Note: These problems were taken from Ch. 6 of Holton (2004).

1. Suppose that the geopotential height distribution at a certain time has the form:

$$
\Phi(x, y, p)=\Phi_{o}(p)-f_{o} U_{o} y \cos \left(\frac{\pi p}{p_{o}}\right)+f_{o} c k^{-1} \sin k x
$$

Here U_{o} is a constant zonal speed and all other constants are as in problem \#1 of problem set \#2. Assuming that f and σ are constants, show by evaluating the terms on the righthand side of the QG tendency equation (6.23) that $\chi=0$ if $k^{2}=\sigma^{-1}\left(f_{o} \pi / p_{o}\right)^{2}$. Make qualitative sketches of the geopotential height fields at 750 hPa and 250 hPa for this case. Indicate regions of maximum cyclonic and anticyclonic vorticity advection at each level (Note: the wavelength corresponding to this value of k^{2} is called the Rossby radius of deformation.)
2. Given the following expression for the geopotential height field:

$$
\Phi(x, y, p)=\Phi_{o}(p)+f_{o}\left\{-U y+k^{-1} V \cos \left(\pi p / p_{o}\right) \sin k(x-c t)\right\}
$$

Here U, V, and c are constant speeds, use the QG vorticity equation (6.19) to obtain an estimate of ω. Assume that $d f / d y=\beta$ is a constant (non zero), and that ω vanishes for $p=p_{o}$. Sketch the geopotential height field at several levels of your choice so that you have a picture of the three dimensional structure of $\Phi(x, y, p)$ in your mind.
3. For the conditions given in problem \#2 use the adiabatic thermodynamic energy equation (6.13 b but set $J=0$) to obtain an alternative estimate of ω. Determine the value of c for which this estimate of ω agrees with that found in problem \#2.
4. For the conditions given in problem \#1, use the approximate omega equation (6.36), but don't forget to add the missing " 2 " in front of this equation, to obtain an expression for ω. Verify that this result agrees with the results of problem \#'s 2 and 3. Sketch the phase relationship between Φ and ω at 250 hPa and 750 hPa . What is the amplitude of ω if $\beta=2 \times 10^{-11} \mathrm{~m}^{-1} \mathrm{~s}^{-1}, U=25 \mathrm{~m} \mathrm{~s}^{-1}, V=8 \mathrm{~m} \mathrm{~s}^{-1}, k=2 \pi /\left(10^{4} \mathrm{~km}\right), \quad f_{o}=$ $10^{-4} s^{-1}, \sigma=2 \times 10^{-6} \mathrm{~Pa}^{-2} \mathrm{~m}^{2} \mathrm{~s}^{-2}$, and $p_{o}=1000 \mathrm{hPa}$?
5. Discuss what these results mean synoptically.

