Rapid intensification: What is it?

Kaplan & DeMaria (2003) Kaplan et al. (2011):

~95th percentile of over water 24-h intensity change in Atlantic basin TCs

30 kt (15.4 m s⁻¹)

Rapid intensification: What is it?

Kaplan & DeMaria (2003) Kaplan et al. (2011):

~95th percentile of over water 24-h intensity change in *eastern Pacific basin* TCs

30 kt (15.4 m s⁻¹)

Rapid intensification: Why do we care about it?

Wing and Lee (2015)

Rapid intensification: Crappy forecasts 🛞

Figure 6. NHC official intensity forecasts (solid light blue lines) plotted against official intensity 'best track' (solid white line with tropical cyclone symbols) for Hurricane Danny, 18-24 August 2015.

Rapid intensification: Crappy forecasts 🛞

Rapid intensification: Crappy forecasts 🛞

"...a decrease in intensity errors over the past few years; however, these recent improvements are likely part due to a lack of rapidly intensifying hurricanes, which are typically the source of the largest forecast errors."

2014 NHC Verification Report

Rapid intensification: Crappy forecasts (2) NHC Official Intensity Error Trend Atlantic Basin

• 24 h • 48 h • 72 h

26

NHC intensity verification: Going no where fast...

Late 1980's intensity forecasting: Very little guidance

Late 1980's intensity forecasting: Very little guidance

To help forecast...

Late 1980's intensity forecasting: Very little guidance

Late 1980's intensity forecasting: SHIPS is born!

The Statistical Hurricane Intensity Prediction Scheme (SHIPS)

Combines predictors from climatology, persistence, the atmosphere, and the ocean to estimate changes in TC intensity

DeMaria and Kaplan (1994)

Late 1980's intensity forecasting: SHIPS is born!

* ATLANTIC

* TO GAT DATA AVATLADLE

DeMaria and Kaplan (1994)

		110 01	ii Dhii	n nynii			one n	THEFT					
	,	ALE	K	AL0	12016	01/14	/16 1	8 UTC		*			
TIME (HR)	0	6	12	18	24	36	48	60	72	84	96	108	120
V (KT) NO LAND	75	78	80	82	85	89	92	93	92	90	88	83	76
V (KT) LAND	75	78	80	82	85	89	92	93	92	90	88	83	76
V (KT) LGE mod	75	78	76	73	71	66	60	DIS	DIS	DIS	DIS	DIS	DIS
Storm Type	TROP	TROP	TROP	TROP	EXTP	EXTP	EXTP	N/A	N/A	N/A	N/A	N/A	N/A
SHEAR (KT)	9	17	16	14	17	29	28	N/A	N/A	N/A	N/A	N/A	N/A
SHEAR ADJ (KT)	4	3	3	6	12	20	23	N/A	N/A	N/A	N/A	N/A	N/A
SHEAR DIR	300	262	253	209	189	161	147	N/A	N/A	N/A	N/A	N/A	N/A
SST (C)	19.8	18.5	16.9	15.6	14.7	10.4	5.7	N/A	N/A	N/A	N/A	N/A	N/A
POT. INT. (KT)	82	78	76	75	75	73	71	N/A	N/A	N/A	N/A	N/A	N/A
ADJ. POT. INT.	76	73	72	72	72	72	71	N/A	N/A	N/A	N/A	N/A	N/A
200 MB T (C)	-59.9	-61.0	-62.4	-63.3	-63.6	-62.7	-63.1	N/A	N/A	N/A	N/A	N/A	N/A
TH_E DEV (C)	2	1	0	0	0	0	0	N/A	N/A	N/A	N/A	N/A	N/A
700-500 MB RH	55	53	57	59	64	67	69	N/A	N/A	N/A	N/A	N/A	N/A
MODEL VTX (KT)	28	29	30	33	36	39	39	LOST	LOST	LOST	LOST	LOST	LOST
850 MB ENV VOR	109	110	83	62	92	152	170	N/A	N/A	N/A	N/A	N/A	N/A
200 MB DIV	24	21	58	121	144	119	53	N/A	N/A	N/A	N/A	N/A	N/A
700-850 TADV	-2	26	42	70	108	99	49	N/A	N/A	N/A	N/A	N/A	N/A
LAND (KM)	1504	1592	1648	1609	1552	1404	1499	N/A	N/A	N/A	N/A	N/A	N/A
LAT (DEG N)	32.6	34.6	36.5	39.3	42.0	49.2	57.1	N/A	N/A	N/A	N/A	N/A	N/A
LONG(DEG W)	28.0	27.8	27.7	27.8	28.0	29.7	33.3	N/A	N/A	N/A	N/A	N/A	N/A
STM SPEED (KT)	19	20	23	28	32	39	40	N/A	N/A	N/A	N/A	N/A	N/A
HEAT CONTENT	0	0	0	0	0	0	0	0	0	0	0	0	0

SHIPS INTENSITY FORECAST

OUC AVAILABLE

INDIVIDUAL CONTRIBUTIONS TO INTENSITY CHANGE 6 12 18 24 36 48 60 72 84 96 108 120 SAMPLE MEAN CHANGE 1. 2. 3. 4. 6. 8. 9. 11. 12. 12. 13. 14. SST POTENTIAL -4. -8. -13. -17. -24. -30. -35. -39. -42. -44. -45. -45. VERTICAL SHEAR MAG 0. -1. 0. 0. 0. 1. 1. 2. 2. 3. 2. 1. VERTICAL SHEAR ADJ 0. 0. -1. -2. -4. -8. -10. -11. -12. -11. -10. -8. VERTICAL SHEAR DIR 0. 1. 1. 2. 3. 4. 5. 6. 7. 8. 9. 9. PERSISTENCE 4. 5. 5. 5. 5. 5. 5. 4. 2. 1. 0. -1. 200/250 MB TEMP. THETA_E EXCESS 3. 7. 11. 16. 26. 35. 41. 48. 54. 59. 61. 63. -1. -2. -3. -5. -7. -11. -14. -18. -23. -27. -30. -32. 700-500 MB RH 0. 0. 0. 0. -1. -1. -2. -2. -2. -2. -2. -1. MODEL VTX TENDENCY 0. 1. 2. 5. 9. 10. 10. 10. 9. 8. 8. 7. 850 MB ENV VORTICITY 1. 1. 1. 2. 3. 5. 7. 8. 9. 10. 11. 11. 200 MB DIVERGENCE 0. 0. 1. 2. 4. 4. 5. 6. 5. 5. 4. 3. 850-700 T ADVEC 0. 0. -1. -2. -3. -2. -1. -1. -2. -3. -6. -12. ZONAL STORM MOTION 0. 0. 0. -1. -1. -2. -3. -3. -4. -5. -6. -6. STEERING LEVEL PRES 0. 0. 0. 0. -1. -1. -1. -1. -2. -1. -1. -1. DAYS FROM CLIM. PEAK 0. 0. 0. 0. 0. -1. -1. -1. 0. 0. 0. -1. GOES PREDICTORS 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. OCEAN HEAT CONTENT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. TOTAL CHANGE 3. 5. 7. 10. 14. 17. 18. 17. 15. 13. 8. 1.

Rapid intensity forecasting: SHIPS was bad 🛞

During the development of SHIPs, TCs with the *largest* 48-h intensity change:

1) were *smaller*

- 2) experienced weaker shear
- 3) had less upper-level forcing
- 4) were *further from* their MPI

Rapid Intensity Index (RII)

Kaplan and DeMaria (2003)

Rapid intensity forecasting: The RII

TABLE 3. The predictors used in the revised Atlantic RII index.

Predictor	Definition
PER	Previous 12-h intensity change
SHRD	850–200-hPa vertical shear of the horizontal wind from the 0–500-km radius
D200	200-hPa divergence from the 0–1000-km radius
RHLO	850–700-hPa relative humidity from 200–800-km radius
PX30	Percent area from 50 to 200 km covered by $\leq -30^{\circ}$ C IR cloud-top brightness temperatures
SDBT	Std dev of 50–200-km IR cloud-top brightness temperatures
POT	Potential intensity (current intensity – maximum potential intensity)
OHC	Ocean heat content

Rapid intensity forecasting: The RII

TABLE 3. The predictors used in the revised Atlantic RII index.

Predictor	Definition			
PER	Previous 12-h intensity change			
SHRD	850-200-hPa vertical shear of the horizontal wind from the 0-500-km radius			
D200	200-hPa divergence from the 0–1000-km radius			
RHLO	850–700-hPa relative humidity from 200–800-km radius			
PX30	Percent area from 50 to 200 km covered by $\leq -30^{\circ}$ C IR cloud-top brightness temperatures			
SDBT	Std dev of 50–200-km IR cloud-top brightness temperatures			
РОТ	Potential intensity (current intensity – maximum potential intensity)			
OHC	Ocean heat content			
	2.5			

Kaplan et al. (2010)

Rapid intensity forecasting: Verification

Kaplan et al. (2010)

Rapid intensity forecasting: A long way from HFIP goals

Kaplan et al. (2010)

Rapid intensity forecasting: Microwave data

Rapid intensity forecasting: Microwave data

Kieper (2008)

Rapid intensity forecasting: Microwave data

NRL-developed 37 GHz color composite

Polarization correction temperature (*PCT*) of the vertical and horizontal 37 GHz channels

Warm ocean (green), cold ice (pink), shallow clouds (cyan)

Lee et al. (2002); Kieper and Jiang 2012

Rapid intensity forecasting: Improvements using microwave data

37 GHz ring is a good predictor of *RI* when the environment is favorable (SHIPS)

82% of *RI cases* have a *ring* at, or before, the start of RI

Ring is *precipitative*, mainly *shallow convection*

Kieper and Jiang 2012; Tao and Jiang (2015)

Rapid intensification: Microwave-based signals

Fischer et al. (2014); Zagrodnik and Jiang (2014); Tao and Jiang (2015)

Rapid intensification: Microwave-based signals

Fischer et al. (2014); Zagrodnik and Jiang (2014); Tao and Jiang (2015)

Rapid intensification: Microwave-based signals

Fischer et al. (2014); Zagrodnik and Jiang (2014); Tao and Jiang (2015)

Rapid intensity forecasting: Welcome Badgers!

Rozoff et al. (2014, 2015)

Rozoff et al. (2015): Change of color table 🛞

Rozoff et al. (2015)

Rapid intensity forecasting: Rozoff et al. (2015)

Rapid intensity forecasting: Rozoff et al. (2015)

Model	Definition	Mean value of R cases vs non-RI cases
ATL	Mean 37.0-GHz T_b (H pol) within the MIPA	Higher
ATL	Max 85.5-GHz PCT in region interior to the MIPA	Lower
ATL	Radius of max 37.0-GHz T_b (V pol) found within $r = 30-130$ km	Smaller
ATL	Radius of min 85.5-GHz T_b (H pol) found within $r = 30-130$ km	Smaller

Rozoff et al. (2015)

Model	Definition	Mean value of R cases vs non-RI cases
ATL	Mean 37.0-GHz T_b (H pol) within the MIPA	Higher
ATL	Max 85.5-GHz PCT in region interior to the MIPA	Lower
ATL	Radius of max 37.0-GHz T_b (V pol) found within $r = 30-130$ km	Smaller
ATL	Radius of min 85.5-GHz T_b (H pol) found within $r = 30-130$ km	Smaller

Rapid intensity forecasting: Rozoff et al. (2015)

Model	Definition	Mean value of RI cases vs non-RI cases	25	A	5	20		1500 L
ATL	Mean 37.0-GHz T_b (H pol) within the MIPA	Higher	24	5	1		2	JTC (
ATL	Max 85.5-GHz PCT in region interior to the MIPA	Lower	23					9/20
ATL	Radius of max 37.0-GHz T_b (V pol) found within $r = 30-130$ km	Smaller						
ATL	Radius of min 85.5-GHz T_b (H pol) found within $r = 30-130$ km	Smaller Less warm in the eye???	25 24 23			81	80	0909 UTC 9/21
				86	85	84	4 83	3
					Lor	n (^o W))	•

Rozoff et al. (2015)

 $180\,200\,220\,240\,260\,280$

		MPI?					
		Further from		86	85 Lon (84 (⁰ \\/)	83
		have an eye?	23	23			
		doesn't vet			~~~	20	
		Storm	24	0			1
		in the eye???	20	61	6	5	
	poi) iound within $r = 30-130$ km	Less warm	25	04 C	o C		~
ATL	Radius of min 85.5-GHz T_b (H	Smaller		82	8		30
ATL	Radius of max 37.0-GHz T_b (V pol) found within $r = 30-130$ km	Smaller					
	interior to the MIPA		23				
ATL	the MIPA Max 85.5-GHz PCT in region	Lower				14	
ATL	Mean 37.0-GHz T_b (H pol) within	Higher	24	52	r	5	
Model	Definition	cases vs non-Ki cases	20	at.	25		
		Mean value of RI	25	1	2	-	V,

Rozoff et al. (2015)

 $180\,200\,220\,240\,260\,280$

1500 UTC 9/20

0909 UTC 9/21

Model	Definition	Mean value of R cases vs non-RI cases
ATL	Mean 37.0-GHz T_b (H pol) within the MIPA	Higher
ATL	Max 85.5-GHz PCT in region interior to the MIPA	Lower
ATL	Radius of max 37.0-GHz T_b (V pol) found within $r = 30-130$ km	Smaller
ATL	Radius of min 85.5-GHz T_b (H pol) found within $r = 30-130$ km	Smaller

Model	Definition	Mean value of RI cases vs non-RI cases	[
ATL	Mean 37.0-GHz T_b (H pol) within the MIPA	Higher	-				
ATL	Max 85.5-GHz PCT in region interior to the MIPA	Lower	Small	radius			
ATL	Radius of max 37.0-GHz T_b (V pol) found within $r = 30-130$ km	Smaller	of ma	ximum	l		
ATL	Radius of min 85.5-GHz <i>T_b</i> (H pol) found within <i>r</i> = 30–130 km	Smaller 25 24 23	conv 37 GHz	<i>ection</i> 25 24 23		85 GHz	0909 UTC 9/21
		86 85	84 83	86	85	84 83	;
		Lon (^o	W)		Lon (^o	W)	
Rozoff et a	al. (2015)	230 240 250	260 270	 18020	0 220 24(260 280	

RI model with microwave predictors: Still crappy forecasts!

Rozoff et al. (2015)

Predictor	Definition
PER	Previous 12-h intensity change
SHRD	850–200-hPa vertical shear within a 500-km radius after vortex removal (time avg)
D200	200-hPa divergence within a 1000-km radius (time avg)
RHLO	850–700-hPa relative humidity within a 200–800-km radius (time avg)
PX30	Percentage of area with -30° C GOES-IR brightness temp ($t = 0$ h) within a 50–200-km radius
SDBT	Std dev of GOES-IR brightness temp ($t = 0$ h) within a 50–200-km radius
РОТ	Potential intensity (current intensity – max potential intensity) (time avg)
OHC	Oceanic heat content (time avg)

Predictor	Definition
PER	Previous 12-h intensity change
SHRD	850–200-hPa vertical shear within a 500-km radius after
	vortex removal (time avg)
D200	200-hPa divergence within a 1000-km radius (time avg)
RHLO	850–700-hPa relative humidity within a 200–800-km
	radius (time avg)
PX30	Percentage of area with -30° C GOES-IR brightness
	temp ($t = 0$ h) within a 50–200-km radius
SDBT	Std dev of GOES-IR brightness temp $(t = 0 h)$ within
	a 50–200-km radius
POT	Potential intensity (current intensity – max potential
	intensity) (time avg)
OHC	Oceanic heat content (time avg)

Predictor

Definition

- PER Previous 12-h intensity change
- SHRD 850–200-hPa vertical shear within a 500-km radius after vortex removal (time avg)
- D200 200-hPa divergence within a 1000-km radius (time avg)
- RHLO 850–700-hPa relative humidity within a 200–800-km radius (time avg)
- PX30 Percentage of area with -30° C GOES-IR brightness temp (t = 0 h) within a 50–200-km radius
- SDBT Std dev of GOES-IR brightness temp (t = 0 h) within a 50–200-km radius
- POT Potential intensity (current intensity max potential intensity) (time avg)
- OHC Oceanic heat content (time avg)

Kaplan et al. (2015)

Predictor

Definition

PER Previous 12-h intensity change

- SHRD 850–200-hPa vertical shear within a 500-km radius after vortex removal (time avg)
- D200 200-hPa divergence within a 1000-km radius (time avg)
- RHLO 850–700-hPa relative humidity within a 200–800-km radius (time avg)
- PX30 Percentage of area with -30° C GOES-IR brightness temp (t = 0 h) within a 50–200-km radius
- SDBT Std dev of GOES-IR brightness temp (t = 0 h) within a 50–200-km radius
- POT Potential intensity (current intensity max potential intensity) (time avg)
- OHC Oceanic heat content (time avg)

Inner core dry air predictor:

 $(q10_{layer} - q10) * VMAX_0$

Dry air mixing down to the surface

Kaplan et al. (2015)

Predictor	Definition
PER	Previous 12-h intensity change
SHRD	850–200-hPa vertical shear within a 500-km radius after vortex removal (time avg)
D200	200-hPa divergence within a 1000-km radius (time avg)
TPW	Percentage of area with TPW < 45 mm within a 500-km radius and $\pm 45^{\circ}$ of the upshear SHIPS wind direction (t = 0 h)
PC2	Second principal component of GOES-IR imagery within a 440-km radius ($t = 0$ h)
SDBT	Std dev of GOES-IR brightness temp ($t = 0$ h) within a 50–200-km radius
РОТ	Potential intensity (current intensity – max potential intensity) (time avg)
OHC	Oceanic heat content (time avg)
ICDA	Inner-core dry-air predictor (time avg)
VMX0	Max sustained wind $(t = 0 h)$

Predictor	Definition
PER	Previous 12-h intensity change
SHRD	850–200-hPa vertical shear within a 500-km radius after vortex removal (time avg)
D200	200-hPa divergence within a 1000-km radius (time avg)
TPW	Percentage of area with TPW < 45 mm within a 500-km radius and $\pm 45^{\circ}$ of the upshear SHIPS wind direction $(t = 0 \text{ h})$
PC2	Second principal component of GOES-IR imagery within a 440-km radius ($t = 0$ h)
SDBT	Std dev of GOES-IR brightness temp ($t = 0$ h) within a 50–200-km radius
POT	Potential intensity (current intensity – max potential intensity) (time avg)
OHC	Oceanic heat content (time avg)
ICDA	Inner-core dry-air predictor (time avg)
VMX0	Max sustained wind $(t = 0 h)$

Rapid intensity forecasting: Still crappy after all these years...

Kaplan et al. (2015)

Rapid intensity forecasting: Still crappy after all these years...

Forecast lead-time (h)

Forecast lead-time (h)

Why are *forecasts* of RI so poor?

What is missing from the models?

Are there observational signals of RI of which forecasters are not taking notice?

RI threshold (kt) NRI (79) (122) (78) (51) (37) (42) (39) RI threshold (kt) NRI (79) (122) (78) (51) (37) (42) (39)

Kaplan et al. (2015)

Rapid intensity forecasting: Why are models so crappy?

Hendricks et al. (2010)

Rapid intensity forecasting: Why are models so crappy?

Hendricks et al. (2010):

Quantity	Basin	W	N	I	RI	RI - W	RI - N	RI - I
Deep-layer shear (m s^{-1})								
	ATL	11.24	11.80	9.89	8.24	-3.00	-3.56	-1.65
SSI (°C)	ATL	28.23	27.96	28.58	28.93	0.70	0.97	0.35
850-hPa relative humidity (%)	ATL	73.93	76.27	76.12	76.45	2.52	0.18	0.33
500-hPa relative humidity (%)	ATL	48.83	50.98	52.43	53.97	5.14	2.99	1.54
850-hPa divergence (10^{-6} s^{-1})	ATL	-1.63	-1.19	-1.40	-1.25	0.38	-0.06	0.15
200-hPa divergence (10^{-6} s^{-1})	ATL	4.61	3.02	3.37	2.84	-1.77	-0.18	-0.53
$\partial \theta_E / \partial p \ (10^3 \text{ K Pa}^{-1})$	ΔΤΙ	0.35	0.28	0.32	0.31	-0.04	0.03	-0.01
850-hPa vorticity (10^{-6} s^{-1})		0.55	0.20	0.52	5.00	0.04	0.05	0.01
	ATL	7.71	6.91	6.48	5.00	-2.71	-1.91	-1.48

Hendricks et al. (2010):

Quantity	Basin	W	Ν	Ι	RI	RI - W	RI - N	RI - I
Deep-layer shear (m s^{-1})								
	ATL	11.24	11.80	9.89	8.24	-3.00	-3.56	-1.65
SST (°C)	ATL	28.23	27.96	28.58	28.93	0.70	0.97	0.35
850-hPa relative humidity (%)								
500 hB_{2} and 124 into the main distance (0/1)	ATL	73.93	76.27	76.12	76.45	2.52	0.18	0.33
500-nPa relative numidity (%)	ATL	48.83	50.98	52.43	53.97	5.14	2.99	1.54
850-hPa divergence (10^{-6} s^{-1})		1.00	1 10	1 40	1.05	0.00	0.00	0.15
200-hPa divergence (10^{-6} s^{-1})	AIL	-1.63	-1.19	-1.40	-1.25	0.38	-0.06	0.15
	ATL	4.61	3.02	3.37	2.84	-1.77	-0.18	-0.53
$\partial \theta_E / \partial p \ (10^3 \ \mathrm{K} \ \mathrm{Pa}^{-1})$			0.00		0.01	0.04	0.00	0.04
850-bPa vorticity (10^{-6} s^{-1})	ATL	0.35	0.28	0.32	0.31	-0.04	0.03	-0.01
$(10 \ s)$	ATL	7.71	6.91	6.48	5.00	-2.71	-1.91	-1.48

Hendricks et al. (2010):

Quantity	Basin	W	Ν	Ι	RI	RI - W	RI - N	RI - I
Deep-layer shear (m s^{-1})								~~~
	ATL	11.24	11.80	9.89	8.24	-3.00	-3.56	(-1.65
SSI (°C)	ATL	28.23	27.96	28.58	28.93	0.70	0.97 Y	0.35
850-hPa relative humidity (%)			_ /					
500-hPa relative humidity (%)	ATL	73.93	76.27	76.12	76.45	2.52	0.18	0.33
500-in a relative number (//)	ATL	48.83	50.98	52.43	53.97	5.14	2.99	1.54
850-hPa divergence (10^{-6} s^{-1})	ATL	-1.63	-1.19	-1.40	-1.25	0.38	-0.06	0.15
200-hPa divergence (10^{-6} s^{-1})		1.00	1.17	1110	1.20	0.00	0.00	0.12
(10^3 K P^{-1})	ATL	4.61	3.02	3.37	2.84	-1.77	-0.18	-0.53
$\partial \theta_E / \partial p (10^{\circ} \text{ K Pa}^{-1})$	ATL	0.35	0.28	0.32	0.31	-0.04	0.03	-0.01
850-hPa vorticity (10^{-6} s^{-1})								
	ATL	7.71	6.91	6.48	5.00	-2.71	-1.91	-1.48

Hendricks et al. (2010):

Quantity	Basin	W	Ν	Ι	RI	RI - W	RI - N	RI - I
Deep-layer shear (m s^{-1})							\sim	~~~
	ATL	11.24	11.80	9.89	8.24	-3.00	-3.56	(-1.65
SSI (°C)	ATL	28.23	27.96	28.58	28.93	0.70	0.97 Y	0.35
850-hPa relative humidity (%)								
500-hPa relative humidity (%)	ATL	73.93	76.27	76.12	76.45	2.52	0.18	0.33
	ATL	48.83	50.98	52.43	53.97	5.14	2.99	1.54
850-hPa divergence (10^{-6} s^{-1})	ATL	-1.63	-1.19	-1.40	-1.25	0.38	-0.06	0.15
200-hPa divergence (10^{-6} s^{-1})								
$(10^3 \text{ K } $	ATL	4.61	3.02	3.37	2.84	-1.77	-0.18	-0.53
$\partial \theta_E / \partial p (10 \text{ K ra}^-)$	ATL	0.35	0.28	0.32	0.31	-0.04	0.03	-0.01
850-hPa vorticity (10^{-6} s^{-1})								
	ATL	7.71	6.91	6.48	5.00	-2.71	-1.91	-1.48

Hendricks et al. (2010):

"...RI is mostly controlled by internal dynamical processes. These processes are inherently less predictable; therefore, RI may never be well predicted by mesoscale models."

Rapid intensification: Internal dynamical processes

Rapid intensification: Internal dynamical processes

Rapid intensification: Internal dynamical processes

Internal dynamical processes: Convective bursts

Internal dynamical processes: Convective bursts

Internal dynamical processes: Convective bursts

Convective bursts: Lightning!

Convective bursts: Inner core discrepancy...?

Atlantic

East Pacific

The RII: Lightning predictors have an impact

Normalized Discriminant Weights (Atlantic RII Algorithm)

DeMaria (2012)

The RII:

Lightning predictors have an impact

TC lightning:

Forecasters are willing to use it

Tropical Storm CRISTINA

ZCZC MIATCDEP3 ALL TTAA00 KNHC DDHHMM

TROPICAL STORM CRISTINA DISCUSSION NUMBER 6 NWS NATIONAL HURRICANE CENTER MIAMI FL EP032014 800 PM PDT TUE JUN 10 2014

Cristina is intensifying this evening. The compact central dense overcast has become more circular, and hints of an eye have been apparent in geostationary satellite images. The initial intensity is increased to 55 kt, in agreement with unanimous Dvorak classifications of 3.5/55 kt from TAPE, SAB, and UW-CIMSS ADT.

Although the curved bands beyond the inner-core region remain fragmented, a considerable amount of lightning has been occurring in a rain band located about 120 n mi to the south-southwest of the center. Recent research has documented that lightning in the outer bands of the tropical cyclone circulation is often a precursor of significant intensification. The only apparent factor that could limit strengthening during the next couple of days is mid-level dry air, which has been an issue for Cristina during the past day or so. In about 3 days, Cristina is expected to move into an environment of stronger southwesterly shear and over cooler waters, which should end the strengthening trend and cause the cyclone to weaken. The NHC intensity forecast is slightly higher than the previous one, and is pretty close to the intensity model consensus IVCN.

Cristina has wobbled a little south of due west during the past 6 hours, and the latest initial motion estimate is 265/5. A westward to west-northwestward motion is forecast during the next day or so while the cyclone remains on the south side of a mid-level ridge over northwestern Mexico. After that time, a turn to the northwest is predicted when the ridge weakens and shifts eastward. The NHC track forecast is an update of the previous one, and close to a consensus of the GFS and ECMWF models.

FORECAST POSITIONS AND MAX WINDS

INIT 11/03002 15.2N 103.9W 55 KT 65 MPH 12H 11/12002 15.4N 105.0W 65 KT 75 MPH 24H 12/00002 15.8N 106.4W 70 KT 80 MPH 36H 12/12002 16.5N 107.7W 75 KT 85 MPH 48H 13/00002 17.2N 109.0W 75 KT 85 MPH 72H 14/00002 18.7N 111.5W 70 KT 80 MPH 96H 15/00002 19.6N 113.5W 35 KT 65 MPH 120H 16/00002 20.0N 115.5W 35 KT 40 MPH

\$\$ Forecaster Cangialosi

NNNN

Lightning in TCs: Beyond DeMaria et al. (2014) and GOES-R

Hurricane Earl (2010)

Stevenson (2015, 2016)

Lightning in TCs: Beyond DeMaria et al. (2014) and GOES-R

Stevenson (2015, 2016)

Convective bursts: HWRF

Chen and Gopalakrishnan (2015)

Convective bursts: HWRF

Chen and Gopalakrishnan (2015)

Chen and Gopalakrishnan (2015)

Convective bursts: HWRF

HWRF ensemble forecasts of Hurricane Issac (2012)

Chen and et al. (2016)

Convective bursts: HWRF

-250-200-150-100-50 0 50 100 150 200 250-250-200-150-100-50 0 50 100 150 200 250-250-200-150-100-50 0 50 100 150 200 250

Chen and et al. (2016)

Counts of convective bursts

Chen and et al. (2016)