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ABSTRACT

The present study examines the fidelity of outer tropical cyclone (TC) size and wind field structure in four

atmospheric reanalysis datasets to evaluate whether reanalyses can be used to derive a long-term TC size

dataset. Specifically, the precision and accuracy of reanalysis TC size for the NorthAtlantic (NA) andwestern

North Pacific (WNP) basins are analyzed through comparison with a recently developed QuikSCAT TC size

dataset (2000–09). Both outer TC size and structure in reanalyses closely match QuikSCAT data as revealed

by strong correlations, similar standard deviations, and generally small biases. Of the TC size metrics ex-

amined, the radii of 6–8m s21 winds in the NA and radii of 6–10m s21 winds in the WNP are generally most

comparable to QuikSCAT data. Compared to WNP TCs, NA TC size and structure are represented with

greater fidelity. Among the four reanalyses examined, the National Centers for Environmental Prediction

Climate Forecast System Reanalysis and the Japan Meteorological Agency Japanese 55-year Reanalysis

represent TC size and structure with the greatest fidelity for both basins. Differences between reanalysis and

QuikSCAT TC size increase with increasing QuikSCAT TC size in both basins and with decreasing TC

latitude in theWNP. Finally, comparison of the distribution of reanalysis TC size during the satellite era with

the distribution of QuikSCAT TC size suggests that reanalysis TC size is represented with reasonable fidelity

throughout the satellite era and, thus, may be useful for constructing a multidecadal TC size dataset.

1. Introduction

Tropical cyclone (TC) size has been a topic of great

interest given its association with TC intensity change

(Carrasco et al. 2014), the physics and structure of the TC

wind field (e.g., Chan and Chan 2013, 2014; Chavas and

Emanuel 2014; Chavas et al. 2015; Chan and Chan 2015b;

Chavas and Lin 2016), and TC wind and storm surge

damage (e.g., Iman et al. 2005; Irish et al. 2008; Irish and

Resio 2010; Lin et al. 2014; Zhai and Jiang 2014). Al-

though prior studies have typically focused on the size of

the inner TC circulation (i.e., radius of maximum winds),

the outer TC circulationmay be simpler to study given that

it is more stable in time and it varies nearly independently

fromTC intensity (e.g.,Merrill 1984; Chavas andEmanuel

2010; Lee et al. 2010; Chan and Chan 2012; Chavas et al.

2015; Chavas and Lin 2016). The outer region of the TC is

defined as the broad circulation of the TC beyond the

strongly convecting inner region that is nearly rain free

and, thus, is approximately in radiative–subsidence bal-

ance (e.g., Emanuel 2004; Chavas et al. 2015).
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The size of the TC outer region has been typically

defined using various radii of azimuthal-mean near-

surface wind and pressure fields (e.g., Brand 1972;

Merrill 1984; Liu and Chan 1999; Chavas and Emanuel

2010), with outer TC structure similarly represented

using the radial structure of these azimuthal-mean fields

(e.g., Emanuel 2004; Chavas and Emanuel 2014; Chavas

et al. 2015; Chavas and Lin 2016). Specifically, the most

commonly used outer TC size metrics include the radius

of the outermost closed isobar (ROCI; e.g., Brand 1972;

Merrill 1984; Kimball and Mulekar 2004) and the radius

in which the azimuthal-mean lower-tropospheric azi-

muthal wind equals 5, 12, and 15m s21 (e.g., Frank and

Gray 1980; Chavas and Emanuel 2010; Knaff et al.

2014). Quantifying outer TC size may be particularly

useful given that the structure and modes of variability

of the complete azimuthal-mean near-surface TC wind

field can be represented using a simple physical TC wind

field model that only requires outer TC size and either

TC intensity or the radius of maximum winds (Chavas

et al. 2015; Chavas and Lin 2016). However, outer TC

size has not been as extensively studied as TC intensity

largely owing to 1) the absence of a long-term, objective,

and observation-based outer TC size dataset until re-

cently (e.g., Liu and Chan 1999; Chavas and Emanuel

2010; Knaff et al. 2014; Chan and Chan 2015a; Chavas

et al. 2016) and 2) the difficulties in defining a physically

meaningful outer TC size metric that can be uniformly

derived across observational datasets (e.g., Brand 1972;

Frank and Gray 1980; Liu and Chan 1999; Chavas and

Emanuel 2010). With these facts in mind, the present

study attempts to evaluate whether the current genera-

tion of atmospheric reanalysis datasets can provide a

multidecadal, objective, and homogeneous outer TC

size dataset derived from the outer TC wind field.

The earliest TC size studies utilized ROCI obtained

from subjectively derived surface analyses (e.g., Brand

1972;Merrill 1984). However, the estimation ofROCI in

these studies may have been negatively impacted by the

sparsity of the input data in the surface analysis. Later

work utilized either rawinsonde or in situ aircraft re-

connaissance data to study the radius of 15m s21

azimuthal-mean lower-tropospheric winds (e.g., Frank

and Gray 1980; Weatherford and Gray 1988a,b), but

these studies may have been adversely impacted by the

heterogeneous sampling of TC winds in space and time.

The introduction of scatterometer data allowed for

subsequent research to examine various 10-m wind radii

and vorticity thresholds as TC size metrics (e.g., Liu and

Chan 1999; Chavas and Emanuel 2010; Chan and Chan

2015a; Chavas and Lin 2016). Prior work has also used

scatterometer data together with multiple in situ and

remotely sensed data sources to compile TC size data for

ROCI and several 10-m wind radii (e.g., Demuth et al.

2006; Landsea and Franklin 2013). These studies, how-

ever, may also have been negatively influenced by the

heterogeneous sampling of the TC wind field. More re-

cently, atmospheric reanalysis data has been used to

compute TC size using the radius of the azimuthal-mean

environmental pressure (Knaff and Zehr 2007). Finally,

Knaff et al. (2014) constructed estimates of the radius in

which the azimuthal-mean 850-hPa azimuthal wind

equals 5m s21 using infrared TC satellite data and re-

analysis data to estimate TC size. However, both Knaff

and Zehr (2007) and Knaff et al. (2014) may contain

uncertainty due to the use of a climatological vortex

decay rate to estimate TC size. Additionally, TC size

estimates from Knaff et al. (2014) may also include un-

certainty due to the use of a simple multiple linear re-

gression equation when training infrared satellite

imagery with reanalysis data to estimate TC size. In-

tercomparison of results from these studies is not

straightforward given the heterogeneity of the various

datasets used to calculate TC size and the use of dif-

fering TC size metrics that are not always strongly cor-

related (e.g., Liu and Chan 1999; Knaff et al. 2014;

Chavas and Lin 2016). Moreover, these two issues have

resulted in ambiguities in the definition of TC size given

the use of several disparate TC size metrics that may

sample different regions of the same TC.

In contrast to the input datasets used in prior TC size

studies, the use of a fixed numerical weather prediction

model and data assimilation system in reanalyses (e.g.,

Thorne and Vose 2010; Bosilovich et al. 2013; Parker

2016) provides an opportunity for constructing a multi-

decadal TC size dataset that homogeneously samples

each TC in space and time. However, there are three

possible caveats when estimating TC size using re-

analyses, including 1) TCs being too weak to define an

outer TC size due to the coarse horizontal grid spacing

and conservative physics parameterizations in re-

analyses (e.g., Schenkel andHart 2012;Murakami 2014;

Hodges et al. 2017), 2) nonphysical trends in TC size due

to changes in the observing system in time and space

(e.g., Manning and Hart 2007; Thorne and Vose 2010;

Bosilovich et al. 2013; Parker 2016), and 3) nonphysical

TC structure due to the inability of reanalyses to resolve

the TC inner core or due to reanalysis coding errors

(Schenkel and Hart 2012; Murakami 2014; Kobayashi

et al. 2015; Hodges et al. 2017). The impact of these

potential caveats on reanalysis TC size has yet to be

evaluated as previous work has primarily focused on

examining the fidelity of reanalysis TC position, in-

tensity, and thermodynamic structure (e.g., Manning

andHart 2007; Schenkel andHart 2012;Murakami 2014;

Wood and Ritchie 2014; Hodges et al. 2017).
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Despite not focusing on reanalysis TC size, previous

work has identified three parameters that serve as proxies

for other factors that may influence the fidelity of re-

analysis TC representation: 1) best-track TC latitude,

2) extended best-track TC size (Demuth et al. 2006), and

3) best-track TC age (i.e., time that has elapsed since

best-track TC maximum 10-m wind speed first equals or

exceeds 34kt (17ms21); Kossin et al. 2007a,b; Schenkel

and Hart 2012). Specifically, reanalysis TC intensity was

found to increase with increasing latitude (Schenkel and

Hart 2012), which was a nonphysical artifact of reanalyses

potentially resulting from greater observation densities at

higher latitudes (Hatsushika et al. 2006; Vecchi and

Knutson 2008), increasing postprocessed grid spacing

with increasing latitude (Schenkel and Hart 2012), and

weaker, more easily resolvable horizontal gradients as-

sociated with the expansion of the TC wind field in ex-

tratropically transitioning TCs (e.g., Brand and Guard

1979; Hart et al. 2006; Evans and Hart 2008). Second,

reanalysis TC intensity exhibited systematic increases

with larger extended best-track TC sizes potentially due

to weaker, more easily resolvable horizontal gradients in

larger TCs and an increased number of observations

sampling these larger TC wind fields (Schenkel and Hart

2012). Third, TC age was also shown to be positively

correlated with reanalysis TC intensity, which was also

hypothesized to be a nonphysical reanalysis artifact pos-

sibly resulting from older TCs being better sampled by

observations with time and the inability of reanalyses to

simulate realistic TC intensification processes (Schenkel

andHart 2012). Each of these three factors are also likely

strongly correlated with one another (Schenkel and

Hart 2012).

It is important to note that reanalyses have been pre-

viously used for several TC-related applications including

using reanalysis TC winds to derive TC size datasets

(Knaff and Zehr 2007; Knaff et al. 2014) and calculating

TCpower dissipation (Sriver andHuber 2006).Reanalysis

thermodynamic fields have been used to diagnose the

onset and end of extratropical transition for TCs (e.g.,

Evans andHart 2003; Kitabatake 2011;Wood andRitchie

2014). Reanalysis wind and thermodynamic fields have

also been used to identify potentially ‘‘missing’’ TCs in

observations prior to the satellite era (Truchelut and Hart

2011; Truchelut et al. 2013).

Given the advantages and disadvantages of reanalyses,

the present study seeks to determine the fidelity of TC size

for the outer near-surface wind field within four atmo-

spheric reanalysis datasets through comparison with

QuikSCAT data. Outer TC wind structure and size met-

rics are examined given their importance to the physics of

the complete TC wind field (e.g., Chan and Chan 2014;

Chavas andEmanuel 2014; Chan andChan 2015b; Chavas

et al. 2015; Chavas and Lin 2016) and the inability of

reanalyses to resolve inner TC winds (Manning and Hart

2007; Schenkel and Hart 2012; Murakami 2014; Hodges

et al. 2017). If proven accurate and precise, reanalyses

potentially can provide a longer-term TC size dataset

compared to QuikSCAT that more homogeneously

samples the TC wind field in space and time. The present

study has four main objectives: 1) analyze the accuracy

and precision of reanalysis TC size and wind field struc-

ture relative to observations, 2) investigate whether

an optimal TC sizemetric exists in each reanalysis dataset,

3) determine which reanalysis dataset has TC size and

structure estimates that most closely match observations,

and 4) examine the fidelity of reanalysis TC size beyond

the QuikSCAT era (2000–09). The applications of these

results include, but are not limited to, using reanalysis-

derived TC size estimates to construct radial profiles of

azimuthal-mean near-surface winds (Chavas et al. 2015;

Chavas and Lin 2016) for use in wind and storm surge

modeling (Lin et al. 2014; Lin and Emanuel 2016).

For the remainder of the manuscript, section 2 de-

scribes the datasets used as well as the methodology for

computing TC size. Section 3a intercompares the pre-

cision and accuracy of reanalysis TC size with QuikS-

CAT, while section 3b examines the full radial profile of

TC winds. Section 3c analyzes the potential relation-

ships of reanalysis TC size with parameters such as TC

latitude and observed TC size. Section 3d investigates

reanalysis TC size estimates throughout the QuikSCAT

and satellite eras, when QuikSCAT TC size data are not

always available. Section 4 summarizes the results.

2. Data and methods

a. Data

1) REANALYSIS DATA

In the present study, the fidelity of TC size is examined

within four atmospheric reanalysis datasets: 1) theNational

Centers for Environmental Prediction (NCEP) Climate

Forecast System Reanalysis (CFSR; Saha et al. 2010),

2) the European Centre for Medium-Range Weather

Forecasts (ECMWF) interim reanalysis (ERA-Interim,

hereafter ERA-I; Dee et al. 2011), 3) the Japanese Mete-

orological Agency (JMA) Japanese 55-year Reanalysis

(JRA-55; Kobayashi et al. 2015), and 4) the National

Aeronautics and Space Administration (NASA) Modern-

EraRetrospectiveAnalysis forResearch andApplications,

version 2 (MERRA-2; Gelaro et al. 2017). The salient

details for each reanalysis are provided in Table 1.

As shown in Table 1, three of the four reanalyses

supplement TC initialization at each analysis time to
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improve TC representation (e.g., Hatsushika et al. 2006;

Schenkel and Hart 2012; Murakami 2014; Hodges et al.

2017). Specifically, the JRA-55 utilizes TC wind profile

retrievals, which involves the assimilation of synthetic

dropwindsondes created from an approximation of the

TC wind field that incorporates best-track TC intensity

and size data (Hatsushika et al. 2006; Onogi et al. 2007;

Kobayashi et al. 2015). The use of TC wind profile

retrievals has been shown to minimize reanalysis TC po-

sition errors and improve the representation of reanalysis

TC intensity and structure (e.g., Schenkel and Hart 2012;

Murakami 2014; Kobayashi et al. 2015; Hodges et al.

2017). It is important to note that the wind speed of the

synthetic dropwindsondes in the JRA-55 exhibits a non-

physical weakening trend beginning in 1988 resulting in

decreasing TC detection rates and weaker than expected

TC structure (Kobayashi et al. 2015). The CFSR and

MERRA-2 utilize vortex relocation, which involves either

1) relocating the reanalysis TC to its best-track location at

each analysis time or 2) inserting a bogus vortex if the

reanalysis TC is missing or too weak (Liu et al. 2000; Saha

et al. 2010; Gelaro et al. 2017). In addition to reducing

reanalysis TC position errors, the relocation of the TC

may also improve the estimation of TC intensity and

structure, potentially due to the improved representation

of TC–environment interactions and a heightened prob-

ability of near-TC observations being assimilated by the

reanalysis (e.g., Saha et al. 2010; Schenkel and Hart 2012;

Murakami 2014; Hodges et al. 2017). However, a coding

error in the vortex relocation for the CFSR has resulted in

the occurrence of nonphysical TC structure in some cases

(Schenkel and Hart 2012).

2) QUIKSCAT DATA

To compare reanalysis TC size with observations, we

use version 1 of theQuikSCATTropical Cyclone Radial

Structure Dataset (QSCAT-R; Chavas and Vigh 2014).

QSCAT-R provides radial profiles of the azimuthal-mean

10-m azimuthal wind calculated from version 3 of the

NASA Jet Propulsion Laboratory (JPL) QuikSCAT da-

tabase that has been further optimized for TCs using a

neural network algorithm to increase its accuracy and

reduce rain contamination (Stiles et al. 2014). QSCAT-R

provides radial wind profiles for selected TCs globally

from 2000 to 2009 with a horizontal grid spacing of

6.25km accurately measuring wind speeds up to 40ms21

(Chavas and Vigh 2014).

It is important to note that QuikSCAT data are

ingested and assimilated into each reanalysis suggesting

that reanalysis andQSCAT-RTC size are not necessarily

independent. Assimilation of QuikSCAT data likely

improves reanalysis TC size estimates at the nearest 6-h

time to the QuikSCAT overpass and potentially beyond

owing to the improved representation of TC–environment

interactions in reanalyses. Moreover, TC representation

both before and after theQuikSCAToverpass is also likely

improved in the ERA-I and JRA-55 owing to the use of

four-dimensional variational data assimilation (Dee et al.

2011; Kobayashi et al. 2015).

Despite the lack of independence between QuikSCAT

and reanalyses, there are five reasons why reanalysis and

QSCAT-R TC size may differ: 1) QuikSCAT and, thus,

QSCAT-R sample the TC wind field in 1800-km swaths

that may miss part of the TC wind field, 2) QuikSCAT

cannot retrieve wind data in regions of rainfall (e.g., Stiles

et al. 2014), 3) the horizontal grid spacing of QSCAT-R

is a factor of;4–6 times finer than reanalyses (Table 1), 4)

reanalyses ingest QuikSCAT data at a coarsened hori-

zontal grid spacing that may exclude data near the swath

edges (e.g., data coarsened to 50-km horizontal grid

spacing; Dee et al. 2011), and 5) reanalyses are numerical

weather prediction models that may contain strong dif-

ferences with observed TC structure and position (e.g.,

Schenkel and Hart 2012; Murakami 2014; Hodges et al.

2017) such thatQuikSCATdata ingested by the reanalysis

have negligible impact.

3) BEST-TRACK TC DATA

The present analysis examines North Atlantic (NA)

and western North Pacific (WNP) TCs from version 3,

revision 9, of the International Best Track Archive for

Climate Stewardship (IBTrACS; Knapp et al. 2010).

TABLE 1. Information on the four reanalyses datasets used in this study. For the number denoting the native reanalysis grid spacing, T

refers to themean wave truncation number, C refers to the number of points across eachmodel tile for a cubed sphere grid, and L refers to

the number of vertical levels. The asterisk denotes the approximate horizontal grid spacing for the postprocessed data for reduced

Gaussian grids.

Dataset

Native grid

spacing

Postprocessed

grid spacing

Radial profile

grid spacing (km)

Reanalysis

period TC initialization Reference

NCEP CFSR T382 L64 0.508 3 0.508L37 27.5 1979–2010 Vortex relocation Saha et al. (2010)

ECMWF ERA-I T255 L60 0.708 3 0.708* L37 37.5 1979–2015 None Dee et al. (2011)

JMA JRA-55 T319 L60 0.568 3 0.568* L60 30.0 1979–2015 TC wind profile

retrieval

Kobayashi et al.

(2015)

NASAMERRA-2 C180 L72 0.6258 3 0.508 L42 32.5 1980–2015 Vortex relocation Gelaro et al. (2017)
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Specifically, National Hurricane Center data are used

for NA TCs and Joint Typhoon Warning Center data

are utilized forWNPTCs. NA andWNPTCs are chosen

for analysis given that these basins contain the smallest

errors in reanalysis TC track and intensity (e.g.,

Schenkel and Hart 2012; Murakami 2014) and to avoid

the greater uncertainty of IBTrACS data for north In-

dian Ocean and Southern Hemisphere TCs (e.g.,

Landsea et al. 2006).

In light of the reanalysis TC position errors (Schenkel

andHart 2012; Hodges et al. 2017), reanalysis TC position

is determined in three steps (Brammer 2017). To begin,

the first-guess position for the reanalysis TC is defined

using the IBTrACS position added to the previous 6-h

vector difference between the reanalysis and IBTrACS

TC location. Next, the center of mass near the first-guess

position is computed for six reanalysis variables: mean sea

level pressure, 925-hPa relative vorticity, 850-hPa relative

vorticity, 700-hPa relative vorticity, 850-hPa geopotential

height, and 700-hPa geopotential height (Marchok 2002).

Finally, reanalysis TC position is defined by averaging the

centers of mass from the six reanalysis variables that are

found within 300km of the 850-hPa relative vorticity

center of mass (Brammer 2017). Use of alternative TC

recentering methods (Nguyen et al. 2014; Ryglicki and

Hart 2015; Ryglicki and Hodyss 2016) do not significantly

alter the results. It is important to emphasize that this

methodology is not a TC tracker, which is largely in-

dependent from the IBTrACS tracks (Schenkel and Hart

2012; Murakami 2014; Hodges et al. 2017). Rather our

methodology is strongly dependent on the IBTrACS by

using each 6-h IBTrACS position as a first guess to help

locate the corresponding reanalysis TC position.

In the current study, we first examine TCs of at least

tropical storm strength (best-track 1-min maximum 10-m

wind speed$ 17.5ms21) that are sampled by QSCAT-R

before investigating TCs throughout the QSCAT-R era

(2000–09) and satellite era (~1979–2015; see Table 1 for

reanalysis availability). Given that QSCAT-R does not

necessarily correspond to regular synoptic times, best-

track data are interpolated to the time of the QSCAT-R

overpass using linear interpolation.

b. Methodology for calculating TC size

In the present study, TC size is defined as the size of

outer near-surface azimuthal wind field. Six outer TC

size metrics are examined including the radius at which

the azimuthal-mean 10-m azimuthal wind equals 2 (r2),

4 (r4), 6 (r6), 8 (r8), 10 (r10), and 12ms21 (r12). Similar

outer TC size metrics have been used in prior work (e.g.,

Chavas andEmanuel 2010; Knaff et al. 2014; Chavas and

Lin 2016), which partially motivates examining a range

of thresholds. Most importantly, the azimuthal wind

speed threshold yielding the closest match between re-

analyses and QSCAT-R is of great interest for

developing a reanalysis TC size dataset.

In the present study, reanalysis TC size is defined us-

ing the azimuthal-mean 10-m azimuthal wind following

Chavas and Vigh (2014):

1) construct a TC-centered polar coordinate system for

10-m total wind vectors at the postprocessed grid

spacing of each dataset (Table 1);

2) exclude all 10-m total wind vectors over land;

3) remove the environmental wind field, which is as-

sumed to be uniform at all radii and is empirically

defined as the TC translation vector rotated 208
cyclonically and reduced by a factor of 0.55 (Lin

and Chavas 2012);

4) compute the azimuthal wind field and calculate the

azimuthal-mean wind profile;

5) interpolate the radial profile of the azimuthal-mean

10-m azimuthal wind to a regular grid with grid

spacing equivalent to ;0.5 times the horizontal grid

spacing of each dataset (Table 1) using a piecewise

cubic Hermite interpolating polynomial;

6) remove all radial data points where the data asym-

metry parameter x is greater than 0.5, where x is

defined as the magnitude of the vector mean of all

vectors from the storm center to each defined grid

point included at a given radius normalized by the

mean distance of the storm center to each grid point

(Chavas and Vigh 2014);

7) extract r2, r4, r6, r8, r10, and r12 from the radial profile

of the azimuthal-mean 10-m azimuthal wind; and

8) exclude any TC size estimates if any of the following

three conditions are met for both QSCAT-R and

reanalyses: (i) TC size estimate is less than 50km

(i.e., ;4 times QuikSCAT horizontal grid spacing;

Chavas et al. 2016), (ii) radial profiles of azimuthal-

mean 10-m azimuthal wind radially inwards of the

reanalysis TC size estimate contain missing data over

two or more consecutive reanalysis radial grid points

or over the equivalent radial distance in QSCAT-R,

or (iii) reanalysis or QSCAT-R TC size is undefined.

As an example of case studies with precise and im-

precise TC size estimates, Figs. 1a,b contain radial pro-

files of the azimuthal-mean 10-m azimuthal wind for NA

TC Isabel at 1028 UTC 15 September 2003 and NA TC

Epsilon at 2058 UTC 05 December 2005, respectively.

Figure 1a shows that both the shape and magnitude

of TC Isabel’s outer reanalysis wind field is in close

agreement with QSCAT-R, especially at radii beyond

300 km. As a result, reanalysis r8 is very close to

QSCAT-R r8 with differences ranging from ;3 to

34 km. It is important to emphasize that TC size is
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accurately measured despite the underestimation of the

wind field near the TC center, which occurs for many

reanalysis TCs (e.g., Schenkel and Hart 2012; Murakami

2014; Kobayashi et al. 2015; Hodges et al. 2017). In

contrast, Fig. 1b shows large differences in the shape and

magnitude of the outer wind field of TC Epsilon be-

tween reanalyses and QSCAT-R, as the storm is weakly

represented in reanalyses. As expected, differences be-

tween reanalysis and QSCAT-R r8 for TC Epsilon are

large ranging from ~207 to 233 km with the ERA-I wind

field being too weak to estimate r8. As will be shown

below, the majority of TCs are represented in a manner

that generally falls between these two cases.

c. Statistical significance testing

The present study utilizes three types of statistical

significance testing. Statistical comparison of median

values is conducted using the 95% confidence interval of

medians computed from a 1000-sample bootstrap ap-

proach with replacement for a two-tailed test. The sta-

tistical difference of Pearson correlation coefficients

from zero is determined by computing its 95% confi-

dence interval for a two-tailed test using a Fisher

transformation. Finally, the statistical similarities be-

tween TC size distributions are determined using two-

sample Kolmogorov–Smirnov testing at the 5% level

for a two-tailed test. The number of distinctly named

TCs, rather than the number of 6-h IBTrACS data

points, is conservatively chosen as the sample size used

in the 1000-sample bootstrap approach and in the Fisher

transformation (e.g., Schenkel and Hart 2012, 2015a,b)

given the stability in time of the outer circulation for

each TC (e.g., Weatherford and Gray 1988a; Merrill

1984; Chavas and Emanuel 2010; Chavas and Lin 2016).

3. Analysis and results

a. Quantifying the precision and accuracy of
reanalysis TC size

The analysis begins by examining all QSCAT-R TC

size observations for each TC size metric to determine

how often a corresponding reanalysis TC size can be

estimated for the NA (Fig. 2) and WNP (Fig. 3). Re-

analysis r2, r4, r6, and r8 are defined for a substantial

majority of QSCAT-R TC size estimates ;65%–99%

regardless of the basin or reanalysis examined. In con-

trast, reanalysis r10 and r12 are defined for a smaller per-

centage of QSCAT-R TC size estimates ;20%–78%

largely due to reanalyses frequently being unable to re-

solve azimuthal-mean 10-m azimuthal wind speeds at or

exceeding ~10ms21, especially in the NA (e.g., Schenkel

and Hart 2012; Murakami 2014; Hodges et al. 2017).

Comparison of NA andWNP TCs reveals that reanalysis

TC size is defined for a greater fraction of WNP cases.

Intercomparison among reanalyses reveals that TC size is

FIG. 1. Radial profile of azimuthal-mean 10-m azimuthal wind

(m s21) from QSCAT-R, CFSR, ERA-I, JRA-55, and MERRA-2

for (a) TC Isabel at 1028 UTC 15 Sep 2003 and (b) TC Epsilon at

2058 UTC 05 Dec 2005. The r8 (km) is provided in the legend for

each dataset; r8 is not defined for TC Epsilon in the ERA-I.

FIG. 2. Number of 6-h QSCAT-R and corresponding reanalysis

data points for r2, r4, r6, r8, r10, and r12 in the NA.
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defined more frequently in the JRA-55, MERRA-2, and

especially the CFSR compared to the ERA-I likely be-

cause of improved reanalysis TC representation resulting

from their use of either vortex relocation or TC wind

profile retrievals (Table 1; e.g., Schenkel and Hart 2012;

Murakami 2014; Hodges et al. 2017).

With these results in mind, the remainder of the

analysis, with the exception of section 3d, only compares

cases where both QSCAT-R and reanalysis TC size are

defined for a given TC size metric. To quantify the

precision of reanalysis TC size estimates, box-and-

whisker plots of the difference between reanalysis and

QSCAT-R TC size are shown for each TC size metric in

the NA (Fig. 4) and WNP (Fig. 5). Regardless of the

basin and TC size metric examined, reanalysis TC size is

generally comparable to QSCAT-R as evidenced by

median TC size differences ranging between 271 and

50 km, which is approximately less than or equal to one

reanalysis grid point (Table 1). Relative to the mag-

nitude of QSCAT-R TC size, the median TC size dif-

ference between reanalyses and QSCAT-R ranges

between 6% and 18%. Moreover, TC size differences

become increasingly negative with increasingly nar-

rower distributions when transitioning from r2 to r12 in

both basins such that r2 is larger and r12 is smaller in

reanalyses than in QSCAT-R. NA TC size differences

are generally less biased for all TC size metrics com-

pared to WNP TCs as evidenced by narrower distribu-

tions and smaller median differences. Finally, the CFSR

and JRA-55 generally have the smallest median TC size

differences and narrowest distributions for most TC size

metrics in each basin, suggestive of the importance

of vortex relocation and TC wind profile retrievals.

However, MERRA-2 exhibits the largest TC size dif-

ferences despite the use of vortex relocation suggesting

FIG. 3. As in Fig. 2, but for WNP TCs. FIG. 4. Box-and-whisker plots for the difference between re-

analysis and QSCAT-R (along the x axis) r2, r4, r6, r8, r10, and

r12 (km) in the NA. The box plot displays the median (black hor-

izontal line near box center), the 95% confidence interval of the

median calculated from a 1000-sample bootstrap approach with

replacement (notches on boxes), the interquartile range (box

perimeter; [q1, q3]), whiskers {black dashed; [q1 2 1.5(q3 2 q1),

q3 1 1.5(q3 2 q1)]}, and outliers (filled circles).

FIG. 5. As in Fig. 4, but for WNP TCs.
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the importance of other factors (e.g., model numerics

and physics; Reed and Jablonowski 2011, 2012; Reed

et al. 2012) in reanalysis TC size representation.

The accuracy of reanalysis TC size relative to

QSCAT-R is depicted in Taylor diagrams containing the

Pearson correlation coefficients, normalized standard

deviations, and root-mean-square difference calculated

between QSCAT-R and each reanalysis for all TC size

metrics in the NA (Fig. 6) and WNP (Fig. 7). Figures 6

and 7 reveal strong, statistically significant correlations

(0.62#R# 0.94; p, 0.05) for all TC sizemetrics in each

reanalysis in the NA and WNP. The vast majority of

normalized standard deviations in Figs. 6 and 7 (0.83 #

sreanalysis/sQSCAT–R # 1.29) are generally close to, but

less than 1, indicating that the variability in reanalysis

TC size is less than QSCAT-R. Of all TC size metrics, r8
exhibits the strongest correlations (0.89#R# 0.94; p�
0.05) with normalized standard deviations closest to 1

(0.90 # sreanalysis/sQSCAT–R # 0.96) in the NA for all re-

analyses, while either r6 (0.83#R# 0.88; p� 0.05; 0.89#

sreanalysis/sQSCAT–R # 0.93) or r10 (0.83 # R # 0.89; p �
0.05; 0.88 # sreanalysis/sQSCAT–R # 0.95) are most com-

parable between WNP reanalysis and QSCAT-R TCs. In

both the NA and WNP, r2 (0.62 # R # 0.82; p , 0.05;

1.11 # sreanalysis/sQSCAT–R # 1.29) is particularly poorly

represented, likely due to the difficulty in separating the

TC wind field from background noise at weak wind speed

thresholds (Chavas and Emanuel 2010; Chavas and Vigh

2014; Chavas and Lin 2016). Relative to the WNP, NA

TCs generally exhibit stronger correlations with normal-

ized standard deviations closer to 1. When comparing

individual reanalyses, both the CFSR and JRA-55 gen-

erally most closely match QSCAT-R TC size as expected

given the supplemental TC initialization used in these

datasets.

Together, the results presented thus far yield the fol-

lowing broader conclusions regarding reanalysis TC size:

d The high precision and accuracy of TC size metrics,

especially r6–r10, in both basins suggest that outer TC

structure is well represented in reanalyses.
d Radii r6–r8 in the NA and r6–r10 in the WNP are

generally the optimal TC size metrics to examine in

each basin given the percentage of defined reanalysis

TC size estimates and their precision and accuracy

relative to QSCAT-R TC size.
d NA TC size is represented with greater accuracy and

precision than WNP TC size in reanalyses.
d The CFSR and JRA-55 are the reanalyses that most

closely match QSCAT-R TC size, suggesting the

importance of supplementing TC initialization with

either vortex relocation or TC wind profile retrievals.

b. Analysis of the radial profile of TC winds

To supplement the prior results on TC size, the me-

dian (solid line) with its 95% confidence interval

FIG. 6. Taylor diagram depicting the Pearson correlation co-

efficients (black solid lines), normalized standard deviations (black

dashed lines), and root-mean-square difference (solid blue lines)

between r2, r4, r6, r8, r10, and r12 (represented by different colors)

from QSCAT-R and each of the four reanalyses. All Pearson

correlation coefficients are statistically significantly different from

0 at the 95% confidence interval for a two-tailed test (p �0.05).

FIG. 7. As in Fig. 6, but for WNP TCs.
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(shading) and the interquartile range (dashed lines) for

the radial profile of the azimuthal-mean 10-m azimuthal

wind in QSCAT-R and each reanalysis are featured for

NA (Fig. 8) and WNP TCs (Fig. 9). The hatched back-

ground denotes radii in which the distributions of re-

analysis and QSCAT-R TC winds are likely not

statistically significantly different according to a two-

sample Kolmogorov–Smirnov test (p . 0.05). Figures 8

and 9 demonstrate that reanalysis TC winds, especially

in the WNP, are generally weaker than QSCAT-R,

consistent with reanalysis r6–r12 largely being smaller

thanQSCAT-R (Figs. 4 and 5). In fact, neither the lower

quartile nor, in some reanalyses, the median wind speed

exceed 12ms21 in the WNP and 10m s21 in the NA at

any radii. Such a result explains why r12 in the WNP and

NA and r10 in the NA are frequently undefined in

reanalyses (Figs. 2 and 3). NA TCs in the CFSR, ERA-I,

and JRA-55 have wind distributions that are not statis-

tically significantly different from QSCAT-R beginning

at radii greater than or equal to 289, 431, and 375 km,

respectively. These radial distances are ;5–7 times the

native model grid spacing in the CFSR, ERA-I, and

JRA-55, consistent with the effective horizontal grid

spacing in other models (e.g., Skamarock 2004), poten-

tially providing a minimum horizontal scale for using

reanalyses to examine various phenomena. Comparison

of Figs. 8 and 9 with Figs. 2 and 3 reveals that r2–r8 are

generally located at radii beyond ;5–7 times the re-

analysis grid spacing, explaining why these TC size radii

are generally regularly defined. Compared to the NA,

WNP reanalysis TC winds are more strongly, and sig-

nificantly, underestimated compared to QSCAT-R at all

radii within all reanalyses (Fig. 9). This result is consis-

tent with the larger differences between reanalysis and

QSCAT-R TC size in the WNP (Fig. 5). Despite the

low bias in WNP reanalysis TC winds, the width of the

interquartile range and shape of the radial profile of

reanalysis and QSCAT-R wind fields are very similar

especially at and radially outward of ;300–400-km ra-

dius (~5–7 times the native model grid spacing)

FIG. 8. Median (solid lines) with their 95% confidence interval calculated from a 1000-sample bootstrap approach

with replacement (shading) and the interquartile range (dashed lines) for the radial profile of the azimuthal-mean 10-m

azimuthal wind (m s21) in QSCAT-R and the (a) CFSR, (b) ERA-I, (c) JRA-55, and (d)MERRA-2 for NATCs. The

hatched background denotes radii at which the distribution of QSCAT-R and reanalysis wind values are likely taken

from the same parent distribution as determined from a two-sample Kolmogorov–Smirnov test (p . 0.05).
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providing some confidence that reanalyses can also

reasonably represent TC structure.

Additional insight is obtained by examining joint

histograms of the azimuthal-mean 10-m azimuthal wind

for NA (Fig. 10) and WNP (Fig. 11) TCs in QSCAT-R

and each reanalysis. One-dimensional histograms of

QSCAT-R and reanalysis winds are located above and

to the right, respectively, of the joint histograms. To

compare the reanalysis and QSCAT-R winds on the

same radial grid, QSCAT-R winds are interpolated to

the horizontal grid spacing of each reanalysis using a

piecewise cubic Hermite interpolating polynomial. Both

Figs. 10 and 11 also include the Pearson correlation co-

efficients calculated between reanalysis and QSCAT-R

winds in each joint histogram. The joint histograms and

their respective correlations (0.77#Rall# 0.89; p� 0.05)

suggest that the reanalysis and QSCAT-R wind fields are

strongly correlated with small biases for QSCAT-R wind

speeds less than or equal to 10ms21 (0.80# R#10# 0.93;

p � 0.05). However, reanalysis winds are strongly un-

derestimated for QSCAT-R wind speeds greater than

10ms21 especially for the ERA-I in the NA (R 5 0.17;

p . 0.05), as well as in other reanalyses in both basins

(0.26 # R#10 # 0.64; p , 0.05) consistent with the un-

derestimation of best-track TC intensity by reanalyses.

Similar to the results for TC size, NA reanalysis TCwinds

generally exhibit stronger correlations with QSCAT-R

thanWNPTCs, especially for TCwinds less than or equal

to 10ms21. While the CFSR, JRA-55, and MERRA-2

most closely match QSCAT-R for all wind speeds, the

CFSR and JRA-55 consistently represent QSCAT-R TC

wind speeds less than or equal to 10ms21 with the

greatest fidelity, which agrees with the results for TC size

(Figs. 4–7).

Consistent with the reanalysis TC size results, the

azimuthal-mean 10-m azimuthal winds in reanalyses

are similar toQSCAT-Rparticularly for wind speeds less

than or equal to 10ms21, providing insight into the

strong correlations and small biases in outer TC size es-

timates, particularly for r6–r10. Most importantly, these

results provide additional evidence suggesting that outer

TC winds are well represented in reanalyses.

c. Trends in the fidelity of reanalysis TC size

The difference between reanalysis and QSCAT-R TC

size exhibits trends with QSCAT-R TC size and TC

FIG. 9. As in Fig. 8, but for WNP TCs.
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latitude. In the interest of brevity, the present section

only examines r8 in the NA and r10 in the WNP given

that the trends for these TC size radii are similar to the

other TC size metrics. Beginning with QSCAT-R TC

size, box-and-whisker plots of the difference between

reanalysis and QSCAT-R TC size and their sample sizes

(shaded bars) are binned according to QSCAT-R r8 in

the NA (Fig. 12) and r10 in theWNP (Fig. 13). Figures 12

and 13 show that increasingly larger QSCAT-R TC size

bins are associated with increasingly negative TC size

differences with broader distributions, which is sup-

ported bymoderate negative correlations between these

two quantities (20.49 # R # 20.29; p , 0.05). The in-

creasing TC size differences for larger QSCAT-R TCs

may be due to increased uncertainty in QSCAT-R TC

size estimates given that outer TC radii are not always

well sampled by the 1800-km QuikSCAT swath widths

(Chavas and Emanuel 2010; Chavas and Vigh 2014;

Chan and Chan 2015a; Chavas et al. 2016). This trend is

particularly strong in the WNP compared to the NA

perhaps because WNP TCs are generally larger thanNA

TCs (e.g., Merrill 1984; Liu and Chan 1999; Chavas and

Emanuel 2010; Knaff et al. 2014).

With regard to the relationship between TC size dif-

ferences and TC latitude, box-and-whisker plots of the

difference between reanalysis and QSCAT-R TC size

and their sample sizes (shaded bars) are binned

according to TC latitude for WNP TCs (Fig. 14). A

similar figure for NATCs is not shown given the absence

of a similar relationship between TC size and TC lati-

tude in that basin (20.05$ R$ 0.13). Figure 14 reveals

that WNP TCs in the ERA-I, JRA-55, and MERRA-2

FIG. 10. Joint histogram (shaded hexagons) of the azimuthal-mean 10-m azimuthal wind (m s21) over the entire

radial profile of TC winds for QSCAT-R and for the (a) CFSR, (b) ERA-I, (c) JRA-55, and (d) MERRA-2 in NA

TCs. QSCAT-Rwinds have been interpolated to each respective reanalysis radial grid point using a piecewise cubic

Hermite interpolating polynomial. The black dashed line denotes the 1:1 line where QSCAT-R and reanalysis

winds have the same values. The histograms above and to the right of each figure denote the distributions of the

azimuthal-mean 10-m azimuthal wind for QSCAT-R and each reanalysis, respectively. Pearson correlation co-

efficients for all grid points (Rall), grid points with QSCAT-R wind speeds# 10m s21 (R#10), and grid points with

QSCAT-Rwind speeds. 10m s21 (R.10) are listed. The number of 6-h IBTrACS data points and distinctly named

TCs (NTC) and the total number of radial grid points (Total Ngrid) are provided for each dataset. All correlation

coefficients are statistically significantly different from zero at the 95% confidence interval for a two-tailed test

(p � 0.05), except for R.10 for ERA-I NA TCs.
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exhibit decreasing TC size differences with increasing

TC latitude as evidenced by decreasing median TC

size differences with narrower distributions. These

reanalyses exhibit weak yet significant correlations

between TC size differences and TC latitude (0.26 #

R # 0.29; p , 0.05). However, the source of these

trends is unclear given the absence of similar trends for

WNP TCs in the CFSR and NA TCs in all reanalyses.

These results suggest that reanalysis TC size, like re-

analysis TC intensity, may be ascribed to both physical

processes and nonphysical model artifacts (e.g., changes

in observing system in space and time; Thorne and Vose

2010; Bosilovich et al. 2013; Parker 2016). Together,

the relationships between TC size differences and

both QSCAT-R TC size and TC latitude may imply that

low-latitude, large WNP TC sizes may be particularly

underestimated.

d. Examining reanalysis TC size throughout
QSCAT-R and satellite eras

Given that outer TC size does not exhibit interdecadal

trends (Knaff et al. 2014), reanalysis TC size distribu-

tions across different time periods (e.g., satellite era)

should be comparable to QSCAT-R. With this in mind,

the current results section compares distributions of

reanalysis TC size for all 6-h IBTrACS TC data during

the QSCAT-R era (2000–09) and during the satellite era

(~1979–2015; Table 1) with the previously examined

distribution of QSCAT-R TC size and the correspond-

ing distribution of reanalysis TC size. Similar to the prior

section, r8 and r10 are used as TC size metrics in the NA

andWNP, respectively, in the interest of brevity. Kernel

density estimates and box-and-whisker plots for each of

these four TC size subsets are featured for r8 in the NA

(Fig. 15) and r10 in the WNP (Fig. 16). It is important to

note that the QSCAT-R TC size distribution (for r12)

has been previously shown to be lognormal (Chavas and

Emanuel 2010; Chavas et al. 2016), which is used as a

benchmark for evaluating the fidelity of reanalysis r8 and

r10 distributions.

Beginning by comparingQSCAT-R r8 and r10 with the

corresponding reanalysis r8 and r10 values, Figs. 15 and

16 reveal that reanalysis r8 in the NA and r10 in theWNP

are qualitatively similar to the QSCAT-R distributions

with positive skewness and approximately lognormal

shape. In fact, Kolmogorov–Smirnov goodness-of-fit

FIG. 11. As in Fig. 10, but for WNP TCs. Note the difference in the shading range in the joint histograms and the

y axes in the one-dimensional histograms compared to Fig. 10.
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testing (p . 0.05) reveals that the reanalysis r8 and r10
distributions are likely lognormally distributed, except

for the MERRA-2 in the NA. The distributions of both

reanalysis r8 and r10 are generally slightly biased toward

smaller valueswith narrower distributions thanQSCAT-R.

In spite of these differences, the distributions of NA r8
in the CFSR, ERA-I, and JRA-55 are likely similar

to the corresponding distribution of QSCAT-R r8 as

suggested by two-sample Kolmogorov–Smirnov testing

(p . 0.31) and median values that are not statistically

significantly different from each other according to a

1000-sample bootstrap approach with replacement

(p . 0.05; Figs. 15 and 16). In contrast, WNP r10 in

QSCAT-R and each reanalysis are not similar as shown

by two-sample Kolmogorov–Smirnov testing (p � 0.01)

and statistically significantly different median TC values

(p , 0.05; Figs. 15 and 16), likely due to the previously

discussed underestimation of WNP TC winds in re-

analyses (Figs. 9 and 11).

Examination of reanalysis r8 and r10 distributions in the

NA and WNP, respectively, for all 6-h IBTrACS data

points during the QSCAT-R era and satellite era reveals

similarities to the QSCAT-R distributions. Specifically,

reanalysis r8 and r10 distributions are approximately

positively skewed with a lognormal shape, while

exhibiting a similar width to QSCAT-R distributions.

However, r8 and r10 distributions during the QSCAT-R

era and satellite era are not technically lognormal ac-

cording to Kolmogorov–Smirnov goodness-of-fit tests

(p , 0.01). Each reanalysis r8 and r10 distribution during

the QSCAT-R era and satellite era is also shifted toward

smaller values in each basin relative to the QSCAT-R

distribution with the exception of the ERA-I in the NA.

Except for the JRA-55 in the NA during the satellite era

(p 5 0.22), none of the CFSR, JRA-55, or MERRA-2 r8
and r10 distributions in the NA and WNP from either the

QSCAT-R era or satellite era are statistically similar to

QSCAT-R or the corresponding reanalysis distributions

as revealed by two-sample Kolmogorov–Smirnov testing

(p, 0.02). In contrast, two-sample Kolmogorov–Smirnov

FIG. 12. Box-and-whisker plots for the difference between re-

analysis and QSCAT-R r8 (km; left y axis) binned according to

QSCAT-R r8 in theNA. The bar plots denote the number of 6-h TC

size data points (N; right y axis) for each set of box and whiskers.

See Fig. 4 for a description of the plotting conventions.

FIG. 13. As in Fig. 12, but binned byQSCAT-R r10 forWNPTCs.

Note the difference in the y-axis range for the bar plots compared

to Fig. 12.

FIG. 14. As in Fig. 4, but binned by TC latitude for WNP TCs.
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testing reveals that the ERA-I r8 distributions in the

NA during both the QSCAT-R era and satellite era are

likely statistically similar to the QSCAT-R distribution

(p. 0.31), while only the ERA-I r10 distribution in the

WNP during the satellite era is likely statistically sim-

ilar to the QSCAT-R distribution (p 5 0.11).

These results for r8 in the NA and r10 in the WNP

suggest that reanalysis TC size distributions are gener-

ally well represented when the TC wind field is well

sampled by QSCAT-R. Moreover, reanalysis TC size is

representedwith reasonable fidelity evenwhenQuikSCAT

data are not assimilated as is suggested by the analysis

of the distributions of r8 and r10 for all 6-h IBTrACS

data points during the QuikSCAT era and satellite era.

In addition to these results, there are several additional

reasons to suggest that reanalysis TC size is generally

well represented. Specifically, QuikSCAT sampled a

small subset of TCs (e.g., 27% of NA TCs and 33% of

WNP TCs; Chan and Chan 2012; Chavas and Vigh

2014; Chavas et al. 2016), which may not be represen-

tative of the entire TC size distribution, suggesting that

discrepancies likely should exist between QSCAT-R

TC sizes and either QSCAT-R era or satellite era TC

sizes. Moreover, QuikSCAT observations are just one

source of lower-tropospheric observations assimilated

into reanalyses that may improve TC size representation

(e.g., aircraft reconnaissance and ship and buoy data),

which are available throughout the satellite era (e.g.,

Hatsushika et al. 2006; Saha et al. 2010; Dee et al. 2011;

Kobayashi et al. 2015). Any observations of TC size

assimilated into the reanalysis will likely improve re-

analysis TC size both during and beyond the time in

which data are assimilated owing to the temporal inertia

associated with the improved representation of TC–

environment interactions. The use of four-dimensional

variational data assimilation in ERA-I and JRA-55 also

allows TC size observations to directly impact the re-

analysis before and after the observing time within these

reanalyses (Dee et al. 2011; Kobayashi et al. 2015).

Moreover, the use of TC wind profile retrievals in the

JRA-55, which accounts for TC size when generating

synthetic dropwindsondes, suggests that the JRA-55

may be particularly well represented even in the ab-

sence of observations (Hatsushika et al. 2006; Onogi

et al. 2007; Kobayashi et al. 2015). These arguments

together with the qualitative similarities (e.g., skewness

and shape) among the various reanalysis TC size dis-

tribution subsets (Figs. 15 and 16) may suggest that re-

analysis TC size is represented with reasonable fidelity

throughout the satellite era.

4. Summary and discussion

The present study has examined the fidelity of several

outer TC size metrics and the outer TC winds (i.e.,

azimuthal-mean 10-m azimuthal wind) for NA and

WNP TCs in four reanalysis datasets through compari-

son with QuikSCAT data (i.e., QSCAT-R). Specifically,

FIG. 15. Box and whiskers and kernel density estimate of NA r8 (km) fromQSCAT-R, reanalysis r8 corresponding to theQSCAT-R r8, all

6-h IBTrACS data points for reanalysis r8 during the QSCAT-R era (2000–09), and all 6-h IBTrACS data points for reanalysis r8 during the

satellite era (1979–2015 for ERA-I and JRA-55; 1980–2015 for MERRA-2; 1979–2010 for CFSR) in the (a) CFSR, (b) ERA-I, (c) JRA-55,

and (d) MERRA-2. The legend entries for each dataset contain the number of 6-h data points and distinctly named TCs (NTC).
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r2, r4, r6, r8, r10, and r12 in the CFSR, ERA-I, JRA-55,

and MERRA-2 are compared against the QSCAT-R

dataset to quantify the frequency in which reanalysis TC

size is defined and how accurate and precise these esti-

mates are. The accuracy and precision of the radial profile

of azimuthal-mean 10-m azimuthal wind for reanalysis

TCs are also analyzed. Trends in the difference between

reanalysis and QSCAT-R TC size with QSCAT-R TC

size and TC latitude are also examined. The final portion

of this study investigates reanalysis TC size for all 6-h

IBTrACS data points during the QSCAT-R era and

satellite era. Based upon these results, the present study

suggests that reanalyses can reasonably represent both

outer TC size and outer TC structure not only when

QuikSCAT data are available for assimilation but likely

throughout the satellite era as well. In particular, the

following conclusions are made for reanalysis TC size:

1) r6–r8 in the NA and r6–r8 in theWNP are the optimal

choices of TC size metrics, 2) NA outer TC size and

outer structure are more accurately represented than

WNP TCs, and 3) the CFSR and JRA-55 generally

depict outer TC size and outer structure with the

greatest fidelity.

More specifically, TC size metrics with wind speed

thresholds less than 10ms21 in the NA and 12ms21 in

the WNP are most frequently defined in reanalyses

given that wind speeds above these thresholds are not

well resolved in reanalysis TCs. The distribution of the

difference between reanalysis and QSCAT-R TC size is

narrower with smaller biases for QSCAT-R TC size

metrics with increasingly larger wind speed thresholds.

Reanalysis TC size metrics are strongly, and statistically

significantly, correlated with QSCAT-R TC size, espe-

cially for the CFSR and JRA-55. The variability of re-

analysis TC size is generally close to but slightly less than

QSCAT-R TC size.

Further insight is provided by examining radial pro-

files of the azimuthal-mean 10-m azimuthal wind re-

vealing that wind speeds at or below ;10m s21 are

strongly, and statistically significantly, correlated in each

reanalysis. While reanalysis TC wind speeds are slightly

underestimated consistent with the TC size results, the

shape and interquartile range of the radial profile of

reanalysis TC winds are very similar to QSCAT-R.

These results suggest that outer TC structure is rela-

tively well represented in reanalyses in both basins. In

contrast, azimuthal-mean 10-m azimuthal winds ex-

ceeding ;10m s21 appear to show a relatively strong,

nonlinear underestimation in reanalyses suggesting that

r12 should not be studied in reanalyses. Additional

analysis reveals that reanalysis TC size representation

may be impacted by increases in TC size error with in-

creasing QSCAT-R TC size in both basins and with

decreasing TC latitude in the WNP.

Last, distributions of r8 in the NA and r10 in the WNP

from QSCAT-R are compared with the corresponding

reanalysis distributions demonstrating that while both

sets of distributions are approximately lognormal, the

reanalysis distributions are slightly narrower and biased

toward smaller values. Distributions of r8 and r10 are

examined in the interest of brevity given that these re-

sults are qualitatively similar to other TC size metrics

FIG. 16. As in Fig. 15, but for r10 (km) in WNP TCs.
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examined in the present study. Analysis of the reanalysis

r8 and r10 distribution for all 6-h IBTrACS data points

during the QSCAT-R era and satellite era reveals

qualitatively similar distributions with a lognormal

shape, positive skewness, and similar width compared to

QSCAT-R TCs, although statistical testing generally

suggests statistically significant differences with

QSCAT-R exist between all reanalyses except the

ERA-I. The similarities between the distributions of r8
and r10 for QSCAT-R TCs and for all 6-h IBTrACS TCs

during the satellite era suggests that reanalysis r8 and

r10 may be reasonably represented during the satellite

era. Together, these results suggest that reanalyses

represent a long-term, objective, and homogeneous

source of TC size estimates and outer TC structure that

may be particularly useful for climatological studies of

TC size.
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