we can easily find Zo by extrapolating the straight line drawn 
through the wind speed measurements on a semi-log graph (see Fig 9.5) to the height 

where M = 0 (i.e .. extrapolate the line towards the ordinate axis). 
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Although this roughness length is NOT equal to the height of the individual 
roughness elements on the ground, there IS a one-to-one correspondence between 
those roughness elements and the aerodynamic roughness length. In other words, once 
the aerodynamic roughness length is determined for a particular surface, it does not 
change with wind speed, stability, or stress. It can change if the roughness elements on 
the surface change, such as caused by changes in the height and coverage of vegetation, 
erection of fences, construction of houses, deforestation or lumbering, etc. 

Typical values of the roughness length are indicated in Fig 9.6 (Smedman-Hogstrom 
& Hogstrom, 1978; Hicks, et al, 1975; Garratt, 1977; Nappo, 1977; Thompson, 1978; 
and Kondo and Yamazawa, 1986). As expected, higher roughness elements are 
associated with larger aerodynamic roughness lengths. In all cases, however, the 
aerodynamic roughness length is smaller than the physical height of the roughness 
element. 

Lettau (1969) suggested a method for estimating the aerodynamic roughness length 
based on the average vertical extent of the roughness elements (h*), the average silhouette 
or vertical cross-section area presented to the wind by one element (s.), and the lot size per 
element [SL = (total ground surface area / number of elements)] 

(9.7.2a) 

This relationship is acceptable when the roughness elements are evenly spaced, not too 
close together, and of similar height and shape. 

Kondo and Yamazawa (1986) proposed a similar relationship, where variations in 
individual roughness elements were accounted for. Let si represent the actual horizontal 
surface area occupied by element i, and hi be the height of that element. If N elements 
occupy a total area of ST, then the roughness length can be approximated by: 

N 
= 0.25 "" h 

T. £.. i Wi 
....,. i = 1 

(9.7.2b) 

An approximation of the aerodynamic roughness can also be made by summing over the 
individual roughness elements encountered while traveling along a straight line of total 
length 4. For this case, one must consider the longitudinal width, Wi, of each element in 
the direction of travel. These expressions have been applied successfully to buildings in 
cities. 

We have already discussed Charnock's relationship for the roughness length of the sea 
surface, which can also be applied to blowing sand and blowing snow (Chamberlain, 
1983) with appropriate change in parameter, <Xc: 
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- Many hedges. 
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- S. Asian average 
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- N. Africa average 
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Fig, 9,6 Aerodynamic roughness lengths for typical terrain types. (After 
Garratt 1977, Smedman·HOgstrOm & HOgstrOm 1978, Kondo & 
Yamazawa 1986, Thompson 1978, Napa 19n, and Hicks 1975). 
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Zo 

For the sea, (I.e = 0.016. 

2 
= (I.e U. 

g 
(9.7.2c) 

For many large-scale numerical weather-forecast models the lowest grid-points (at 
height zl above the surface) are so high that the surface layer is not resolved. 
Nevertheless, it is important to account for varying roughness in the model forecast. 
Andre and Blondin (1986) suggested that the effective roughness length (zoeff) to 
be used in the model decreases as the altitude of the lowest grid point increases. In 
particular, the ratio (Zoeff)/hO decreases from about 0.1 to 0.01 as ZI á å Å ê É ~ ú É ë =from 0.1 
Jan to 1 km. Taylor (1987), however, suggests that Zoeff is independent of zl' 

9.7.3 Displacement Distance 

Over land, if the individual roughness elements are packed very closely together, then 
the top of those elements begins to act like a displaced surface. For example, in some 
forest canopies the trees are close enough together to make a solid-looking mass of leaves, 
when viewed from the air. In some cities the houses are packed close enough together to 
give a similar effect; namely, the average roof-top level begins to act on the flow like a 
displaced surface. 

Fig. 9.7 Flow over forest canopy showing wind speed, M, as a function of 
height, z. The thick canopy layer acts like a surface displaced a 
distance, d, above the true surface. Zo= roughness length. 

Above the canopy top, the wind profile increases logarithmically with height, as 
shown in Fig 9.7. Thus, we can define both a displacement distance, d, and a roughness 
length, zO' such that: 
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_ _ (uo) [(Z -d)] 
M - k In Zo (9.7.3a) 

for statically neutral conditions. where we now defme M = 0 at z = d + zo ' Given wind 
speed observations in statically neutral conditions at three or more heights. it is easy to use 
computerized non-linear regression algorithms such as the Marquardt Method or the 
Gauss-Newton Method to solve for the three parameters. u •• zoo and d. 

If you are unsure whether a nonzero displacement distance is appropriate to your 

situation. one approach is to plot M vs. (z-d) for neutral conditions on a semi-log graph as 
shown in Fig 9.8. As a first guess, tty d = O. If your selected d is too small. then the 
plotted proflle will curve concave upward. Use the intercept of this curve on the ordinate 
to provide the next guess for d. If d is too large. then the curve will be concave 
downward. Iterate until the plotted data shows no curvature. This trick will not work for 
non-neutral cases, nor for proflles that cross through internal boundary layers. 

g 10' 

" 10· 

N MD ú = 2 4 6 8 10 
Wind Speed (m/s) 

Fig. 9.8 Graphical estimation of 
displacement distance, d, 
for (a) d too small, (b) d 
correct, and (c) d too large. 

Finally, if one knows the wind speed at three heights, then the following algebraic 
expression is easy to derive for the displacement distance. 

(9.7.3b) 

The disadvantage of this expression is that it is not explicit in d. However, this equation 
can be iteratively solved for d. 
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9.7.4 Surface Stress 

In Fig 9.5, u. is proportional to the slope of the line, in statically neutral conditions. 
In fact, once the roughness length and displacement distance have been detennined, it is 
easy to find the u. from: 

u. = 
kM 

In (zlz.,) 
(9.7.4) 

where M is the wind speed at height z. The magnitude of the surface stress in kinematic 

form is then u/. 

9.7.5 Wind Profile in Non-neutral Conditions 

Expressions such as (9.7. lb) or (9.7.ld) for statically neutral flow relate the 

momentum flux, as described by u.2, to the vertical profile of V-velocity. Hence, those 
expressions can be called flux-profile relationships. These relationships can be 
extended to include non-neutral (diabalic) surface layers. 

Businger-Dyer Relationships. In non-neutral conditions, we might expect that 
the buoyancy parameter and the surface heat flux are additional relevant variables. When 
these are used with the variables from Section 9.7.1, Buckingham Pi analysis gives us 

three dimensionless groups (neglecting the displacement distance for now): Mlu., zlZa, 
and z/L, where L is the Obukhov length. Alternatively, if we consider the shear instead 
of the speed, we get two dimensionless groups: cIIM and z/L. Based on field experiment 
data, Businger, et a!., (1971) and Dyer (1974) independently estimated the functional 
form to be: 

(4.7 z) 1+ ú =
z 

for I: >0 (stable) (9.7.5a) 

q>M for!:' = 0 
L 

(neutral) (9.7.5b) 

[ (15Z)r /4 
z 1- L for 1:<0 (unstable) (9.7.5c) 

These are plotted in Fig 9.9a, where Businger, et a!. , have suggested that k = 0.35 for 
their data set. 

Similar expressions have been estimated for the heat flux vs. the virtual potential 
temperature proflle: 
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= 
KH 

4.7 z 
+ --L 

[ ]
-1/4 

Km 1 _ 9
L
z 

KH 

z 
for L > 0 (stable) (9.7.5d) 

z 
for L = 0 (neutral) (9.7.5e) 

z 
for L < 0 (unstable) (9.7.5f) 

where (Km / KH) is the ratio of eddy diffusivities of heat and momentum. This ratio 
equals 0.74 in neutral conditions. The curves corresponding to the above equations are 
plotted in Fig 9.9b. It is often assumed that the flux profile relationships for moisture or 
pollutants are equal to those for heat. 

(a) (b) 

6 6 

5 

4 

<P .. <PH Un8table -
2 2 

o L .-2-'-O--''--, .Lo--"-oL--'--'-'O--'--2 0 0 ú Kú O úl ú ú ú ú H J J J D J J J J WJ D WWJ J ú J

Fig. 9.9 

Z r _ Z 
ú Z x = ú J i =

(a) Range of dimensionless wind shear observations In the surface 
layer, plotted with interpolation formulas. (b) Range of dimensionless 
temperature gradient observations in the surface fayer, plotted with 
interpolation formulas. After Businger, et at. (1971). 

Diabatic Wind Profile. The Businger-Dyer relationships can be integrated with 
height to yield the wind speed profiles: 
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(9.7.5g) 

where the function 'I'(z/L) is given for stable conditions (z/L > 0) by: 

(9.7.5h) 

and for unstable (z/L < 0 ) by: 

(9.7.5i) 

where x = [1 - (l5z/L)]1/4. This last equation was presented by Paulson (1970), 
although alternative expressions that are more easily solved on computer were presented 
by Nickerson and Smiley (1975) and Benoit (1977). In the limit of statically neutral flow 
(z/L = 0), both of these relationships reduce to the log wind proflle. 

When (9.7.5g and h) are combined, the resulting equation describes a log-linear 

profile, because M depends on both In(z) and linearly on z/L. As plotted in Fig 9.5, 
the linear term causes the winds in the surface layer to increase with height faster than 
those of a neutral profile. This feature is expected on the underside of the nocturnal jet. 
Clearly the equation fails near the top of the nocturnal boundary layer, where the wind 
speed reaches a maximum and then frequently decreases with height. Thus, we must be 
content with applying the log-linear proftle only within the stable surface layer. 

Fluxes and Scaling Parameters. If the stability and the flux or stress is known 
in advance, then the integrated Businger-Dyer relationships can be solved directly for the 
wind speed or the potential temperature at any height. 

Often, these equations are used in reverse, to estimate the flux knowing the mean wind 
or temperature profile. This is much more difficult. For example, u., appears in a 
number of places in the right hand side of (9.7.5g-i): once explicitly, and additional times 
hidden in L. Funhermore, L is a function of the heat flux, which must simultaneously be 
estimated from the temperature profile. q Ü ú =resulting coupled set of equations is very 
difficult to solve, and often involves an iterative approach. One way around this problem 
is to simplify the flux profile relationships. 

For statically unstable conditions, Businger, et.al. (1971) found: 
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z L = Ri, (9.7.5j) 

where Ri is the gradient Richardson number (see Fig 5.23 of Chapt. 5). Since Ri is based 
on gradients of mean potential temperature and wind, it is easy to calculate directly from 
measurements of those mean variables. Thus, the calculation of the u. or 8. SL in (9.7.5i) 
is much easier. 

For statically stable conditions, Arya (1981) suggested that the shape similarity of the 

temperature and wind profiles be utilized, to yield u./8. SL = ú ú É I =where the 
differences!l are taken vertically within the surface layer. These simplifications lead to: 

u. e!lM 
L == --=- (9.7.5k) 

(k g ú U F =

where 

(9.7 .51) 

9.8 Rossby-number Similarity and Profile Matching 

As introduced earlier, it is often necessary to be able to approximate the surface stress 
and fluxes in terms of mean variables at the grid points in numerical models. 
Unfortunately, in some models the lowest grid point is well above the surface layer, 
making it impossible to use the flux-profile relationships described earlier. By matching 
surface layer profiles to flows in the mid-boundary layer, surface fluxes can be related to 
conditions higher in the boundary layer. 

The profile matching technique uses two separate similarity approximations: one 
that describes the departure of the actual wind from geostrophic (i.e., the geostrophic 
departure) in the (outer) mid-boundary layer: 

and the other for the log profile lower in the (inner) surface layer: 
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where A(z/h2 , h:zIL) is some universal function to be detennined empirically, and M2 and 
h2 are velocity and height scales in the outer layer. The flow at the bottom of the mid-
boundary layer is matched or fitted to agree with that at the top of the surface layer. The 
resulting relationship relates the surface stress to the mean flow higher in the interior of the 
boundary layer. 

When this procedure is also performed for heat and moisture, we arrive at the 
following set of equations: 

(9.8a) 

where A, B, C and D are "universal" functions, and [Km/(k KH)] == 2. Yamada (1976) 

tested a number of velocity scales, and found that U2 = <iT>, V 2 = <V> worked best. g g 

The length scale, h2' was best modeled using Zj during the day, and the depth of the 
turbulent layer at night. With these scales, his analysis of field experiment data yielded 
the functional forms for A, B and C plotted in Fig 9.10. 

These equations can be combined and solved to give the bulk transfer (or drag) 
coefficients, which allow us to find the surface flux given knowledge of mean variables 
aloft and at the surface: 
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(a) 

·20 
A 

h/L 

(el 

01----.... -----1 

h i L 

Fig. 9.10 A determination of the "universal" similarity functions vs. M. 
based on Wangara field experiment. (a) Similarity function A. 
(b) B. (c) C. Shaded areas indicate data range, while solid lines 
are based on equations in the text body. (After Yamada, 1976). 

B·(RB) sign (fc) 

~ ú =ú =H::) -A(R,)] 

(9.8b) 
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where Clw• is the angle between the scale-wind direction and the surface stress. RB = g hz 

69. / (9 Fi) is the bulk Richardson number. and 69s is the temperature difference 
between the air and the ground (see Table 9-1). Figs 9.11 shows the resulting bulk 
transfer coefficients for momentum and heat. Because geostrophic wind has proved to be 
the best scale velocity in these expressions. the equations above are also known as 
geostrophic drag laws. 

Although it is a wonhwhile goal to estimate surface flux based on measurements of 
mean variables aloft. estimates of the universal functions and the bulk transfer coefficients 
have yielded much scatter. The "universality" of the functions are thus still in question. 
making this matching scheme of dubious reliability. 

(a) (b) 
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0.04 
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0.03 107 

108 

CH 
0.08 06 

109 107 
0.02 10' 

0.04 109 

0.01 

.020 • 15 . 10 ·5 0 .020 • 15 . 10 · 5 
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Fig. 9.11 Drag and heat transfer coefficients based on Fig. 9.10. (a) Drag 
coefficient Co as a function of the bulk Richardson number Ri 8. (b) As 
in (a) except for heat transfer coefficient CH .The actual data points 
exhibit wide scatter about the lines above. (After Yamada, 1976). 

9.9 Spectral Similarity 

Spectral analysis of atmospheric turbulence data is a powerful tool to help probe 
deeper into the workings of turbulent flow. Interest in this method has always been high. 
as indicated by an issue of Radio Science (1969) dedicated to the spectra of meteorological 
variables. Nevertheless. there are some fundamental questions regarding the 
correspondence of Fourier modes to physical eddies (Tennekes. 1976). Similarity theory 
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has been applied to spectra to help organize the spectral results, and to help focus our 
understanding about turbulence. 

As discussed in the previous chapter, the discrete power spectral intensity measures 
how much of the variance of a signal is associated with a particular frequency, f. If ú =
represents any variable, then the discrete power spectral intensity E;(O has units of 1;2. 
An obvious way to make the spectral intensity dimensionless is to divide it by the total 

variance ú =,2. A continuous spectrum with power spectral density of S;(O has the same 

units as ú O L Ñ I = and can be made dimensionless by dividing by ú I O L Ñ K = Analogous 

expressions can be made for wavenumber spectra instead of frequency spectra. In both of 
these cases, the result is a spectrum that gives the fraction of total variance explained by a 
wavelength or wavelength band. 

Alternately, if the turbulence is driven or governed by specific mechanisms, such as 
wind shear, buoyancy, or dissipation, then the spectral intensities can be normalized by 
scaling variables appropriate to the flow. The next three Sections show normalized 
spectra for the inertial subrange, for surface layer turbulence generated mechanically, and 
for mixed layer turbulence generated buoyantly. 

9.9.1 Inertial Subrange 

As discussed in Chapter 5, there are many situations where middle size turbulent 
eddies "feel" neither the É Ñ Ñ ú í ë =of viscosity, nor the generation of TKE. These eddies get 
their energy inertially from the larger-size eddies, and lose their energy the same way to 
smaller-size eddies. For a steady-state turbulent flow, the cascade rate of energy down the 
spectrum must balance the dissipation rate at the smallest eddy sizes. Hence, there are 
only three variables relevant to the flow: S, 1(, and E. This similarity approach was 
pioneered by Kolmogorov (1941) and Obukhov (1941). 

By performing a Buckingham Pi dimensional analysis, we can make only one 
dimensionless group from these three variables: 

S3 1(5 

1t1 = 2 
E 

We know that this Pi group must be equal to a constant, because there are no other Pi 
groups for it to be a function of. 

Solving the above equation for S yields: 

2{3 .5/3 
S(lC) = Clk E lC (9.9.1 ) 

where the Clk is known as the Kolmogorov constant. The value of this constant has 

yet to be pinned down (Gossard, et.a!., 1982), but it is in the range of Clk = 1.53 to 1.68. 
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One of the easiest ways to determine whether any measured spectrum has an inertial 
subrange is to plot the spectrum (S vs. l() on a log-log graph. The inertial subrange 
portion should appear as a straight line with a -5/3 slope (see Fig 9.12). The 
demonstration spectra plotted in Fig 8.9 all have an inertial subrange at normalized 
frequencies greater than 2.5, assuming that Taylor's hypothesis can be used to relate 

frequencies to wavenumbers via f = M·l(. 

Fig. 9.12 
On a log-log 
spectrar plot, the In (S) 
inertial subrange 
appears as a 
straight line with 
-5/3 slope. 

9.9.2 Surface Layer Spectra 

In (IC) 

Suppose that the velocity spectra fSu(f) for a surface layer in a state of forced 

convection were likely to be affected by the following variables: u., w'e v 's ' z, U (or M), 

f, and E. Buckingham Pi analysis of the above variables gives three dimensionless 

groups: Xl = f Su(f) / (k z d/3 I ú Z =f z / M, and 1t3 = z / L. 
Fig 9.13a shows the result when these X groups are plotted (Kaimal, et ai, 1972). We 

see some important characteristics: (1) The peak spectral intensity is reduced as the static 
stability is increased, because stability is opposing turbulent motions. (2) The peak is 
shifted to higher frequencies as stability is increased, possibly because the lower 
frequencies are more strongly damped by the buoyancy forces. (3) At high frequencies, 
the spectral intensity is no longer dependent on the static stability (at least for the weak 
stabilities plotted), suggesting that the smaller size eddies in the inertial subrange receive 
all of their energy via the cascade process from larger eddies, with no direct interaction 
with the mean flow or the mean stratification. (4) Finally, there is a curious occurrence of 
an excluded region in the spectral plot near neutral stratification (lightly shaded in the 
figure). 
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(8) 
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Fig. 9.13 

where f Sw (f) 
1t6 = (k £ A".., )213 

10 -l 10 · ] 10 ' 10' 10 ' 10 ' 

It. = 0.55 A. mu lC 

Surface layer spectra scaled by similarity theory for (a) u. , 
When normalized by the wavelength of the spectral peak, ).mllll, 
the curves collapse into one curve (b) with some scatter 
(shaded). Similar results are found for (c) w. (After Kaimal, et 
al.,1972; and Busch, 1973). 
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Remember that the correct scaling variables are not specified from first principles, but 
must be detennined from empirical data. For some cases u.2 might work, while for 

other cases (kze)2!3 might be beller. In a surface layer with turbulence generated 
mechanically, velocity spectral intensities can be nonnalized with respect to u. 2, 

th l> SL2 d . ·th SL2 temperature spectra wi respect to 1:1. , an mOisture spectra WI respect to q. . 

Frequency can be nonnalized by Mlz, u./z, or by frequency, fmax• or wavelength, Amax, 
corresponding to the peak in the spectrum. 

When these various spectra are nonnalized with respect to Amax, all of the curves 
collapse onto one curve, as shown in Fig 9.13b, where 1t4 = f·Su(f)/[3.4 (k e Amax)2f3], f 

= 1C M , and 1ts = 0.55 Amax k. A similar result is found for vertical velocity spectra (Fig 

9. 13c), where 1t6 = f·Sw(f)/[(k e Amax)U3]. 

9.9.3 Mixed Layer Spectra 

We might speculate that the following variables affect the velocity spectrum, fSu(f), 

during convective conditions: (gjW)w'a v ' , f, z, z; , U (or M), and e. Buckingham Pi 
v • 

I.O.----,----,----.---r-_--, 

0.1 
u 

0.01 

Fig. 9.14 t:! 
N 

Universal "t 
curves for the !!. 0.1 • 
velocity spectra I.-- 0 .02·1 .0 expressed in -mixed-layer J ú =
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analysis gives: 1tl = f Su(f) / (Zj £ )2f3, 1t2 = f Zj I'D, and 1t3 = Z / Zj. These are plotted in 
Fig 9.14 for the u, v, and w components of the one-dimensional spectra (Kaimal, et aI. , 
1976). 

Notice that the peak in these curves corresponds to a wavelength approximately equal 
to the ML depth. This connrms our earlier statement that the most energetic eddies are the 
large ones that are produced on the scale of the boundary layer. In situations such as flow 
over complex terrain, new length scales might be introduced into the flow based on the 
scales of the terrain irregularities (panofsky, et aI., 1982). 

9.10 Similarity Scaling Domains 

In different parts of the boundary layer, we typically nnd that the nature of the flow is 
dependent on some scaling parameters, and not dependent on others. For example, in the 
surface layer we expect turbulence and mean proflles to be related to z/L, but in the ML we 
nnd that z/Zj is more appropriate than z/L. To help organize or knowledge about the 
relevant scaling parameters, Fig 9.15 relates parameters to identifiable parts of the 
unstable BL, while Fig 9.16 does the same for the stable BL. 

In Fig 9.1Sa, the regions that are independent of L or Zj are indicated. In Fig 9.15b, 
the regions are listed along with the variables that are relevant for each region. We fmd 

(a) ä K ç ê J ^ J ú J K K K J J J ê J J J ê J J K I =

Free 
Convection 

Layer 

Mixed Layer 
w'O'. t %1 

o.rl----4-4--..,....-.,..-..j 

l K ç I I ú J J J H ? ? WWD > WJ J J J J J Wú ú K =

·Z t L ·Zlt L 

Fig. 9.15 Schematic diagrams show idealized limits of validity of various 
scaling techniques for the unstable boundary layer. (a) After Nicholis 
and Readings (1979) ; (b) after Holtslag and Nieuwstadt (1986). 
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that in addition to the ML and SL, there are two new regions that can be identified. One 
layer is the free convection layer that fonns in strongly convective situations near the 
ground. It can be thought of as the region between the top of the SL and the bottom of 
the ML, where neither L nor Zj length scales are relevant. The other region is a near 
neutral upper layer that is similar to the residual layer except that it is still turbulent 
and still feeling the effects of the surface. These conditions might happen on a windy day 
with clear skies over land, where both buoyant and mechanical generation of turbulence 
are present. They might also exist in stratocumulus-topped mixed layers. 

For stable conditions, Fig 9.16 shows a region in the upper right portion of the graph 
that corresponds to strongly stable air that is in the top of the SBL. Turbulence in this 
region is likely to be intermittent, because of the strong stability suppressing 
turbulence. In the middle of the SBL is a region that might be continuously turbulent, but 
which is independent of height above ground and of surface fluxes. In this z-less 
region, only the magnitudes of the local fluxes are important. Below this region local 
scaling continues to be important for more neutral stability, but now the turbulence 
senses the bottom boundary and is dependent on z. Finally, adjacent to the ground is the 
usual surface layer, where surface fluxes and z are important. Note that the near 
neutral upper layer defined in this graph is within the SBL, and is not the residual 
layer that lies above the SBL. 

z II 0.5 .. 
z -I ••• 
Sca'!!!!'p 
't,we 

0.' f J > g i Wú i =___ Z Z Z WWWWWWWWWWWWWWWWWWWWWZ Z Z Z J WK K K WK K K K K ú =
ç ú J K ú J J J J J J J J ú J J ú J J ú ú J J J J J J J J J J J J J J J J J J K =

Fig. 9.16 
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9.12 Exercises 

1) Suppose that the wind speed, M, near the surface at night is a function of gIS-, w'S " 
v v 

az/ax, aSJaz, zo' and U g. Use Buckingham Pi dimensional analysis to detennine 

the relevant Pi groups. 
2) You were recently hired to make background environmental measurements at the site 

of a proposed power plant. The site happens to be of unifonn roughness in all 
directions, and the land use in this area does not change with the seasons (i.e., no 
harvesting, logging, or other changes). 
a) On one particular overcast day, you measured the following wind speed profile as a 
function of height using your instrumented 100 m tower and a rawinsonde that you 
launched: Find Zo and u •. 

z (m) 1 10 100 200 500 1000 

M (mls) 2 3 3 3 3 
b) Later in the year, you sold the tall tower and donated the funds to your favorite 
meteorological charity. But your contract with the power company still required you 
to make background measurements. Therefore, you erected a shorter, 10 m tower at 
the same site. Then came another overcast day with the wind from the same direction 
as before. You measured a speed of 4 mls at the top of your short tower. What is 
value of u. on this day, and what is the wind speed at z = 50 m (the height of the 

proposed smoke stack from the power plant)? 
3) If an orchard is planted with 1000 trees per square kilometer, where each tree is 4 m 

tall and has a vertical cross-section area (effective silhouette to the wind) of 5 m2, what 
is the aerodynamic roughness length? Assume d=O. 

4) Given the following wind speed data for a neutral surface layer, find the roughness 
length (zo)' displacement distance (d), and friction velocity (u.): 

z(m): 5 8 10 20 30 50 

M(m/s); 3.48 4.43 4 .66 5.50 5.93 6.45 
5) Suppose that the following was observed on a clear night (no clouds) over farmland 

having Zo = 0.067 m (assume k = 0.4), L (Obukhov length) = 30 m, U. = 0.2 m/s. 

Find and plot M as a function of height up to 50 m. 
6) a) If the displacement distance is zero, find Zo and u. , given the following data in 

statically neutral conditions at sunset: 
ú = MUnLsl 
I 4.6 
3 6.0 
10 7.6 
30 9.0 
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b) Later in the evening at the same site, w '9 y '= -0 .01 K rn/s, and g/9 y = 0.03333 m 

s·2 K·1• If u. = 0.3 rn/s, calculate and plot the wind speed prof'tle (U vs z) up to z = 
SOm. 

7) Assume that the following variables are relevant for flow OV6!( an isolated hill: 

(9) o9fiJz = stability parameter 

M = wind speed 
D = diameter of hill 
H = height of hill 
Use Buckingham Pi methods to find the dimensionless groUps for this problem. 

8) Given: A SBL with Zo = 1 cm, 9y (at z = 10 m) = 294 K, \'\,\'9 y 's = - 0.02 K·ms·1, 

u. = 0.2 rn/s, k = 0.4. Plot the mean wind speed as a function of height on a semi-log 

graph for 1 S z S 100 m. 
9) Given the following wind speeds measured at various heights in a neutral boundary 

layer, find the aerodynamic roughness length (zo)' the friction velocity (u.), and the 

shear stress at the ground ('t). What would you estimate the wind speeds to be at 2 m 
and at 10 cm above the ground? Use semi-log paper. Assume that the von Karman 
constant is 0.35 
ú =
2000 
1000 

SOO 
300 
100 
SO 
20 
10 
4 
1 

l.l..(mLU 
10.0 
10.0 
9.S 
9.0 
8.0 
7.4 
6.5 
5.8 
S.O 
3.7 

10) Consider the flow of air over a housing development with no trees and almost identical 
houses. In each city block ( 0.1 km by 0.2 km ), there are 20 houses, where each 
house has nearly a square foundation (10 m on a side) and has an average height of 5 
m. Calculate the value of the surface stress acting on this neighborhood when a wind 
speed of 10 rn/s is measured at a height of 20 m above ground in statically neutral 
conditions. Express the stress in Pascals. 

11) Derive an expression' for the kinematic heat flux (w '9 ') in terms of the dimensionless 

wind shear (4)M) and the dimensionless lapse rate (4)H)' Then, given a wind shear of 
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0.02 1/s and a lapse rate of -0.012 KIm at a height of 20 m above ground. calculate 
the value of the heat flux at that height using Businger's flux-profile relationships. 
Assume a mean potential temperature of 21°C. To simplify your calculations. recall 
that z/L is approximately equal to' the Richardson number for unstable conditions. 

12) State some reasons why one might need to use geostrophic drag relationships. 
13) Use the definition of the drag coefficient along with the neutral log wind profile 

equation to prove that CON = k2 In·2(z/zo) . 

14) Given the definition for eddy diffusivity u 'w' = - K CJV/CJz. solve for K as a function 

of height in the neutral surface layer. assuming a log wind profile. 
15) Given the answer from the previous question. and the defi.1ition for Ekman layer 

depth hE = (2 1t2 Klfc)l/2 • show that the Ekman layer depth is proportional to uJfc. 

16) Given the following variables and their dimensions: 
z height L 
gle buoyancy parameter L T-2 K-l 
TKE turbulence KE per unit mass L2 T-2 
Zi depth of the mixed layer L 
w'e' surface kinematic heat flux L T-l K 
Perform a dimensional analysis to find Pi groups for z and TKE. using the 

remaining variables as the primary variables. 
17) Using the Businger-Dyer flux-profile relationship for statically stable conditions: 

a) Derive an equation for the drag coefficient. Co. as a function of 
the following 4 parameters: 

z : height above ground 
Zo: roughness length 
L : Obukhov length 
k : von Karman constant ( = 0.35) 

b) Find the resulting ratio of CdCON ' where CON is the neutral drag coefficient. 
c) Given z = 10 Oland Za = 10 Col. calculate and plot Co/CON for a few different 
values of stability: 0 < z/L < I . How does this compare with Fig 7.l0a? 

18) Given the surface layer 
profile plotted at right: 
List 2 different reasons 
why the profile 
might look like this. In (z) 

i J J J J J J J J J J J J J ú ì =
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19) Given the following wind proflle: 
z(m) l!..!mW 

0.3 5.0 
0.7 6.0 
1.0 6.4 
2.0 7.2 

10.0 9.0 
50.0 10.0 

100.0 10.2 
1000.0 10.4 

and density p = 1.25 kglm3. Assume the displacement distance d = O. 
a) Find Zo. 
b) Find u. 

c) Find the surface stress (in units of N/m2) 
d) Given a different day over the same land surface, but with zJL = -1.0 and u. = 

1.0 mls. Is the wind fast enough to 'knock your socks off? (Assume that sock 
height = 25 cm, and that it takes a wind speed of 10 mls at that height to 'knock your 
socks off.) 

20) Given: au laz = u. I k z , and Km = k z u. for simplicity (although this is not 

necessarily a neutral surface layer). Given also: u. = 0.3 mis, e = 280 + 1.0 
In(z!zo) in degrees Kelvin, and Zo = 1 cm. 

a) Find ae/at. 
b) Calculate the numerical value of the flux Richardson number. 
c) Is the flow turbulent? Why? 

21) During the night, assume that the TKE is a function of the following parameters: 

( zo ' z, gle, ú É ë = ' V, v ) where v has units of length times velocity. g 
Use dimensional analysis to find the dimensionless PI groups. 

22) Given the following wind profile in statically neutral conditions: 

-limL. U imill 
0.95 3 
3.0 4 
9.5 5 

30.0 6 
Find the numerical value of: 
a) Zo 

b) u. 
c) K", at 3 m 
d) Co 
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23) Given z., = 1 cm = constant and u. = 0.25 mls = constant. Find and plot the ratio 
of 10 m mean wind speed for diabatic conditions to that for neutral conditions, as a 
function of stability for 0 ú =(z/L) ú =2.0. Briefly describe the significance of your 
result. 

24) It has been suggested that in regions of strong static stability the lower (long 
wavelength, small wavenumber) end of the inertial subrange occurs at a wavenumber, 
Kb' given by Kb = NBi!3 £.1/2 , where NBV is the Brunt-Vaisala frequency, and £ 

is the turbulence dissipation rate. Use dimensional analysis to arrive at the above 
expression. 

25) Given the following mean wind speed profile, find the roughness length (zo) and the 
friction velocity (u.). Assume that the surface layer is statically neutral, and that the 
displacement distance d = O. Use k = 0.35 . 

z (m) MiIDLs.) 
1 3.0 
3 4.0 

10 5,0 
20 5,6 
50 6.4 

100 6,8 
500 7,0 

lo(x) 7,0 

26) Knowing the shear ( dM / dz ) at any height z is sufficient to determine the friction 
velocity (u.) for a neutral surface layer: 

u. = k z dMidz 
If, however, you do not know the local shear, but instead know the value of the wind 

speed M2 and M, at the heights z2 and zl respectively, then you could use the 

following alternative expression to find u.: u. = k Z'" ú =/ 6 z 
Derive the exact expression for z"', 

27) Given the following wind speed data for a neutral surface layer, find the roughness 
length (zo), the displacement distance (d), and the friction velocity (u.): 

li!Ill Mirr!.W 
5 3.48 
8 4,34 

10 4.66 
20 5,50 
30 5.93 
50 6.45 
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28) Suppose that you have made micrometeorological measurements over a wheat field, 

where zo= 1 cm. Assume (gle) = 0.0333 mI(s2 K). 

a) One afternoon, u. = 0.36 mls and w '9 ' = 0.20 K mls at the surface. What is 

the value of the Obukhov length? Plot the mean wind speed as a function of height 
from the surface to 50 m. 

b) Later, during the night when w '9' = -0.05 K mls at the surface, you measured 

the same wind speed at a height of 20 m as you observed during the afternoon (from 
your answer to part a). Find the friction velocity u. and the Obukhov length (L) for 
this nighttime situation, and plot the resulting wind speed profile between the surface 
and 50 m. 

29) a) Given the following was observed over fannland on an overcast day: 

u.= 0.4 mis, d = 0, M = 5 mls at z = 10 m. Find Zo . 
b) Suppose that the following was observed on a clear night (no clouds) over the 

same fannland: L = 30 m, u. = 0.2 mls. Find M at z = 1, 10, and 20 m. 
c) Plot the wind speed profiles from (a) and (b) on semi-log graph paper. 

30) Given the following data: w '9' = 0.2 K mis, ú = = 500 m, gle = 0.0333 m s·2 K"I 

u. = 0.2 mis, k = 0.4, Zo = 0.01 m, z = 6 m 
Find: 
a) L (the Obukhov length) 
b) z/L 

c) au taz at z=6 m. (Hint: use diabatic surface layer similarity) 
31) The wind speed = 3 mls at a height of 4 m. The ground surface has a roughness 

length of Zo = 0.01 m. Find the value of u. for 
a) A convective daytime boundary layer where Ri = -0.5 . 
b) A nocturnal boundary layer where Ri = 0.5. 


