### Lecture 4: Surface Parameterizations

### <u>Announcements</u>

- Homework on Boundary Layer Module
  - due: Monday Feb 6th
  - returned: Monday Feb 13<sup>th</sup>
  - questions on homework: by appointment
  - Readings: Stull Chapter 7
- Midterm exam: Monday March 6<sup>th</sup>

#### **Today's Lecture**

- 1. Bulk aerodynamic formulas
- 2. Drag coefficients, surface roughness
- 3. Energy Balance
- 4. NYS Mesonet—wind profiles

## Today!

### **Red Hook NYSM Site**



### Today (and yesterday)! Red Hook - CO<sub>2</sub> Concentration

**Red Hook - Net Radiation** 



Red Hook - Heat Flux









- USTAR

## About that Problem Number 4....

Hint: see Stull pages 47 -50!

- Make sure you convert flux units (W m<sup>-2</sup>) given in the time series to kinematic units (ms<sup>-1</sup> K)

### **Conceptual Model of the ABL**





### **z**<sub>0</sub> - surface roughness

### horizontally homogeneous

# Stability enhances or supresses turbulence (and fluxes)

**Stable** 



Unstable



<u>Turbulence,</u> R.W. Stewart (1968) Photos: J. Freedman

# Stability enhances or supresses turbulence (and fluxes)

Stable

Saratoga Lake 30 January 2021 -13°F



#### Unstable



<u>Turbulence,</u> R.W. Stewart (1968) Photos: J. Freedman

# Stability enhances or supresses turbulence (and fluxes)

Stable

Saratoga Lake 30 January 2021 -13°F



#### Unstable



<u>Turbulence,</u> R.W. Stewart (1968) Photos: J. Freedman

### **Stability Parameters**

### Gradient Ri

$$Ri = rac{(g/\overline{ heta_v})\,\partial\overline{ heta_v}/\partial z}{(\partial\overline{U}/\partial z)^2}$$

# $Ri pprox rac{ ext{buoyancy forcing}}{ ext{shear forcing}}$

- predicts turbulent/laminar flow
- applies any height in PBL



- requires turbulence
- applies near-surface layer

### Monin-Obukhov Similarity, z/L

- MO Similarity accounts for relative importance of shear (mechanical turbulence) and buoyancy in the generation of turbulence and their effects on surface fluxes and surface layer profiles
- z= height above the surface
- ratio z/L is dimensionless
- can be described as a surface layer scaling parameter
- when z/L is small, buoyancy is less important
- as z increases, buoyancy increasingly important



### Free Convection at the South Pole! Courtesy of D. Fitzjarrald



sensible heat flux, South Pole 1988 Fitzjarrald & Martin W/m\*2

### Law of the Wall



### **Bulk Flux Parameterizations**



Garratt (1994)

### **Bulk Flux Parameterizations**



- total flux is constant with height in surface layer
- at surface ("wall"), turbulence vanishes (no slip condition)
- away from surface (wall), molecular diffusion relatively small
- bulk methods attempt to avoid these complexities





 $\rho \bar{u} = horizontal momentum$  $\bar{u} \cdot \rho \bar{u} = horizontal advection of$ horizontal momentum  $\tau = C_D \cdot [\bar{u} \cdot \rho \bar{u}]$  $C_D = fraction of horizontal momentum$ "lost" to surface Typically,  $C_D \sim 0.001 - 0.005$ 

### **Bulk Flux Parameterizations**

- τ constant with height
- $C_D$ ,  $\bar{u}$  vary with height
- select ref height, say 10 m

$$rac{ au}{
ho} = u_*^2 = C_{D10}\,U_{10}^2$$



## vertical turbulent flux $C_{H10} = \frac{1}{\text{bulk horizontal advection}}$

- fraction of horizontal heat flux transferred to surface
- efficiency of transport to surface

mean horizontal advection of heat at 10 m height

### Drag coefficient vs stability

<u>non-neutral</u> (diabatic)





Unstable: Ym>0, CDT  $C_{D} = K^{2} \left[ ln\left(\frac{z}{z_{0}}\right) - \Psi_{m}\left(\frac{z}{L}\right) \right]^{-2} \qquad \text{Stable:} \quad \Psi_{m} < O, C_{D} \downarrow$ 



### Drag Coefficient (C<sub>D</sub>) versus Stability

vertical turbulent momentum flux  $C_{D10}$ bulk horizontal advection of momentum



~0.001 (efficiency 0.1%)









### **Bulk Flux Parameterizations**

vertical flux =  $Coeff \cdot [horizontal advective flux]$ 

- momentum: au =
- heat: H =
- moisture:  $H_L =$

$$egin{aligned} & \mathrm{C}_{\mathrm{D10}} \cdot \left[ U_{10} \cdot 
ho_a U_{10} 
ight] \ & \mathrm{C}_{\mathrm{H10}} \cdot \left[ U_{10} \cdot 
ho_a \mathrm{c}_\mathrm{p} ( heta_s - heta_{10}) 
ight] \end{aligned}$$

$$= \mathrm{C}_{\mathrm{E10}} \cdot \left[ U_{10} \cdot \rho_a \mathrm{L}_{\mathrm{v}} (q_s - q_{10}) \right]$$

 $C_D, C_H, C_E$  depend on  $z_0, z/L, ...$ 

## Example drag coefficients

Table 7-3. Sample drag and bulk-transfer coefficients. After Garratt (1977), Anthes and Keyser (1979), Gadd and Keers (1970), Deardorff (1968), Verma, et al. (1986), and Kondo and Yamazawa (1986a).

Coefficient

$$C_{DN} = 1.4 \times 10^{-3}$$
  
 $C_{D} = 16.0 \times 10^{-3}$   
 $C_{D} = 40.0 \text{ to } 160.0 \times 10^{-3}$ 

 $C_{DN} = [0.75 + 0.067 M] \times 10^{-3}$ 

Roughly 0.1% to 4% of horizontal momentum advecting over surface is transferred down to the surface

### Conditions

10 m winds over plains, daytime

10 m winds over deciduous forest

10 m winds over coniferous forest

10 m winds over water

# Drag and Roughness, z<sub>0</sub> $rac{ au}{ ho} = u_*^2 = C_D \, U^2 \ C_D = rac{u_*^2}{U^2}$ Intuitively, the more rough the surface me more drag

Recall, for neutral conditions

Rewrite as 
$$\frac{u_*}{U(z)} = k[ln\frac{z}{z_0}]^{-1}$$
  
 $C_D = \frac{u_*^2}{U(z)^2} = k^2[ln\frac{z}{z_0}]^{-2}$  (†z<sub>0</sub>, †C<sub>D</sub>)

$$s: \overline{U}(z) = \frac{u_*}{k} ln \frac{z}{z_0} (\uparrow z_0, \downarrow U)$$

-1

### Surface Roughness

Existing: NLCD/Landsat



Getting it right crucial to accurate wind resource assessment While working on the Deepwater Offshore Wind Project off of Block Island, RI....



|    | High Resolution $Z_0$ (m) |        |
|----|---------------------------|--------|
|    |                           |        |
|    |                           | _ 0 00 |
|    |                           | 0.00   |
|    |                           | 0.06   |
|    |                           | 0.00   |
|    |                           | 0.13   |
|    |                           | 0.16   |
|    |                           | 0.19   |
|    |                           | 0.22   |
|    |                           | 0.25   |
|    |                           | 0.28   |
|    |                           | 0.31   |
|    |                           | 0.34   |
|    |                           | 0.38   |
|    |                           | 0.41   |
|    |                           | 0.44   |
|    |                           | 0.47   |
| 20 |                           | 0.50   |
|    |                           |        |

## Comparison of Model Roughness Fields—from WRF

#### Block Island - Roughness (cm)



# ~1 m difference in model roughness fields – Variability within land cover classes



## **Results – Wind Speed Profile (KBLI)**

![](_page_24_Figure_2.jpeg)

MASS 1 km Wind Profile At -71.58 41.17 (Points 40,39) Date = 12/22/2008 Hour = 1800 GMT

## Energy Production Estimates Use of new roughness map increased capacity factor over 8% in southern sections of Block Island

![](_page_25_Picture_1.jpeg)

![](_page_26_Figure_0.jpeg)

$$-Q_s^* = Q_H + Q_E - Q_G + \Delta Q_S$$

 $Q^*_{c}$  = net upward radiation at the surface

- Q<sub>H</sub>
- QE =
- $Q_{G}$ =
- $\Delta Q_{S}$ =

## Surface Energy Balance (b) sun $Q_S^r$ QG

Fig. 7.2 Contributions to the surface energy balance (a) for a finite thickness box and (b) for an infinitesimally thin layer.  $-Q_s^2$  is the net radiative Stull 1988 contribution, Q<sub>H</sub> is turbulent sensible heat flux, Q<sub>E</sub> is turbulent latent heat flux,  $-Q_G$  is molecular flux into the ground, and  $\Delta Q_S$  is storage.

(7.2b)

represents the upward sensible heat flux out of the top represents the upward latent heat flux out of the top represents the upward molecular heat flux into the bottom denotes the storage or intake of internal energy (positive for warming and for chemical storage by photosynthesis).

![](_page_27_Picture_0.jpeg)

Typical variation of terms of the surface energy balance for (a) daytime Fig. 7.3 over land; (b) nighttime over land; (c) oasis effect of warm dry air **Stull 1988** advection over a moist surface; and (d) daytime over the sea with no advection. Arrow size indicates relative magnitude.

![](_page_27_Picture_2.jpeg)

## Surface Energy Balance—Radiation Components

![](_page_28_Figure_1.jpeg)

**126 NYSM standard sites measure incoming solar 18 NYSM flux sites measure all 4 components (radiation)** 

![](_page_28_Picture_4.jpeg)

![](_page_29_Figure_1.jpeg)

![](_page_29_Figure_2.jpeg)

![](_page_29_Picture_3.jpeg)

![](_page_29_Picture_4.jpeg)

![](_page_29_Picture_5.jpeg)

![](_page_30_Figure_1.jpeg)

face 
$$\beta > 1$$
 for dry sur

### **Observing the ABL: vertical structure**

#### remote: lidar, microwave radiometer

![](_page_31_Picture_2.jpeg)

#### vertical wind profiles to ~3-5 km

![](_page_31_Picture_4.jpeg)

#### temperature/moisture profiles to ~10 km

### Feb 1-2 2020

![](_page_32_Figure_1.jpeg)

### **Diurnal Profile evolution**

![](_page_33_Figure_1.jpeg)

FIGURE 1. Schematic of the structure of the atmospheric boundary layer in high pressure regions over land, showing daily variations. SOURCE: Wikimedia Commons.

#### JOURNAL OF HYDROMETEOROLOGY

![](_page_34_Figure_2.jpeg)

FIG. 4. BOREAS soundings from Thompson, MB, Canada, for (a) 6 Jun 1994, first day after a frontal passage, and (b) 8 Aug 1994, second day after a frontal passage.

#### Freedman and Fitzjarrald 2001

## Boundary Layer Evolution

#### LiDAR Wind and Vertical Velocity Time-height Cross Section at ASRC Roof, 09/25/2017

## Early morning channeled LLJ

![](_page_35_Figure_1.jpeg)

Southerly—Hudson Valley

**NWS ALY High Resolution Sounding and LiDAR Wind Profile** 

![](_page_35_Figure_4.jpeg)

WNW—Mohawk Valley

#### LiDAR Wind Profiles From CESTM Rooftop

![](_page_36_Figure_1.jpeg)

Wind Speed (m/s)

# A lot going on here...

LiDAR Wind and CNR Time-height Cross Section at ASRC Roof, 05/28/2017

![](_page_37_Figure_2.jpeg)

**CNR:** carrier to noise ration (similar to SNR)

Filled Contours: CNR

#### LiDAR Wind and Vertical Velocity Time-height Cross Section at ASRC Roof, 09/25/2017

![](_page_38_Figure_1.jpeg)

### Leosphere Windcube 100S at Kahuku, Oahu 28 August 2013 0900 - 1500 UTC Elevation angle = 10°

### Disruption of Trade Winds

Persistent ENE winds (towards LiDAR warmer shading)

Become more N, NW flow (away from LiDAR —cooler colors)

![](_page_39_Picture_4.jpeg)

Courtesy K. Rojowsky, AWS Truepower

## Next Class (Monday 2/6—Lecture 5)

**Boundary Layer (air-sea interactions)** 

Homework #1 DUE!!!

# **Offshore Wind and the Marine Atmospheric**

### Zoom office hours (10 - 11:30 AM Monday)