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1. (a) A 100nm (0.1µm) diameter NaCl particle corresponds to the middle
solid Köhler curve in the provided figure. The diameter of the droplet
that will form on this NaCl particle exposed to a water vapor super-
saturation of 0.1% (corresponding to a relative humidity of 100.1%)
is ∼ 1µm[5 pts] . The droplet would not spontaneously grow larger
until the supersaturation of the surrounding air exceeded ∼0.12%.
[5 pts]

(b) A 50nm (0.05µm) diameter (NH4)2SO4 particle corresponds to the
uppermost dashed Köhler curve in the provided figure. The relative
humidity of the air surrounding a 300nm (0.3 µm) droplet that fol-
lows this curve must be ∼100.4%[5 pts] (or 0.4% supersaturation).
If the supersaturation were to rise slightly further (to >∼ 0.45%),
the droplet would become ”activated” and begin growing unstably.
[5 pts]

(c) Again, a 50nm (0.05µm) diameter (NH4)2SO4 particle corresponds
to the uppermost dashed Köhler curve in the provided figure. As
noted in (b), the droplet would begin to grow unstably as supersat-
uration increased above 0.45%[5 pts] . This marks the transition
from a haze droplet to a cloud droplet and defines the particle’s crit-
ical supersaturation.
[5 pts]

(d) The dry particle mass mdry, assuming the particle is spherical, can
be calculated as mdry = ρs(π/6)d3p, where ρs is the dry particle
density (which is 1.77 g/cm3 for the non-volatile solute (NH4)2SO4)
and (π/6)d3p is the volume for a sphere with diameter dp. For an

(NH4)2SO4 particle with dp = 50nm, mdry ∼ 10−10µg[2.5 pts] .

To calculate the water mass mH2O the volume of water must be
inferred from the difference in the droplet total volume (H2O +
(NH4)2SO4) and the dry (NH4)2SO4 volume (Fig. 1), i.e.:
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mH2O = ρL(π/6)(D3
p − d3p)

where ρL is the liquid water density and Dp is the droplet diameter.
WithDp = 300nm, dp = 50nm and ρL = 1 g/cm3,mH2O ∼ 10−8µg[2.5
pts] . To calculate the water mass fraction simply evaluate:

mH2O/(mdry +mH2O) ∼ 99%

Figure 1: Water volume can be estimated by
determining the total volume (π/6)D3

p and sub-
tracting the volume of the dry residual particle
(π/6)d3p (i.e. what’s left behind after the water

evaporates).

[5 pts]
[20 pts total]

There are ∼500,000 sulfate and ∼1 million ammonium ions in solu-
tion, and ∼500 million water molecules in this 300nm haze droplet.
[extra credit up to 6 pts]

2. (a) The goal of this question is to solve for the condensational growth
rate dDp/dt for a pure water droplet of 80nm at 101% RH.

Since this is a pure water droplets, i.e. no solute, first calculate Seq
using the Kelvin equation:

Seq =
es(T,Dp)

es(T )
= exp

[
4σ

DpRTnL

]
= exp

[
4 ∗ (72.7dyn/cm) ∗ (106µm/100cm)

(0.08µm) ∗ (8.31x107dyn · cm/K ·mol) ∗ (303K) ∗ (0.056mol/cm3)

]
= 1.026[5 pts]

As shown in the lecture, the droplet growth equation can be written
in terms of the difference in either vapor pressure or saturation ratio:

dDp

dt
=

4Dv [e∞ − es(T,Dp, xs)]

DpRTnL

=
4Dv [es(T ) · (S∞ − Seq)]

DpRTnL
,
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since Seq = es(T,Dp)/es(T ) for a pure water droplet and S∞ =
e∞/es(T ). The difference S∞ − Seq= 1.01-1.026[5 pts] = -0.016
is the driving force for droplet growth. In this case, since S∞ < Seq,
the droplet is evaporating.

Since S∞ − Seq has already been determined, all that remains to be
calculated before solving for dDp/dt is the saturation vapor pressure
es(T ) from the Clausius-Clapeyron equation.

es(303K) = 6.11mb · exp

[
2.5x106J/kg

461J/kgK

(
1

273K
− 1

303K

)]
= 43.7mb[2.5 pts]

Now we can plug es(T ) and S∞−Seq in to the droplet growth equa-
tion to calculate the droplet evaporation rate:

dDp

dt
=

4 ∗ (0.24cm2/s) [(43.7mb) ∗ (−0.016)] ∗ (106µm/100cm) ∗ (100J/m3mb)

(0.08µm) ∗ (8.31J/molK) ∗ (303K) ∗ (0.056mol/cm3) ∗ (106cm3/m3))

= −0.06cm/s[2.5 pts]

Since the droplet is only 80nm = 0.000008 cm, the droplet will evap-
orate completely in far less than one second!
[15 pts]

(b) A pure water droplet is not expected to exist at a stable size: It will
be either growing by condensation or evaporating, depending on its
size and the ambient relative humidity. Although a supersaturation
of 1% (RH = 101%) is about as high as you would expect a droplet
to experience in Earth’s atmosphere, a pure water droplet could be
evaporating at even this high humidity. As shown in the calculations
in 2a, a pure water droplet of diameter 80nm would quickly evaporate
in a 1% supersaturation environment. The Köhler equation shows
that addition of solute (xs) decreases Seq[2.5 pts] . If enough
solute were added, that could reduce Seq enough to compensate for
the increased internal pressure of the droplet such that the droplet
would grow at 1% supersaturation instead of evaporating. For that
to occur, the additional solute would have to bring Seq below 1.01.
Two scenarios are possible with addition of solute. Droplets would:
1) begin to grow, or 2) evaporate less quickly. [2.5 pts]

[5 pts]
[20 pts total]
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3. (a) The adiabatic LWC versus altitude under these specific conditions
(when e∞ >> es(Dp), updraft velocity w is constant, droplet con-
centrations Nd have reached steady state and droplets grow only by
condensation) can be derived as follows:

dLWC

dz
=
dLWC

dDp

dDp

dz
=
d
[
NdρL(π/6)D3

p

]
dDp

dDp

dz
=
[
NdρL(π/2)D2

p

] dDp

dz

=
[
NdρL(π/2)D2

p

] [ 1

w

dDp

dt

]
=
[
NdρL(π/2)D

2
p

] [ 1
w

(
4Dve∞

DpRTnL

)]
=
[
NdρL(π/2)D2

p

] [ 1

w

4Dve∞
DpRvTρL

]
=

2πNdDpDve∞

wRvT
[5 pts]

[5 pts]

(b) A 60nm diameter haze droplet (thick black curve in the provided
figure) takes ∼300s (∼5 min) [2.5 pts] to grow to 10µm from
the start of the simulation. To double in size to 20µm requires
more than 1000s (∼20 min)[2.5 pts] of growth time. The slow-
ing growth rate is due to the fact that diffusional growth is a func-
tion of 1/Dp and also because the ambient supersaturation is de-
pleted by the condensational growth of the cloud droplet popula-
tion. Cloud droplets would not grow to 40 µm by condensa-
tional growth alone [2.5 pts] . It would require that the cloud be
1200m (∼3600 ft) tall to sustain this level of droplet growth for 40
min, and the droplets would not even be close to 40µm by then (since
a doubling in the growth time does not lead to a doubling in droplet
size).
[7.5 pts]

(c) Notice that the conditions described in this problem are the same
as in the cloud parcel model simulations shown in Fig.2 above) af-
ter about 1000 s (with 0.5m/s updraft velocity and LWC (or WL)
of 1 g/m3). Curve (3) in the figure referenced (Fig.2b(right) from
the homework) corresponds to an updraft velocity of 0.5m/s and a
cloud top height of 1200m. In these simulations, which include the
collision-coalescence process, and under these conditions, a ”collector
droplet” of 26µm can grow as large as 1mm [2.5 pts] by the time
it reaches cloud base, becoming a raindrop. As discussed previously,
cloud droplets would not even grow to 40µm under those conditions
by condensation alone (which is true even if starting at 26µm, since
the growth rate diminishes with droplet size).
[2.5 pts]

[15 pts total]
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Figure 2: Cloud parcel simulation of droplet growth by condensation during
constant uplift.

4. (a) The following five points must be mentioned, with some level of equiv-
alent description.

Point 1 – disordered nature of liquid [2 pts]: Liquid is made up of wa-
ter molecules where some are bonded (via hydrogen bonds) and some are
not, e.g., disordered bonding.

Point 2 – space created from less bonding [2 pts]: This disordered na-
ture allows more molecules to move freely and take up “space” that would
otherwise be unavailable if forced to bond with other molecules.

Point 3 – rigid bonding [2 pts]: In contrast, ice crystals contain rigid
hydrogen bonds.

Point 4 – hexagonal structure [2 pts]: The rigid bonds force the molecules
into a hexagonal structure.

Point 5 – structure creates space [2 pts]: The bond length required to
maintain this structure creates more “space” in between the molecules,
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reducing the density from 1000 to 920 for ice. The 80 kg m−3 accounts
for the space created when the hydrogen bonds form.

Note: half credit if explanation missing but includes molecular drawing.

[10 pts]

(b) The following three points must be mentioned, with some level of equiv-
alent description.

Point 1 – density decreases [4 pts]: The effective density decreases be-
low 920 kg m−3 when φ 6= 1 (non-spherical crystals).

Point 2 – gradients at largest curvature increase growth [4 pts]: During
diffusional growth, the vapor density gradients are concentrated at the
edges/tips of the particle (where curvature is the greatest). This forces
the vapor to deposit at these edges, rather than directly onto the face.

Point 3 – hollowing [2 pts]: As this continues, a hollowing occurs within
these crystals, reducing the particle density.

Note: drawings including gradients & flux may supplement point 2 above.

[10 pts]

[10+10=20 pts]

5. (a) (i)

• [2 pts] For a plate:

dm

dt
= 4πafob(φ)GiSi (1)

• For a spheroid:

m =
4

3
πa2cρi (2)

• [2 pts] Take the derivative of (2) with respect to a only:

dm

dt
=

4

3
π(2a)cρi

da

dt
(3)

• [1 pt] Set (1) equal to (3):

4πafob(φ)GiSi =
8

3
πacρi

da

dt
(4)
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• [1 pt] Solve for da
dt :

da

dt
=

3fob(φ)GiSi
2cρi

(5)

• [2 pts] Solve for a(t) by integrating from t = 0 → t and know that
ro = ao: ∫ a(t)

ao

da =
3fob(φ)GiSi

2cρi

∫ t

0

dt (6)

a(t) = ao +
3fob(φ)GiSi

2cρi
t (7)

(ii)

• [2 pts] For a column:

dm

dt
= 4πcfpr(φ)GiSi (8)

• For a spheroid:

m =
4

3
πa2cρi (9)

• [2 pts] Take the derivative of (9) with respect to c only:

dm

dt
=

4

3
πa2ρi

dc

dt
(10)

• [1 pt] Set (8) equal to (10):

4πcfpr(φ)GiSi =
4

3
πa2ρi

dc

dt
(11)

• [1 pt] Solve for dc
dt :

1

c

dc

dt
=

3fpr(φ)GiSi
a2ρi

(12)

• [2 pts] Solve for c(t) by integrating from t = 0 → t and know that
ro = co: ∫ c(t)

co

dc

c
=

3fpr(φ)GiSi
a2ρi

∫ t

0

dt (13)

ln

[
c(t)

co

]
=

3fpr(φ)GiSi
a2ρi

t (14)

c(t) = co exp

[
3fpr(φ)GiSi

a2ρi
t

]
(15)
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[1 pt] Physical Dependencies:
a(t)→ linear increase in time
c(t)→ exponential increase in time

[17 pts]

(b) Because the temperature is -15◦C, we assume that the crystal is a
plate, so the major axis length is the a axis. Thus, we solve for the change
in a in time and assume all else is constant [2 pts] .

[2 pts] a(t) = ao + 3fob(φ)GiSi

2cρi
t

[2 pts] a(t) = 25µm + 3(0.6)(1×10−8 kg m−1 s−1)(0.15)
2(25×10−6 m)(920 kg m−3)

(
15 min · 60 s

min

)
[2 pts] a(t) = 77.8µm

[8 pts]
[17+8=25 pts]
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