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• Extreme and	persistent warmth	
prevailed	east	of	the	Rocky	
Mountains	during	13–24	March	
2012

• Over	15,000 combined	maximum	
and	high	minimum	temperature	
records	were	broken	during	
March	2012

• March	2012	ranked	as	the	
warmest	March	on	record	for	25	
different	states
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• Surface	temperature	anomalies	
exceeded	15oC	in	the	Upper-
Midwest

• The	North	Pacific	Jet	(NPJ)	was	
shifted	poleward	and	
characterized	by	an	amplified	
flow	pattern

250-hPa	U-Wind	Anomalies	(13–24	March	2012)

250-hPa	V-Wind	Anomalies	(13–24	March	2012)

Surface	Temp.	Anomalies	(13–24	March	2012)
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• Dole	et	al.	(2014)	demonstrated	
that	this	extreme	warm	event	
developed	due	to	the	favorable	
superposition	of	a	number	of	
inter- and	intra-annual	
teleconnection	patterns

250-hPa	U-Wind	Anomalies	(13–24	March	2012)

250-hPa	V-Wind	Anomalies	(13–24	March	2012)

Surface	Temp.	Anomalies	(13–24	March	2012)

March	2012	Heat	Wave



• A	return	to	near-normal	
temperatures	during	
April	2012	posed	
problems	for	fruit	crops	
in	the	Upper	Midwest

• Apple	orchards	in	Iowa,	
Minnesota,	and	
Wisconsin	lost	20–100%	
of	their	crop

• Pear,	plum,	cherry,	and	strawberry	crops	in	southwestern	
Wisconsin	were	also	severely	damaged
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• One	or	several	extreme	temperature	events	(ETEs)	during	a	
single	season	can	contribute	disproportionately	to	temperature	
anomaly	statistics	for	a	particular	season		

• The	disproportionate	contribution	of	ETEs	to	seasonal	
temperature	anomaly	statistics	suggests	that	ETEs	need	to	be	
considered	in	understanding	the	dynamical	and	thermodynamic	
processes	that	operate	at	the	weather–climate	intersection

Project	Motivation
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• One	or	several	extreme	temperature	events	(ETEs)	during	a	
single	season	can	contribute	disproportionately	to	temperature	
anomaly	statistics	for	a	particular	season		

• The	disproportionate	contribution	of	ETEs	to	seasonal	
temperature	anomaly	statistics	suggests	that	ETEs	need	to	be	
considered	in	understanding	the	dynamical	and	thermodynamic	
processes	that	operate	at	the	weather–climate	intersection

• However,	the	antecedent	environments	associated	with	
continental	U.S.	ETEs	exhibit	considerable	NPJ	variability

• The	development	of	an	objective	tool	to	characterize	the	state	
and	evolution	of	the	upper-tropospheric	flow	pattern	over	the	
North	Pacific	is	desirable

Project	Motivation



1) Develop	the	NPJ	Phase	Diagram

2) Examine	the	influence	of	the	prevailing	NPJ	regime	on	the	
downstream	flow	pattern	over	North	America	and	the	
development	of	continental	U.S.	ETEs

3) Examine	the	GEFS	forecast	skill	in	the	context	of	the	NPJ	phase	
diagram

4) Apply	the	NPJ	phase	diagram	to	a	period	characterized	by	
reduced	GEFS	forecast	skill	in	late-February	2017

Outline



The	Development	of	the	
NPJ	Phase	Diagram	



• Removed	the	mean and	the	annual	and	diurnal	cycles	from							
6-hourly,	250-hPa	zonal	wind	data	from	the	CFSR	(1979–2014)	
(Saha et	al.	2014)

• Restricted	data	to	the	cool	season	(Sept.–May)
• Performed	an	EOF	analysis	on	the	zonal	wind	anomalies	within	

the	domain:	10–80°N	,	100°E–120°W

Analysis	techniques	and	resultant	EOF	patterns	are	consistent	
with	related	work	on	the	NPJ:
• Athanasiadis et	al.	(2010)
• Jaffe	et	al.	(2011)
• Griffin	and	Martin	(2017)

The	NPJ	Phase	Diagram



The	NPJ	Phase	Diagram
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250-hPa	wind	speed:	shaded0000	UTC	16	February	2017

Instantaneous	250-hPa	zonal	wind	anomalies	can	be	
projected	onto	EOF	1	and	EOF	2,	resulting	in	a	point	

on	an	NPJ	phase	diagram
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250-hPa	wind	speed:	shaded0000	UTC	18	February	2017
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Analyzed	250-hPa	zonal	wind	anomalies	can	be	
projected	onto	EOF1	and	EOF2	to	describe	the	

evolution	of	the	NPJ
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250-hPa	wind	speed:	shaded0000	UTC	20	February	2017
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250-hPa	wind	speed:	shaded0000	UTC	22	February	2017
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250-hPa	wind	speed:	shaded0000	UTC	24	February	2017
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250-hPa	wind	speed:	shaded0000	UTC	26	February	2017
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Influence	of	the	Prevailing	NPJ	
Regime	on	North	American	

Weather	



NPJ	Regime	Composites
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250-hPa	Wind	Speed	(shading),	Geo.	Heights	(contours),	Geo.	Height	Anom.	(contours):
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250-hPa	Wind	Speed	(shading),	Geo.	Heights	(contours),	Geo.	Height	Anom.	(contours):
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250-hPa	Wind	Speed	(shading),	Geo.	Heights	(contours),	Geo.	Height	Anom.	(contours):

m s–1

K

–2

–1

0

1

2

3

–3
–3 –2 –1 0 1 2 3

PC 1

PC
 2

Poleward Shift

Equatorward Shift

8

 Je
t R

et
ra

ct
io

n

Je
t E

xt
en

si
on

MSLP	Anom.	(contours),	850-hPa	Temp.	Anom.	(shading):

Poleward	Shift	D+4 N	=	189	

99%	Conf.	Interval

L

H



250-hPa	Wind	Speed	(shading),	Geo.	Heights	(contours),	Geo.	Height	Anom.	(contours):
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Extreme	Temperature	Events:
• Employed	1-h	forecasts	of	2-m	temperature	from	the	CFSR				

(0.5°× 0.5°)	at	6-h	intervals	during	1979–2014	(Saha et	al.	2014)

• Compiled	times	during	which	at	least	one	grid	point	was	
characterized	by	a	temperature	<	1st percentile	or >	99th
percentile within	separate	domains	over	the	western	and	
eastern	U.S.	

Western	U.S. Eastern	U.S.

• Identified	times	that	
ranked	in	the	top	5% in	
terms	of	the	number	of	
grid	points	< 1st	
percentile or >	99th
percentile as	extreme	
temperature	events

NPJ	Regime	Characteristics
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• Surface	temperature	anomalies	
exceeded	15oC	in	the	Upper-
Midwest

• The	North	Pacific	Jet	(NPJ)	was	
shifted	poleward	and	
characterized	by	an	amplified	
flow	pattern

250-hPa	U-Wind	Anomalies	(13–24	March	2012)
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Summary:	NPJ	Regime	Characteristics

• The	NPJ	phase	diagram	is	a	tool	that	objectively	characterizes	the	
state	and	evolution	of	the	upper-tropospheric	flow	pattern	over	
the	North	Pacific

• The	NPJ	phase	diagram	characterizes	the	relationship	between	
each	NPJ	regime	and	the	downstream	flow	pattern	over	North	
America

• The	NPJ	phase	diagram	illuminates	the	variability	that	
characterizes	the	antecedent	environments	associated	with	
continental	U.S.	extreme	temperature	events



Summary:	NPJ	Regime	Characteristics

• The	NPJ	phase	diagram	is	a	tool	that	objectively	characterizes	the	
state	and	evolution	of	the	upper-tropospheric	flow	pattern	over	
the	North	Pacific

• The	NPJ	phase	diagram	characterizes	the	relationship	between	
each	NPJ	regime	and	the	downstream	flow	pattern	over	North	
America

• The	NPJ	phase	diagram	illuminates	the	variability	that	
characterizes	the	antecedent	environments	associated	with	
continental	U.S.	extreme	temperature	events

• Knowledge	of	both	the	downstream	upper-tropospheric	flow	
pattern	and	forecast	skill	associated	with	each	NPJ	regime	
offers	the	potential	to	increase	confidence	in	operational	
temperature	forecasts	over	the	continental	U.S.



GEFS	Forecast	Skill	in	the	
Context	of	the	NPJ	Phase	

Diagram



NPJ	Phase	Diagram	Forecast	Skill
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Forecasts	initialized	during	jet	retractions	exhibit	significantly	larger	errors	than	
jet	extensions	in	the	192–216-h	forecast	period
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NPJ	Regime	Forecast	Frequency
The	percent	frequency	that	an	NPJ	regime	is	over/under	forecast	relative	to	

verification	at	various	forecast	lead	times	in	the	GEFS	ensemble	mean	reforecasts
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Best/Worst	NPJ	Phase	Diagram	Forecasts

Comparison	between	the	periods	characterized	by	the	best/worst	
medium-range	forecasts

Criteria:	Forecasts	must	rank	in	the	top/bottom	10%	in	terms	of	both:
(1) The	average	GEFS	ensemble	mean error	in	the	Day	8	and	9	forecasts	
(2) The	average	GEFS	ensemble	member error	in	the	Day	8	and	9	forecasts



Best/Worst	NPJ	Phase	Diagram	Forecasts

Ensemble	Mean	Position
Individual	Ens.	Member

Verification

Hypothetical	Best	Forecast

Comparison	between	the	periods	characterized	by	the	best/worst	
medium-range	forecasts

Criteria:	Forecasts	must	rank	in	the	top/bottom	10%	in	terms	of	both:
(1) The	average	GEFS	ensemble	mean error	in	the	Day	8	and	9	forecasts	
(2) The	average	GEFS	ensemble	member error	in	the	Day	8	and	9	forecasts



Best/Worst	NPJ	Phase	Diagram	Forecasts

Ensemble	Mean	Position
Individual	Ens.	Member

Verification

Hypothetical	Best	ForecastRepresents	a	forecast	with	
negligible	ensemble	mean	

error
(1)	Ens.	Mean	error	≈	0

Comparison	between	the	periods	characterized	by	the	best/worst	
medium-range	forecasts

Criteria:	Forecasts	must	rank	in	the	top/bottom	10%	in	terms	of	both:
(1) The	average	GEFS	ensemble	mean error	in	the	Day	8	and	9	forecasts	
(2) The	average	GEFS	ensemble	member error	in	the	Day	8	and	9	forecasts



Best/Worst	NPJ	Phase	Diagram	Forecasts

Ensemble	Mean	Position
Individual	Ens.	Member

Verification

Hypothetical	Best	ForecastRepresents	a	forecast	with	
negligible	ensemble	member	

error

(2)	Avg.	Ens.	Member	error	≈	0

Comparison	between	the	periods	characterized	by	the	best/worst	
medium-range	forecasts

Criteria:	Forecasts	must	rank	in	the	top/bottom	10%	in	terms	of	both:
(1) The	average	GEFS	ensemble	mean error	in	the	Day	8	and	9	forecasts	
(2) The	average	GEFS	ensemble	member error	in	the	Day	8	and	9	forecasts

(1)	Ens.	Mean	error	≈	0



Best/Worst	NPJ	Phase	Diagram	Forecasts

Ensemble	Mean	Position
Individual	Ens.	Member

Verification

Hypothetical	Intermediate	Forecast

Comparison	between	the	periods	characterized	by	the	best/worst	
medium-range	forecasts

Criteria:	Forecasts	must	rank	in	the	top/bottom	10%	in	terms	of	both:
(1) The	average	GEFS	ensemble	mean error	in	the	Day	8	and	9	forecasts	
(2) The	average	GEFS	ensemble	member error	in	the	Day	8	and	9	forecasts



Best/Worst	NPJ	Phase	Diagram	Forecasts

Ensemble	Mean	Position
Individual	Ens.	Member

Verification

Represents	a	forecast	with	
negligible	ensemble	mean	

error

Comparison	between	the	periods	characterized	by	the	best/worst	
medium-range	forecasts

Criteria:	Forecasts	must	rank	in	the	top/bottom	10%	in	terms	of	both:
(1) The	average	GEFS	ensemble	mean error	in	the	Day	8	and	9	forecasts	
(2) The	average	GEFS	ensemble	member error	in	the	Day	8	and	9	forecasts

(1)	Ens.	Mean	error	≈	0

Hypothetical	Intermediate	Forecast



Best/Worst	NPJ	Phase	Diagram	Forecasts

Ensemble	Mean	Position
Individual	Ens.	Member

Verification

Represents	a	forecast	with	
considerable	ensemble	

member	error

(2)	Avg.	Ens.	Member	error	>>	0

Comparison	between	the	periods	characterized	by	the	best/worst	
medium-range	forecasts

Criteria:	Forecasts	must	rank	in	the	top/bottom	10%	in	terms	of	both:
(1) The	average	GEFS	ensemble	mean error	in	the	Day	8	and	9	forecasts	
(2) The	average	GEFS	ensemble	member error	in	the	Day	8	and	9	forecasts

(1)	Ens.	Mean	error	≈	0

Hypothetical	Intermediate	Forecast



Best/Worst	NPJ	Phase	Diagram	Forecasts

Ensemble	Mean	Position
Individual	Ens.	Member

Verification

Hypothetical	Worst	Forecast

Comparison	between	the	periods	characterized	by	the	best/worst	
medium-range	forecasts

Criteria:	Forecasts	must	rank	in	the	top/bottom	10%	in	terms	of	both:
(1) The	average	GEFS	ensemble	mean error	in	the	Day	8	and	9	forecasts	
(2) The	average	GEFS	ensemble	member error	in	the	Day	8	and	9	forecasts



Best/Worst	NPJ	Phase	Diagram	Forecasts

Ensemble	Mean	Position
Individual	Ens.	Member

Verification

Hypothetical	Worst	ForecastRepresents	a	forecast	with	
considerable	ensemble	mean	

error
(1)	Ens.	Mean	error	>>	0

Comparison	between	the	periods	characterized	by	the	best/worst	
medium-range	forecasts

Criteria:	Forecasts	must	rank	in	the	top/bottom	10%	in	terms	of	both:
(1) The	average	GEFS	ensemble	mean error	in	the	Day	8	and	9	forecasts	
(2) The	average	GEFS	ensemble	member error	in	the	Day	8	and	9	forecasts



Best/Worst	NPJ	Phase	Diagram	Forecasts

Ensemble	Mean	Position
Individual	Ens.	Member

Verification

Hypothetical	Worst	ForecastRepresents	a	forecast	with	
considerable	ensemble	

member	error

(2)	Avg.	Ens.	Member	error	>>	0

Comparison	between	the	periods	characterized	by	the	best/worst	
medium-range	forecasts

Criteria:	Forecasts	must	rank	in	the	top/bottom	10%	in	terms	of	both:
(1) The	average	GEFS	ensemble	mean error	in	the	Day	8	and	9	forecasts	
(2) The	average	GEFS	ensemble	member error	in	the	Day	8	and	9	forecasts

(1)	Ens.	Mean	error	>>	0



Extend Retract Poleward Equator. Origin

Best	Forecasts	
(N=475)

77 63 63 61 211

Worst	Forecasts	
(N=763)

90 145 90 112 326

Best/Worst	Ratio	
(Ave =	0.62)

0.86 0.43 0.70 0.54 0.65

Best/Worst	NPJ	Phase	Diagram	Forecasts

Comparison	between	the	periods	characterized	by	the	best/worst	
medium-range	forecasts



Extend Retract Poleward Equator. Origin

Best	Forecasts	
(N=475)

77 63 63 61 211

Worst	Forecasts	
(N=763)

90 145 90 112 326

Best/Worst	Ratio	
(Ave =	0.62)

0.86 0.43 0.70 0.54 0.65

Best/Worst	NPJ	Phase	Diagram	Forecasts

Comparison	between	the	periods	characterized	by	the	best/worst	
medium-range	forecasts

• The	best	forecasts	occur	disproportionately	more	during	jet	extensions	and	
poleward shifts

• The	worst	forecasts	occur	disproportionately	more	during	jet	retractions	and	
equatorward shifts



Avg.	
ΔPC1

Avg.	
ΔPC2

Avg. 10-d Traj.	
Length.

Best	Forecasts	
(N=475)

0.09 0.16 3.50	
PC	units

Worst	Forecasts	
(N=763)

0.01 –0.21 4.33	
PC	units

Best/Worst	NPJ	Phase	Diagram	Forecasts

Comparison	between	the	periods	characterized	by	the	best/worst	
medium-range	forecasts

• The	best	forecast	periods	are	typically	characterized	by	poleward shifts	over	the	
next	10	days	and	anomalously	short	trajectories	within	the	NPJ	phase	diagram

• The	worst	forecast	periods	are	typically	characterized	by	equatorward shifts	over	
the	next	10	days	and	anomalously	long	trajectories	within	the	NPJ	phase	diagram

Poleward
Shift

Equatorward
Shift

Statistically	
significant	at	the	
99.9%	confidence	

interval



Extend Retract Poleward Equator. Origin

Best	Forecasts	
(N=475)

77 63 63 61 211

Worst	Forecasts	
(N=763)

90 145 90 112 326

Best/Worst	Ratio	
(Ave =	0.62)

0.86 0.43 0.70 0.54 0.65

Best/Worst	NPJ	Phase	Diagram	Forecasts

Comparison	between	the	periods	characterized	by	the	best/worst	
medium-range	forecasts

What	are	the	synoptic	flow	patterns	associated	with	the	best	and	
worst	forecasts	initialized	during	a	particular	NPJ	regime?



Extend Retract Poleward Equator. Origin

Best	Forecasts	
(N=475)

77 63 63 61 211

Worst	Forecasts	
(N=763)

90 145 90 112 326

Best/Worst	Ratio	
(Ave =	0.62)

0.86 0.43 0.70 0.54 0.65

Best/Worst	NPJ	Phase	Diagram	Forecasts

Comparison	between	the	periods	characterized	by	the	best/worst	
medium-range	forecasts

What	are	the	synoptic	flow	patterns	associated	with	the	best	and	
worst	forecasts	initialized	during	a	particular	NPJ	regime?



Initialization	of	a	Worst	Forecast	during	Jet	Retraction		(N=145)

Initialization	of	a	Best	Forecast	during	Jet	Retraction	(N=63)

m s–1

250	hPa

250	hPa

m s–1



m

250	hPa

• Relative	to	the	best	forecast	periods,	the	worst	forecast	
periods	are	frequently	characterized	by	significantly	higher	
heights	over	the	eastern	North	Pacific	at	the	time	of	forecast	
initialization

99%	Conf.	Interval

Composite	Difference:	(Worst	– Best)	at	0	h



8	days	following	a	Worst	Forecast	during	Jet	Retraction		(N=145)

8	days	following	a	Best	Forecast	during	Jet	Retraction	(N=63)

m s–1

m s–1

250	hPa

250	hPa



m

250	hPa

99%	Conf.	Interval

Composite	Difference:	(Worst	– Best)	at	192	h

• Relative	to	the	best	forecast	periods,	the	worst	forecast	
periods	are	frequently	characterized	by	significantly	higher	
heights	at	high	latitudes	and	significantly	lower	heights	at	
low	latitudes	over	the	North	Pacific

• The	above	composite	difference	pattern	suggests	that	the	
worst	forecast	periods	are	often	associated	with	upper-
tropospheric	blocking	events	over	the	North	Pacific



m

(a) Jet Extension (b) Jet Retraction

(c) Poleward Shift (d) Equatorward Shift

99%	Conf.	Interval

Composite	Difference:	(Worst	– Best)	at	0	h

• Relative	to	the	best	forecasts,	the	worst	forecast	periods	exhibit	
significantly	higher	heights	over	the	eastern	North	Pacific	
irrespective	of	the	NPJ	regime	at	the	time	of	forecast	initialization



m

(a) Jet Extension (b) Jet Retraction

(c) Poleward Shift (d) Equatorward Shift

99%	Conf.	Interval

• The	composite	differences	suggest	that	the	worst	forecast	periods	
are	often	associated	with	upper-tropospheric	blocking	events	over	
the	North	Pacific	8	days	following	forecast	initialization	irrespective	
of	the	NPJ	regime	at	the	time	of	forecast	initialization

Composite	Difference:	(Worst	– Best)	at	192	h



Summary:	GEFS	Forecast	Skill
• Forecasts	initialized	during	jet	retractions	are	characterized	by	

larger	errors	than	those	initialized	during	jet	extensions

• Forecasts	verifying	during	jet	retractions	and	equatorward	shifts	
are	characterized	by	substantially	larger	errors	than	those	
verifying	during	jet	extensions	and	poleward	shifts



Summary:	GEFS	Forecast	Skill
• Forecasts	initialized	during	jet	retractions	are	characterized	by	

larger	errors	than	those	initialized	during	jet	extensions

• Forecasts	verifying	during	jet	retractions	and	equatorward	shifts	
are	characterized	by	substantially	larger	errors	than	those	
verifying	during	jet	extensions	and	poleward	shifts

• The	worst	forecasts	are	more	frequently	initialized	during	jet	
retractions and	equatorward	shifts

• The	worst	forecast	periods	are	associated	with	equatorward	
shifts and	longer	trajectories	within	the	NPJ	phase	diagram	
during	the	10-day	period	following	forecast	initialization

• The	worst	forecast	periods	are	often	associated	with	upper-
tropospheric	blocking	events	over	the	North	Pacific



Application	of	the	NPJ	Phase	
Diagram



Time	series	of	2016–2017	GEFS	ensemble	mean	
9-day	forecast	error	classified	by	initialization	date	

Real	Time	NPJ	Phase	Diagram	Forecasts



9-day	NPJ	phase	
diagram	forecasts	
initialized	during	

December,	
February,	and	

early-March	were	
characterized	by	
substantial	errors

Time	series	of	2016–2017	GEFS	ensemble	mean	
9-day	forecast	error	classified	by	initialization	date	

Real	Time	NPJ	Phase	Diagram	Forecasts



ESRL

Composite	Temperature	Anomalies	20–28	Feb

February	2017	NPJ	Regime	Change

An	NPJ	regime	change	in	
late-February	2017	
ushered	anomalously	

warm/cold	
temperatures	into	the	
eastern/western	U.S.	
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0000	UTC	16	February: 250-hPa	Jet	(shading)	and	Precipitable Water	Anom.	(shading)

0000	UTC	16	February: MSLP	(contours),	Thick.	(contours),	850-hPa	Temp.	Anom.	(shading)
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0000	UTC	18	February: 250-hPa	Jet	(shading)	and	Precipitable Water	Anom.	(shading)

0000	UTC	18	February: MSLP	(contours),	Thick.	(contours),	850-hPa	Temp.	Anom.	(shading)
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0000	UTC	20	February: 250-hPa	Jet	(shading)	and	Precipitable Water	Anom.	(shading)

0000	UTC	20	February: MSLP	(contours),	Thick.	(contours),	850-hPa	Temp.	Anom.	(shading)
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0000	UTC	22	February: 250-hPa	Jet	(shading)	and	Precipitable Water	Anom.	(shading)

0000	UTC	22	February: MSLP	(contours),	Thick.	(contours),	850-hPa	Temp.	Anom.	(shading)
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0000	UTC	24	February: 250-hPa	Jet	(shading)	and	Precipitable Water	Anom.	(shading)

0000	UTC	24	February: MSLP	(contours),	Thick.	(contours),	850-hPa	Temp.	Anom.	(shading)
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0000	UTC	26	February: 250-hPa	Jet	(shading)	and	Precipitable Water	Anom.	(shading)

0000	UTC	26	February: MSLP	(contours),	Thick.	(contours),	850-hPa	Temp.	Anom.	(shading)
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0000	UTC	26	February: 250-hPa	Jet	(shading)	and	Precipitable Water	Anom.	(shading)

0000	UTC	26	February: MSLP	(contours),	Thick.	(contours),	850-hPa	Temp.	Anom.	(shading)

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

PC 1

PC
 2

Je
t R

et
ra

ct
io

n

Je
t E

xt
en

si
on

Equatorward Shift

Poleward Shift

Substantial	Jet	
Retraction

L3



−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

PC 1

PC
 2

Events	during
Sept.	– May	

projected	onto	
phase	diagram

Equatorward Shift

EXTREME	COLD	EVENTS	(N	=	196)

–120 –100 –90–110

40

50

–80

30

–70

Je
t	E

xt
en

sio
n

Je
t	R

et
ra
ct
io
n

Western	U.S.	– All	Events

Poleward Shift

23%

Extreme	Cold	Event	Centroids

Each	‘x’ is	an	
average	of	the	

PCs
3–7	days	prior	
to	an	event

19–23	Feb.	2017

30%

27%

20%



• Recall,	the	worst	NPJ	phase	diagram	forecasts	initialized	during	a	
jet	extension	are	frequently	associated	with	significantly	higher	
heights	over	the	North	Pacific	and	significantly	lower	heights	
over	North	America	8	days	after	forecast	initialization

m

250	hPa

99%	Conf.	Interval

Composite	Difference:	(Worst	– Best)	at	192	h

February	2017	NPJ	Regime	Change



m s–1 σ

0000	UTC	26	February: 250-hPa	Jet	(shading)	and	Precipitable Water	Anom.	(shading)

m

250	hPa

99%	Conf.	Interval

Composite	Difference:	(Worst	– Best)	at	192	h
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Verified NPJ Phase Diagram from 0000 UTC 17 Feb 2017
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Verified NPJ Phase Diagram from 0000 UTC 17 Feb 2017
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• The	GEFS	
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was	likely

• The	GEFS	
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capture	an	
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• This	9-day	forecast	
ranked	2nd worst	
during	the	2016–
2017	cool	season
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GEFS	Reforecasts	
verifying during	a	
particular	NPJ	

regime

Forecasts	verifying	during	equatorward shifts	and	jet	retractions	exhibit	significantly	
larger	errors	than	jet	extensions	and	poleward shifts	in	the	96–216-h	forecast	period

Circles	on	a	particular	
line	indicate	

statistically	significant	
differences	at	the	99%	
confidence	level	with	
respect	to	another	NPJ	

regime



Summary:	February	2017	NPJ	Regime	Change

• Knowledge	of	both	the	forecast	skill	and	the	downstream	upper-
tropospheric	flow	pattern	associated	with	each	NPJ	regime	offers	
the	potential	to	increase	confidence	in	operational	temperature	
forecasts	over	the	continental	U.S.

• The	retraction and	equatorward	shift	of	the	NPJ	in	late-February	
2017	was	associated	with	the	development	of	an	upper-
tropospheric	block	over	the	North	Pacific,	as	well	as	above-
normal/below-normal	temperatures	in	the	eastern/western	U.S.

• The	NPJ	regime	transition	towards	a	jet	retraction	and	
equatorward	shift	was	characterized	by	large	medium-range	NPJ	
phase	diagram	forecast	errors



• A	web	interface	has	been	developed	that	offers	real	time	NPJ	
phase	diagram	forecasts	and	extreme	event	composites:	

http://www.atmos.albany.edu/facstaff/awin
ters/realtime/About_EOFs.php

NPJ	Phase	Diagram	Web	Interface



NPJ	Phase	Diagram	Web	Interface



• A	web	interface	has	been	developed	that	offers	real	time	NPJ	
phase	diagram	forecasts	and	extreme	event	composites:	

http://www.atmos.albany.edu/facstaff/awin
ters/realtime/About_EOFs.php

Contact:	 acwinters@albany.edu

Collaborators:	Mike	Bodner (WPC),	Arlene	Laing	(NOAA),	Dan	
Halperin (WPC),	Bill	Lamberson (WPC),	Josh	
Kastman (WPC),	and	Sara	Ganetis (WPC)

NPJ	Phase	Diagram	Web	Interface
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NPJ Regime	Characteristics
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• The	frequency	of	each	NPJ	regime	exhibits	considerable	
inter-annual	and	intra-annual	variability



NOAA/ESRL

• A	positive	PNA	pattern	is	
characterized	by	above-
normal	250-hPa	zonal	wind	
speed	in	the	exit	region	of	
the	climatological	NPJ

• A	negative	PNA	pattern	is	
characterized	by	below-
normal 250-hPa	zonal	wind	
speed	in	the	exit	region	of	
the	climatological	NPJ

Composite	250-hPa	Zonal	Wind	Anomalies	(m	s–1)

+PNA

–PNA

NPJ	Regime	Characteristics
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• Jet	extensions	
and	poleward	
shifts are	favored	
during	a	positive	
PNA

• Jet	retractions	
and	equatorward	
shifts	are	favored	
during	a	negative	
PNA
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NPJ	Regime	Characteristics

• El	Niño	favors	anomalously	strong	zonal	wind	speed	east	of	the	
dateline	over	the	North	Pacific

• La	Niña	favors	anomalously	weak	zonal	wind	speed	east	of	the	
dateline	over	the	North	Pacific

El	Niño La	Niña

Composite	250-hPa	Zonal	Wind	Anomalies	(m	s–1) Composite	250-hPa	Zonal	Wind	Anomalies	(m	s–1)

NOAA/ESRL



NPJ	Regime	Characteristics

• Jet	extensions	
and	equatorward	
shifts	are			
favored	during	an	
El	Niño

• Jet	retractions	
and	poleward	
shifts	are			
favored	during	a	
La	Niña
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NPJ	Regime	Characteristics

• The	Madden–Julian	Oscillation	
(MJO)	is	a	leading	mode	of	
intra-annual	variability	in	the	
tropics	with	a	period	of	30–60	
days

Nov–Mar	Composite	Daily	Precipitation	(mm) Climate	Prediction	Center



• The	Madden–Julian	Oscillation	
(MJO)	is	a	leading	mode	of	
intra-annual	variability	in	the	
tropics	with	a	period	of	30–60	
days

• The	MJO	is	characterized	by	an	
eastward	propagating	region	of	
enhanced	convection	in	the	
equatorial	Indian	and	Pacific	
Oceans	

Nov–Mar	Composite	Daily	Precipitation	(mm) Climate	Prediction	Center
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• The	Madden–Julian	Oscillation	
(MJO)	is	a	leading	mode	of	
intra-annual	variability	in	the	
tropics	with	a	period	of	30–60	
days

• The	MJO	is	characterized	by	an	
eastward	propagating	region	of	
enhanced	convection	in	the	
equatorial	Indian	and	Pacific	
Oceans	

• The	location	of	convection						
can	strongly	modulate	the	
midlatitude circulation

Nov–Mar	Composite	Daily	Precipitation	(mm) Climate	Prediction	Center

NPJ	Regime	Characteristics
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• Jet	retractions	
are	favored	
during	Phases	2,	
3,	and	4

• Poleward	shifts	
are	favored	
during	Phases	5	
and	6

• Jet	extensions	
are	favored	
during	Phases	7,	
8,	and	1

NPJ	Regime	Characteristics
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Extreme	Event	Identification
Extreme	Warm	Events:
• Employed	1-h	forecasts	of	2-m	temperature	from	the	CFSR				

(0.5°× 0.5°)	at	6-h	intervals	(Saha et	al.	2014)

• Compiled	data	for	each	grid	
point	within	21-day	windows	
centered	on	each	analysis	
time	for	36	years,	1979–2014
• Each	grid	point	has	756	(21	× 36)	
data	points	for	each	analysis	time

• Determined	the	temperature	
that	corresponds	to	the	99th
percentile	for	each	grid	point	
at	a	given	analysis	time
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Extreme	Event	Identification

Eastern	U.S.Western	U.S.



Extreme	Event	Identification
Extreme	Warm	Events:
• Cataloged	times	during	which	at	least	one	grid	point	was	

characterized	by	a	temperature	> 99th percentile

• Ranked	times	within	each	
domain	by	the	number	of	
grid	points > 99th percentile

• Identified	times	that	rank	in	
the	top	5% in	terms	of	the	
number	of	grid	points	>	99th
percentile within	each	
domain	as	extreme	warm	
events
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Eastern US

95th Percentile: 
224 grid points

Maximum: 
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Frequency	distribution	of	times	exhibiting	at	
least	one	grid	point	>	99th percentile



Western	U.S.	Domain

Extreme	Warm	Events:
264	Events
Areal	Coverage	Threshold:

144	grid	points
(~5.5°×5.5° box)

Extreme	Cold	Events:
269	Events
Areal	Coverage	Threshold:	

125	grid	points	
(~5.0°×5.0° box)

Extreme	Event	Identification
Eastern	U.S.	Domain

Extreme	Warm	Events:
304	Events
Areal	Coverage	Threshold:

224	grid	points
(~7.0°×7.0° box)

Extreme	Cold	Events:
225	Events
Areal	Coverage	Threshold:	

221	grid	points	
(~7.0°×7.0° box)



Extreme	Event	Identification
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Extreme	Warm	Event	Centroids:	Eastern	U.S.	Domain	(N	=	304)



Extreme	Event	Identification
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Extreme	Warm	Event	Centroids:	Eastern	U.S.	Domain	(N	=	304)

Northern	Plains	Cluster	(N=116)
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Eastern	U.S.	Cluster	(N=86)

3	geographic	clusters	
objectively	identified	

using	a	k-means	
clustering	algorithm



Extreme	Event	Identification
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Extreme	Warm	Event	Centroids:	Eastern	U.S.	Domain	(N	=	304)

Northern	Plains	Cluster	(N=116)
Southern	Plains	Cluster	(N=102)
Eastern	U.S.	Cluster	(N=86)

Considerable	North	
Pacific	Jet	variability	
characterizes	the	

antecedent	
environments	associated	

with	events	in	each	
geographic	cluster
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Extreme	Cold	Event	Centroids:	Eastern	U.S.	Domain	(N	=	225)

250-hPa	North	Pacific	Zonal	Wind	Variability

Northern	Plains	Cluster	(N=65)
Southern	Plains	Cluster	(N=58)
Southeast	Cluster	(N=50)
Northeast	Cluster	(N=52)

4 geographic	clusters	
objectively	identified	

using	a	k-means	
clustering	algorithm
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Extreme	Cold	Event	Centroids:	Eastern	U.S.	Domain	(N	=	225)

Projecting	antecedent	environments	associated	with	extreme	cold	events	onto	the	
North	Pacific	Jet	phase	diagram	can	identify	flow	patterns	conducive	to	the	

development	of	these	events

250-hPa	North	Pacific	Zonal	Wind	Variability
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Southern	Plains	Cluster	(N=58)
Southeast	Cluster	(N=50)
Northeast	Cluster	(N=52)



−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

PC 1

PC
 2

Events	during
Sept.	– May	

projected	onto	
phase	diagram

Poleward Shift

Equatorward Shift

14

26

4

4

COLD	EVENTS	(N	=	48)

–120 –100 –90–110

40

50

–80

30

–70

Je
t	E

xt
en

sio
n

Je
t	R

et
ra
ct
io
n

Eastern	U.S.	– S.	Plains	Cluster Extreme	Cold	Event	Centroids

Each	point	is	an	
average	of	the	

PCs
3–7	days	prior	
to	an	event

Mean	Projection–4



−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

PC 1

PC
 2

Events	during
Sept.	– May	

projected	onto	
phase	diagram

Poleward Shift

Equatorward Shift

14

26

4

4

COLD	EVENTS	(N	=	48)

–120 –100 –90–110

40

50

–80

30

–70

Je
t	E

xt
en

sio
n

Je
t	R

et
ra
ct
io
n

Eastern	U.S.	– S.	Plains	Cluster Extreme	Cold	Event	Centroids

Each	point	is	an	
average	of	the	

PCs
3–7	days	prior	
to	an	event

–4



m	s–1

L
H H

m	s–1

250-hPa	Wind	Speed,	Geo.	Heights,	Std.	Height	Anomalies:	Day	−8

Mean	Sea-Level	Pressure,	1000–500-hPa	Thickness,	850-hPa	Std.	Temp.	Anomalies:	Day	−8

σ



m	s–1

L H H

m	s–1

250-hPa	Wind	Speed,	Geo.	Heights,	Std.	Height	Anomalies:	Day	−7

Mean	Sea-Level	Pressure,	1000–500-hPa	Thickness,	850-hPa	Std.	Temp.	Anomalies:	Day	−7

σ



m	s–1

L H

H

H

m	s–1

250-hPa	Wind	Speed,	Geo.	Heights,	Std.	Height	Anomalies:	Day	−6

Mean	Sea-Level	Pressure,	1000–500-hPa	Thickness,	850-hPa	Std.	Temp.	Anomalies:	Day	−6

σ



m	s–1

L
H

H

250-hPa	Wind	Speed,	Geo.	Heights,	Std.	Height	Anomalies:	Day	−5

Mean	Sea-Level	Pressure,	1000–500-hPa	Thickness,	850-hPa	Std.	Temp.	Anomalies:	Day	−5

σ

m	s–1



m	s–1

L
H

H

250-hPa	Wind	Speed,	Geo.	Heights,	Std.	Height	Anomalies:	Day	−4		

Mean	Sea-Level	Pressure,	1000–500-hPa	Thickness,	850-hPa	Std.	Temp.	Anomalies:	Day	−4

σ

m	s–1



m	s–1

L
H

L

250-hPa	Wind	Speed,	Geo.	Heights,	Std.	Height	Anomalies:	Day	−3

Mean	Sea-Level	Pressure,	1000–500-hPa	Thickness,	850-hPa	Std.	Temp.	Anomalies:	Day	−3

σ

m	s–1



m	s–1

L HL

250-hPa	Wind	Speed,	Geo.	Heights,	Std.	Height	Anomalies:	Day	−2

Mean	Sea-Level	Pressure,	1000–500-hPa	Thickness,	850-hPa	Std.	Temp.	Anomalies:	Day	−2

σ

m	s–1



m	s–1

L H

250-hPa	Wind	Speed,	Geo.	Heights,	Std.	Height	Anomalies:	Day	−1		

Mean	Sea-Level	Pressure,	1000–500-hPa	Thickness,	850-hPa	Std.	Temp.	Anomalies:	Day	−1		

σ

m	s–1



m	s–1

L
H

L
σ

250-hPa	Wind	Speed,	Geo.	Heights,	Std.	Height	Anomalies:	Day	0

Mean	Sea-Level	Pressure,	1000–500-hPa	Thickness,	850-hPa	Std.	Temp.	Anomalies:	Day	0		

m	s–1



−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

PC 1

PC
 2

Events	during
Sept.	– May	

projected	onto	
phase	diagram

Poleward Shift

Equatorward Shift

9

20

18

31

COLD	EVENTS	(N	=	78)

–120 –100 –90–110

40

50

–80

30

–70

Je
t	E

xt
en

sio
n

Je
t	R

et
ra
ct
io
n

Western	U.S.	– Pac.	NW	Cluster Extreme	Cold	Event	Centroids

Each	point	is	an	
average	of	the	

PCs
3–7	days	prior	
to	an	event

Mean	Projection–4



−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

PC 1

PC
 2

Events	during
Sept.	– May	

projected	onto	
phase	diagram

Poleward Shift

Equatorward Shift

27

27

22

13

WARM	EVENTS	(N	=	89)

–120 –100 –90–110

40

50

–80

30

–70

Je
t	E

xt
en

sio
n

Je
t	R

et
ra
ct
io
n

Western	U.S.	– Pac.	NW	Cluster Extreme	Warm	Event	Centroids

Each	point	is	an	
average	of	the	

PCs
3–7	days	prior	
to	an	event

Mean	Projection–4



GEFS	Forecast	Skill



Best/Worst	Forecast	Statistics

Jet	Extensions PC1start PC2start ΔPC1 ΔPC2 Mean	Traj.	Dist

Good	Forecasts	(77) 1.54 –0.09 –0.98 0.40 3.69

Bad	Forecasts	(90) 1.35 –0.01 –1.41 –0.14 4.57

Jet	Retractions PC1start PC2start ΔPC1 ΔPC2 Mean	Traj.	Dist

Good	Forecasts	(63) –1.36 0.14 1.09 0.04 3.77

Bad	Forecasts	(145) –1.58 –0.11 1.18 –0.25 4.56

Poleward Shifts PC1start PC2start ΔPC1 ΔPC2 Mean	Traj.	Dist

Good	Forecasts	(63) 0.12 1.45 0.00 –0.81 3.59

Bad	Forecasts	(90) –0.02 1.40 –0.31 –1.44 4.62

Equatorward Shifts PC1start PC2start ΔPC1 ΔPC2 Mean	Traj.	Dist

Good	Forecasts	(61) 0.20 –1.42 0.36 1.08 3.52

Bad	Forecasts	(112) –0.17 –1.52 0.05 1.09 4.36

Origin PC1start PC2start ΔPC1 ΔPC2 Mean	Traj.	Dist

Good	Forecasts	(211) –0.03 0.07 0.13 0.12 3.31

Bad	Forecasts	(326) –0.04 0.01 –0.06 –0.31 4.08

10-d	trajectory	comparison	between	periods	characterized	by
the	best/worst	medium-range	forecasts

All	Events PC1start PC2start ΔPC1 ΔPC2 Mean	Traj.	Dist

Good	Forecasts	(475) 0.09 0.04 0.09 0.16 3.50

Bad	Forecasts	(763) –0.18 –0.08 –0.01 –0.21 4.33
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Reliability	Diagram
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GEFS	Ensemble	Mean	Error	– Season

0 24 48 72 96 120 144 168 192 216
0

0.25

0.5

0.75

1

1.25

Forecast Hour (h)

A
ve

ra
ge

 E
rr

or
 (P

C
 U

ni
ts

)
Average GEFS Mean Error

 

 
Mean N=8197
Fall N=2730
Winter N=2707
Spring N=2760

Circles	on	a	particular	line	indicate	statistically	
significant	differences	to	the	95%	confidence	
interval	with	respect	to	another	jet	regime.



Real	time	NPJ	Phase	Diagram	
Verification	Statistics	

2016–2017	
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GEFS	Ensemble	Mean	Error	– Regime
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NPJ	Phase	Diagram	Technical	
Slides



Geographic	Event	Clusters
Extreme	Warm	Event	Centroids	East	of	the	Rockies



Geographic	Event	Clusters
Extreme	Warm	Event	Frequency	for	Northern	Plains



• Each	point	on	the	phase	diagram	is	a	weighted	average	of	the	
principal	components	within	+/−	1	day	of	the	time	under	
consideration

Example:	0000	UTC	8 November	2014
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16–19	November	2014	Composite	Anomalies

500-hPa	Geo.	Height	(m) Surface	Temperature	(°C)

Real	Time	North	Pacific	Jet	Phase	Diagram
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0000	UTC	24	May
(0-h	forecast)

0000	UTC	2	Jun	
(verification)

Ensemble	mean
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GEFS	Ensemble	Trajectories	Initialized	0000	UTC	24	May	2016	

0000	UTC	2	Jun	(verification)

250-hPa	Zonal	Wind	Anomalies	and	EOF1:	0000	UTC	2	Jun

250-hPa	Zonal	Wind	Anomalies	and	EOF2:	0000	UTC	2	Jun
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250-hPa	zonal	wind	
anomalies	at	0000	
UTC	2	Jun	project	
strongly	onto	
EOF2	>	0


