ulations



250mb Speed (kt) Height {m) GFS analysis for DDDOZ 7 NOV 16
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Building Blocks to Jet Stream “Discovery”

Teisserenc de Bort (1902)

Discovery of the
stratosphere

Temperature stops
decreasing when you get far
enough away from the Earth’s
surface




Building Blocks to Jet Stream “Discovery”

Bjerknes and Palmén (1937)
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Coordinated
“swarm ascents”
at 18 different
locations across
Europe.




Building Blocks to Jet Stream “Discovery”

Bjerknes and Palmén (1937)

~575

o ———— - [rp——

Madrid Trappes Uccle Hamburg As Lauttakyla Riksgrénsen

The front is a transition zone across which the temperature gradient is
discontinuous.

Note that the tropopause abruptly lowers at the location where the polar
front intersects the tropopause.

Reversal in the sign of the meridional temperature gradient above the
tropopause break.



“Discovery” of the Jet Stream

Reid Bryson and Bill Plumley — Weather Officers in the
Pacific during World War 1l (1944)

(Bryson 1994).




“Discovery” of the Jet Stream

Heinrich Seilkopf — “die Strahlstromung”,
Which translates to “jet flow” (1939)
(Reiter 1963, p. 3).



“Discovery” of the Jet Stream

Wasaburo Ooishi — observed and
documented large climatological wind
speeds over Japan (1926).

Cliff Masé



“Discovery” of the Jet Stream

Carl-Gustaf Rossby — First to refer to the phenomenon
as the “jet stream” (1947).



“Discovery” of the Jet Stream

University of Chicago (1947)

One of the first hemispheric examinations of the
midlatitude circulation in the literature.

1) A nearly continuous
band of strong zonal wind
speeds.

2) Sat atop the strongly
baroclinic polar front.

3) The jet was nestled

squarely in a tropopause
break.
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How do Jet Streams Impact the Weather?

Photoeverywhere.co.uk



How do Jet Streams Impact the Weather?
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How do Jet Streams Impact the Weather?




How do Jet Streams Impact the Weather?

Areas where there is an acceleration or
deceleration are important for generating
clumsiness



How do Jet Streams Impact the Weather?

No wind speed
Slow wind speed

Fast wind speed



How do Jet Streams Impact the Weather?

No wind speed
Slow wind speed

Fast wind speed



How do Jet Streams Impact the Weather?

| Areas where the wind is
No wind speed _ .
Slow wind speed accelerating or decelerating are
Fastwindspeed —important for generating weather




How do Jet Streams Impact the Weather?

S—

A
—
No wind speed k dV
Slow wind speed S x _
Fast wind speed f dt




How do Jet Streams Impact the Weather?

SINKING AIR RISING AIR

1IX3

==

JONVYHINS

RISING AIR SINKING AIR

—
No wind speed k dV —

Slow wind speed V

Fast wind speed f dt ag




How do Jet Streams Impact the Weather?

| Areas where the wind is
No wind speed ] ]
Slow wind speed accelerating or decelerating are
Fastwindspeed —important for generating weather




Cross-Stream Vertical Circulations

Cross-stream vertical circulations serve as a dynamical mechanism
to maintain thermal wind balance.

Namias and Clapp (1949)
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Cross-Stream Vertical Circulations

Only ageostrophic motions can account for the
production of convergence and vorticity characteristic of
a front.

The Sawyer (1956)—Eliassen (1962) Circulation Equation
retains across-front ageostrophic advections of
temperature and momentum and provides a way to
diagnose the transverse circulations associated with
active fronts.



Sawyer—Eliassen Circulation Equation

90 Yy _IM_ Iy oM 9y J do
2 — =0, -
(yé’p)ﬁy o ﬁp)&pﬁy+( ﬁy)é’p2 Cr y&y(dt)

Where I
w = 0"_1/J dU 0 ﬁV ) L
= J % 1 171 1
Iy Qg =2¥( &y 0') &y gy 1 151 1

J

b __Q,U Yy 1 171 1
age ap Shearmg Conﬂuence 1 1
| | | |




Sawyer—Eliassen Circulation Equation

Moy - J db
(wy Tade ™™ "o

Static Stability
Across-Front Baroclinicity
Horizontal Relative Vorticity

Frontal
Characteristics

Where: A|Zl' Aiz‘ A?' A?‘
o — 0"_1/) | IX 1 1
= 5 0 -2 (dU a@ v, 90 1 171 1
; g &y 0’) 0"y 0’)y I 141 1
; =__1,U Yy 1 171 1
age ap Shearmg Conﬂuence 1 1
| | | |




Sawyer—Eliassen Circulation Equation

Rel. Vorticity \‘ ‘
T \ T \

Hakim and
Keyser (2001)

How does
modulating the
coefficients to the
Sawyer—Eliassen
Equation impact the

resultant
circulation?
9’ J do
%=%—y( )
ap dy dt




Sawyer—Eliassen Circulation Equation

oM |0y J do
M +H(— -
fwy oo 1579 ar

Static Stability Geostrophic
Across-Front Baroclinicity Cha:;‘c’gglﬁcs and Diabatic

Horizontal Relative Vorticity Forcing
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Sawyer—Eliassen Circulation Equation

90 o* oM &* OM  9* Jd db
A e S oA B LA i S
op” dy* dp = dpdy dy ~op dy dt
o"Uo"H o"V&H

=2y
0, (ﬁya+ﬁy§y>

Shearlng Confluence



Sawyer—Eliassen Circulation Equation

90 Yy _IM_ Iy . oM 9y

(=y—)—2+2—) (-——)—7=0
dp” dy"  dp dpdy ~ dy dp-  ~F
v, 96
No Temp. Qg =2y =)
Advecti:n I i dy 0y
o+Ad Shearing Confluence

The absence of any
along-jet
temperature
advection returns the
traditional four-
quadrant model.

Lang and Martin (2012)



Sawyer—Eliassen Circulation Equation

90 Yy _IM_ Iy oM 9y
(=Y ) —=+2—) +(-——)—5 =0,
dp” dy” dp dpdy dy dp
u, 96 v, 90
=2y( + )
No Temp. Qg
Advection ﬁy a| é’y é’y
Shearlng Confluence
Geo. CAA Along-jet temperature
advection acts to
“shift” the circulations
relative to the jet axis.
Geo. WAA
Lang and Martin (2012)




Sawyer—Eliassen Circulation Equation

1200 UTC
22 Dec 2013

Geo. CAA in the
jet entrance
region

Geo. WAA in
the jet exit
region




Sawyer—Eliassen Circulation Equation

1200 UTC
22 Dec 2013
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Sawyer—Eliassen Circulation Equation

Shearing Term
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Sawyer—Eliassen Circulation Equation

1200 UTC
22 Dec 2013

Geo. CAA in the
jet entrance
region

Geo. WAA in
the jet exit
region




Sawyer—Eliassen Circulation Equation

1200 UTC
22 Dec 2013

100 rem—

Ascent is
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poleward of the

jet corein
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a thermally
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Shearing Term

Sawyer—Eliassen Circulation Equation

-7

Confluence Term




Case Study:
1-3 May 2010 Nashville Flood

Winters and Martin 2014



1-3 May 2010 Nashville Flood

Record Setting Rainfall: 1-3 May 2010

| 48 Hour Multi-Sensor Precipitation Estimates
7 AM CDT May 1, 2010 - 7 AM CDT May

Rainfall {inches)

- [ 0.0

[0.07-035
.0.25-1

e [1-2
' E2-2

[ 3 - 4
-5

Several repeated

rounds of rainfall

beginning during

the early morning
hours of 1 May

Select Precip Totals:

Camden, TN: 19.41 in.
Fairview, TN: 18.04 in.
Belle Meade, TN: 17.67 in.
Nashville, TN: 13.57 in.



1-3 May 2010 Nashville Flood

Heavy Impacts on the Area

26 flood related
fatalities

~ $2 billion in property
damage in the greater
Nashville area alone

Record crests of area
rivers

80 confirmed tornadoes
over the two-day period

N i =

i ﬂ‘m“"“;: e

USGS



1-3 May 2010 Nashville Flood

Anomalous Moisture Flux

Atmospheric river helped
to transport anomalously
high Precipitable Water
values into the eastern US
(Moore et al. 2012)

PWAT: 2.02 in. (00Z 5/2/10)
Registers well above the

99t percentile for this time
of year in Nashville (NOAA)
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1-3 May 2010 Nashville Flood

00Z 1 May

250 hPa Isotachs, Sea Level Pressure,
925 hPa Moisture Flux, POL and STJ,
and Surface Frontal boundaries




1-3 May 2010 Nashville Flood

127 1 May
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1-3 May 2010 Nashville Flood
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1-3 May 2010 Nashville Flood

00Z 1 May

\
Y

250 hPa Isotachs, Sea Level Pressure,
925 hPa Moisture Flux, POL and STJ,
and Surface Frontal boundaries




1-3 May 2010 Nashville Flood

1 May 2010 - Subtropical Jet Circulation
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1-3 May 2010 Nashville Flood

00Z 2 May

250 hPa Isotachs, Sea Level Pressure,
925 hPa Moisture Flux, POL and STJ,
and Surface Frontal boundaries




1-3 May 2010 Nashville Flood

2 May 2010 - Superposed Jet Circulation
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1-3 May 2010 Nashville Flood

00Z 2 May

4

- {

7

%,

250 hPa Isotachs, Sea Level Pressure,

925 hPa Moisture Flux, POL and STJ,
and Surface Frontal boundaries

Contribution to Moisture Flux

~11cmst (120% increase)
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1-3 May 2010 Nashville Flood

Geostrophic

24-h change in
poleward
moisture flux
between
0000 UTC 2 May
and
0000 UTC 1 May

F1G. 9. Change in the magnitude of the 925-hPa
(a) total, (b) geostrophic, and (c) ageostrophic pole-
ward moisture fluxes over the Southeast United States H H
during the 24-h period from 0000 UTC 1 May to 0000 AXIS Of maximum
UTC 2 May. Changes in the moisture flux greater than moisture ﬂux at:

(less than) 3 (—3) cms ! are shaded in the green (red/
brown) fill pattern every 3cms ', with Ocms ' con-
toured in black. The blue (red) dashed line represents - - = (0Z1 May
the axis of maximum poleward moisture flux at 0000

UTC 1 May (2 May), as indicated in Fig. 7. - e = (00Z2 M ay




1-3 May 2010 Nashville Flood
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1-3 May 2010 Nashville Flood

100

Geostrophic

200f

Streamlines (m hPa s)
negative omega (dPa)
moisture flux every 3 cm s

re [hPa]

300}

Pressu

100

200

300[




1-3 May 2010 Nashville Flood

Diabatically Forced Circulation

100

a)

200

Pressure [hPa]
w
o
o

500

Streamlines (m
hPa s1)

negative omega
(dPa)

moisture flux
every 3cms!

Diabatic heating
(2x1074 K s71)



1-3 May 2010 Nashville Flood
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1-3 May 2010 Nashville Flood
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Cross Stream Vertical Circulations

Impacts of Transverse Circulations on the Production of
Sensible Weather

— Severe Weather Outbreaks
(e.g., Omoto 1965; Uccellini and Johnson 1979; Hobbs et al.
1990; Martin et al. 1993)

— Cyclogenesis
(e.g., Uccellini et al. 1984; Uccellini et al. 1985; Uccellini and
Kocin 1987; Whitaker et al. 1988; Barnes and Colman 1993;
Lackmann et al. 1997)

— Moisture Transport
(e.g., Uccellini and Johnson 1979; Uccellini et al. 1984;
Uccellini and Kocin 1987; Winters and Martin 2014)
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