ATM 505 - Module 4 - Homework Answers

Dr. Sara Lance

May 1, 2023

1. (a) A $100 \mathrm{~nm}(0.1 \mu \mathrm{~m})$ diameter NaCl particle corresponds to the middle solid Köhler curve in the provided figure. The diameter of the droplet that will form on this NaCl particle exposed to a water vapor supersaturation of 0.1% (corresponding to a relative humidity of 100.1%) is $\sim 1 \mu \mathrm{~m}[5 \mathrm{pts}]$. The droplet would not spontaneously grow larger until the supersaturation of the surrounding air exceeded $\sim 0.12 \%$. [5 pts]
(b) A $50 \mathrm{~nm}(0.05 \mu \mathrm{~m})$ diameter $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ particle corresponds to the uppermost dashed Köhler curve in the provided figure. The relative humidity of the air surrounding a $300 \mathrm{~nm}(0.3 \mu \mathrm{~m})$ droplet that follows this curve must be $\simeq 100.4 \%$ [5 pts] (or 0.4% supersaturation). If the supersaturation were to rise slightly further (to $>\sim 0.45 \%$), the droplet would become "activated" and begin growing unstably. [5 pts]
(c) Again, a $50 \mathrm{~nm}(0.05 \mu \mathrm{~m})$ diameter $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ particle corresponds to the uppermost dashed Köhler curve in the provided figure. As noted in (b), the droplet would begin to grow unstably as supersaturation increased above $\mathbf{0 . 4 5 \%}$ [5 pts]. This marks the transition from a haze droplet to a cloud droplet and defines the particle's critical supersaturation.
[5 pts]
(d) The dry particle mass $m_{d r y}$, assuming the particle is spherical, can be calculated as $m_{d r y}=\rho_{s}(\pi / 6) d_{p}^{3}$, where ρ_{s} is the dry particle density (which is $1.77 \mathrm{~g} / \mathrm{cm}^{3}$ for the non-volatile solute $\left.\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right)$ and $(\pi / 6) d_{p}^{3}$ is the volume for a sphere with diameter d_{p}. For an $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ particle with $d_{p}=50 \mathrm{~nm}, \boldsymbol{m}_{d r y} \sim 10^{-10} \mu g$ [2.5 pts]. To calculate the water mass $m_{H 2 O}$ the volume of water must be inferred from the difference in the droplet total volume $\left(\mathrm{H}_{2} \mathrm{O}+\right.$ $\left.\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right)$ and the dry $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ volume (Fig. 1], i.e.:

$$
m_{H 2 O}=\rho_{L}(\pi / 6)\left(D_{p}^{3}-d_{p}^{3}\right)
$$

where ρ_{L} is the liquid water density and D_{p} is the droplet diameter. With $D_{p}=300 \mathrm{~nm}, d_{p}=50 \mathrm{~nm}$ and $\rho_{L}=1 \mathrm{~g} / \mathrm{cm}^{3}, \boldsymbol{m}_{H 2 O} \sim \mathbf{1 0}^{-8} \mu \mathrm{~g}[2.5$
$p t s]$. To calculate the water mass fraction simply evaluate:

$$
m_{H 2 O} /\left(m_{d r y}+m_{H 2 O}\right) \sim \underline{\mathbf{9 9 \%}}
$$

Figure 1: Water volume can be estimated by determining the total volume $(\pi / 6) D_{p}^{3}$ and subtracting the volume of the dry residual particle $(\pi / 6) d_{p}^{3}$ (i.e. what's left behind after the water evaporates).
[5 pts]
[20 pts total]
There are $\sim 500,000$ sulfate and ~ 1 million ammonium ions in solution, and ~ 500 million water molecules in this 300 nm haze droplet. [extra credit up to 6 pts]
2. (a) The goal of this question is to solve for the condensational growth rate $d D_{p} / d t$ for a pure water droplet of 80 nm at 101% RH.

Since this is a pure water droplets, i.e. no solute, first calculate $S_{e q}$ using the Kelvin equation:

$$
\begin{aligned}
S_{e q} & =\frac{e_{s}\left(T, D_{p}\right)}{e_{s}(T)}=\exp \left[\frac{4 \sigma}{D_{p} R T n_{L}}\right] \\
& =\exp \left[\frac{4 *(72.7 t y \pi / \mathrm{em}) *\left(10^{6}{ }^{4} \mathrm{~m} / 100 \mathrm{em}\right)}{(0.08 \mathrm{~mm}) *\left(8.31 x 10^{7} t y \pi \cdot \mathrm{em} / K \cdot m o t\right) *(303 K) *\left(0.056 m o t / \tau \pi^{3}\right)}\right] \\
& =1.026[5 \mathrm{pts}]
\end{aligned}
$$

As shown in the lecture, the droplet growth equation can be written in terms of the difference in either vapor pressure or saturation ratio:

$$
\begin{aligned}
\frac{d D_{p}}{d t} & =\frac{4 D_{v}\left[e_{\infty}-e_{s}\left(T, D_{p}, x_{s}\right)\right]}{D_{p} R T n_{L}} \\
& =\frac{4 D_{v}\left[e_{s}(T) \cdot\left(S_{\infty}-S_{e q}\right)\right]}{D_{p} R T n_{L}},
\end{aligned}
$$

since $S_{e q}=e_{s}\left(T, D_{p}\right) / e_{s}(T)$ for a pure water droplet and $S_{\infty}=$ $e_{\infty} / e_{s}(T)$. The difference $S_{\infty}-S_{e q}=1.01-1.026[5 \mathrm{pts}]=-0.016$ is the driving force for droplet growth. In this case, since $S_{\infty}<S_{e q}$, the droplet is evaporating.

Since $S_{\infty}-S_{e q}$ has already been determined, all that remains to be calculated before solving for $d D_{p} / d t$ is the saturation vapor pressure $e_{s}(T)$ from the Clausius-Clapeyron equation.
$e_{s}(303 K)=6.11 \mathrm{mb} \cdot \exp \left[\frac{2.5 \mathrm{x} 10^{6} \mathcal{F} / \mathrm{kg}}{461 \mathcal{F} / \mathrm{kgK}}\left(\frac{1}{273 K}-\frac{1}{303 K}\right)\right]=\underline{43.7 \mathrm{mb}}[2.5 \mathrm{pts}$]
Now we can plug $e_{s}(T)$ and $S_{\infty}-S_{e q}$ in to the droplet growth equation to calculate the droplet evaporation rate:

$$
\begin{aligned}
\frac{d D_{p}}{d t} & =\frac{4 *\left(0.24 \mathrm{~cm}^{2} / s\right)[(43.7 \mathrm{mb}) *(-0.016)] *\left(10^{6} \not \mathrm{~m} / 100 \mathrm{em}\right) *\left(100 于 / \mathrm{m}^{3} \mathrm{mb}\right)}{\left.(0.08 \mathrm{mb}) *(8.31 于 / \operatorname{molK}) *(303 K) *\left(0.056 \mathrm{mot} / \mathrm{cm}^{3}\right) *\left(10^{6} \mathrm{~cm}^{3} / \mathrm{m}^{3}\right)\right)} \\
& =-\mathbf{0 . 0 6 \mathrm { cm } / \mathrm { s } [2 . 5 \mathrm { pts }]}
\end{aligned}
$$

Since the droplet is only $80 \mathrm{~nm}=0.000008 \mathrm{~cm}$, the droplet will evaporate completely in far less than one second!
[15 pts]
(b) A pure water droplet is not expected to exist at a stable size: It will be either growing by condensation or evaporating, depending on its size and the ambient relative humidity. Although a supersaturation of $1 \%(\mathrm{RH}=101 \%)$ is about as high as you would expect a droplet to experience in Earth's atmosphere, a pure water droplet could be evaporating at even this high humidity. As shown in the calculations in 2 a , a pure water droplet of diameter 80 nm would quickly evaporate in a 1% supersaturation environment. The Köhler equation shows that addition of solute $\left(x_{s}\right)$ decreases $S_{e q}[2.5 \mathrm{pts}$]. If enough solute were added, that could reduce $S_{e q}$ enough to compensate for the increased internal pressure of the droplet such that the droplet would grow at 1% supersaturation instead of evaporating. For that to occur, the additional solute would have to bring $S_{e q}$ below 1.01. Two scenarios are possible with addition of solute. Droplets would: 1) begin to grow, or 2) evaporate less quickly. [2.5 pts]

```
[5 pts]
[20 pts total]
```

3. (a) The adiabatic LWC versus altitude under these specific conditions (when $e_{\infty} \gg e_{s}\left(D_{p}\right)$, updraft velocity w is constant, droplet concentrations N_{d} have reached steady state and droplets grow only by condensation) can be derived as follows:

$$
\begin{aligned}
& \frac{d L W C}{d z}=\frac{d L W C}{d D_{p}} \frac{d D_{p}}{d z}=\frac{d\left[N_{d} \rho_{L}(\pi / 6) D_{p}^{3}\right]}{d D_{p}} \frac{d D_{p}}{d z}=\left[N_{d} \rho_{L}(\pi / 2) D_{p}^{2}\right] \frac{d D_{p}}{d z} \\
&=\left[N_{d} \rho_{L}(\pi / 2) D_{p}^{2}\right]\left[\frac{1}{w} \frac{d D_{p}}{d t}\right]=\left[\boldsymbol{N}_{d} \rho_{L}(\boldsymbol{\pi} / \mathbf{2}) \boldsymbol{D}_{p}^{2}\right]\left[\frac{1}{\boldsymbol{w}}\left(\frac{4 \boldsymbol{D}_{v} e_{\infty}}{\boldsymbol{D}_{p} \boldsymbol{R T} \boldsymbol{n}_{L}}\right)\right] \\
&=\left[N_{d} \rho_{L}(\pi / 2) D_{p}^{2}\right]\left[\frac{1}{w} \frac{4 D_{v} e_{\infty}}{D_{p} R_{v} T \rho_{L}}\right]=\frac{\mathbf{2 \pi} \boldsymbol{N}_{d} \boldsymbol{D}_{p} \boldsymbol{D}_{v} e_{\infty}}{\boldsymbol{w} \boldsymbol{R}_{v} \boldsymbol{T}}[5 \boldsymbol{p t s}] \\
& {[5 \mathrm{pts}] }
\end{aligned}
$$

(b) A 60 nm diameter haze droplet (thick black curve in the provided figure) takes $\sim 300 \mathrm{~s}(\sim 5 \mathrm{~min})[2.5 \mathrm{pts}]$ to grow to $10 \mu \mathrm{~m}$ from the start of the simulation. To double in size to $20 \mu \mathrm{~m}$ requires more than $1000 \mathrm{~s}(\sim \mathbf{2 0} \mathrm{~min})[2.5 \mathrm{pts}]$ of growth time. The slowing growth rate is due to the fact that diffusional growth is a function of $1 / D_{p}$ and also because the ambient supersaturation is depleted by the condensational growth of the cloud droplet population. Cloud droplets would not grow to $40 \mu \mathrm{~m}$ by condensational growth alone [2.5 pts]. It would require that the cloud be $1200 \mathrm{~m}(\sim 3600 \mathrm{ft})$ tall to sustain this level of droplet growth for 40 min , and the droplets would not even be close to $40 \mu \mathrm{~m}$ by then (since a doubling in the growth time does not lead to a doubling in droplet size).
[7.5 pts]
(c) Notice that the conditions described in this problem are the same as in the cloud parcel model simulations shown in Fig 2 above) after about 1000 s (with $0.5 \mathrm{~m} / \mathrm{s}$ updraft velocity and LWC (or W_{L}) of $1 \mathrm{~g} / \mathrm{m}_{3}$). Curve (3) in the figure referenced (Fig.2b(right) from the homework) corresponds to an updraft velocity of $0.5 \mathrm{~m} / \mathrm{s}$ and a cloud top height of 1200 m . In these simulations, which include the collision-coalescence process, and under these conditions, a "collector droplet" of $26 \mu \mathrm{~m}$ can grow as large as 1 mm [2.5 pts] by the time it reaches cloud base, becoming a raindrop. As discussed previously, cloud droplets would not even grow to 40μ m under those conditions by condensation alone (which is true even if starting at $26 \mu \mathrm{~m}$, since the growth rate diminishes with droplet size).
[2.5 pts]
[15 pts total]

Figure 2: Cloud parcel simulation of droplet growth by condensation during constant uplift.
4. (a) The following five points must be mentioned, with some level of equivalent description.

Point 1 - disordered nature of liquid [2 pts]: Liquid is made up of water molecules where some are bonded (via hydrogen bonds) and some are not, e.g., disordered bonding.

Point 2 - space created from less bonding [2 pts]: This disordered nature allows more molecules to move freely and take up "space" that would otherwise be unavailable if forced to bond with other molecules.

Point 3 - rigid bonding [2 pts]: In contrast, ice crystals contain rigid hydrogen bonds.

Point 4 - hexagonal structure [2 pts]: The rigid bonds force the molecules into a hexagonal structure.

Point 5 - structure creates space [2 pts]: The bond length required to maintain this structure creates more "space" in between the molecules,
reducing the density from 1000 to 920 for ice. The $80 \mathrm{~kg} \mathrm{~m}^{-3}$ accounts for the space created when the hydrogen bonds form.

Note: half credit if explanation missing but includes molecular drawing.
[10 pts]
(b) The following three points must be mentioned, with some level of equivalent description.

Point 1 - density decreases [4 pts]: The effective density decreases below $920 \mathrm{~kg} \mathrm{~m}^{-3}$ when $\phi \neq 1$ (non-spherical crystals).

Point 2 - gradients at largest curvature increase growth [4 pts]: During diffusional growth, the vapor density gradients are concentrated at the edges/tips of the particle (where curvature is the greatest). This forces the vapor to deposit at these edges, rather than directly onto the face.

Point 3 - hollowing [2 pts]: As this continues, a hollowing occurs within these crystals, reducing the particle density.

Note: drawings including gradients 8 flux may supplement point 2 above.
[10 pts]
$[10+10=20 \mathrm{pts}]$
5. (a) (i)

- [2 pts] For a plate:

$$
\begin{equation*}
\frac{d m}{d t}=4 \pi a f_{o b}(\phi) G_{i} S_{i} \tag{1}
\end{equation*}
$$

- For a spheroid:

$$
\begin{equation*}
m=\frac{4}{3} \pi a^{2} c \rho_{i} \tag{2}
\end{equation*}
$$

- [2 pts] Take the derivative of (2) with respect to a only:

$$
\begin{equation*}
\frac{d m}{d t}=\frac{4}{3} \pi(2 a) c \rho_{i} \frac{d a}{d t} \tag{3}
\end{equation*}
$$

- [1 pt] Set (1) equal to (3):

$$
\begin{equation*}
4 \pi a f_{o b}(\phi) G_{i} S_{i}=\frac{8}{3} \pi a c \rho_{i} \frac{d a}{d t} \tag{4}
\end{equation*}
$$

- $[1 p t]$ Solve for $\frac{d a}{d t}$:

$$
\begin{equation*}
\frac{d a}{d t}=\frac{3 f_{o b}(\phi) G_{i} S_{i}}{2 c \rho_{i}} \tag{5}
\end{equation*}
$$

- [2 pts] Solve for $a(t)$ by integrating from $t=0 \rightarrow t$ and know that $r_{o}=a_{o}$:

$$
\begin{gather*}
\int_{a_{o}}^{a(t)} d a=\frac{3 f_{o b}(\phi) G_{i} S_{i}}{2 c \rho_{i}} \int_{0}^{t} d t \tag{6}\\
a(t)=a_{o}+\frac{3 f_{o b}(\phi) G_{i} S_{i}}{2 c \rho_{i}} t \tag{7}
\end{gather*}
$$

(ii)

- [2 pts] For a column:

$$
\begin{equation*}
\frac{d m}{d t}=4 \pi c f_{p r}(\phi) G_{i} S_{i} \tag{8}
\end{equation*}
$$

- For a spheroid:

$$
\begin{equation*}
m=\frac{4}{3} \pi a^{2} c \rho_{i} \tag{9}
\end{equation*}
$$

- [2 pts] Take the derivative of (9) with respect to c only:

$$
\begin{equation*}
\frac{d m}{d t}=\frac{4}{3} \pi a^{2} \rho_{i} \frac{d c}{d t} \tag{10}
\end{equation*}
$$

- [1 pt] Set (8) equal to (10):

$$
\begin{equation*}
4 \pi c f_{p r}(\phi) G_{i} S_{i}=\frac{4}{3} \pi a^{2} \rho_{i} \frac{d c}{d t} \tag{11}
\end{equation*}
$$

- [1 pt $]$ Solve for $\frac{d c}{d t}$:

$$
\begin{equation*}
\frac{1}{c} \frac{d c}{d t}=\frac{3 f_{p r}(\phi) G_{i} S_{i}}{a^{2} \rho_{i}} \tag{12}
\end{equation*}
$$

- [2 pts] Solve for $c(t)$ by integrating from $t=0 \rightarrow t$ and know that $r_{o}=c_{o}$:

$$
\begin{gather*}
\int_{c_{o}}^{c(t)} \frac{d c}{c}=\frac{3 f_{p r}(\phi) G_{i} S_{i}}{a^{2} \rho_{i}} \int_{0}^{t} d t \tag{13}\\
\ln \left[\frac{c(t)}{c_{o}}\right]=\frac{3 f_{p r}(\phi) G_{i} S_{i}}{a^{2} \rho_{i}} t \tag{14}\\
c(t)=c_{o} \exp \left[\frac{3 f_{p r}(\phi) G_{i} S_{i}}{a^{2} \rho_{i}} t\right] \tag{15}
\end{gather*}
$$

[1 pt] Physical Dependencies:
$a(t) \rightarrow$ linear increase in time
$c(t) \rightarrow$ exponential increase in time
[17 pts]
(b) Because the temperature is $-15^{\circ} \mathrm{C}$, we assume that the crystal is a plate, so the major axis length is the a axis. Thus, we solve for the change in a in time and assume all else is constant [$2 \boldsymbol{p t s}$].
[2 pts] $a(t)=a_{o}+\frac{3 f_{o b}(\phi) G_{i} S_{i}}{2 c \rho_{i}} t$
[2 pts] $a(t)=25 \mu \mathrm{~m}+\frac{3(0.6)\left(1 \times 10^{-8} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}\right)(0.15)}{2\left(25 \times 10^{-6} \mathrm{~m}\right)\left(920 \mathrm{~kg} \mathrm{~m}^{-3}\right)}\left(15 \mathrm{~min} \cdot \frac{60 \mathrm{~s}}{\text { min }}\right)$
[2 pts] $a(t)=77.8 \mu \mathrm{~m}$
[8 pts]
$[17+8=25 \mathrm{pts}]$

