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March 2012 Heat Wave
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March 2012 Heat Wave

250-hPa U-Wind Anomalies (13-24 March 2012) Surface Temp. Anomalies (13-24 March 2012)
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March 2012 Heat Wave

250-hPa U-Wind Anomalies (13-24 March 2012) Surface Temp. Anomalies (13-24 March 2012)
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March 2012 Heat Wave
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Project Motivation

 One or several extreme temperature events (ETEs) during a
single season can contribute disproportionately to temperature
anomaly statistics for a particular season

* The disproportionate contribution of ETEs to seasonal
temperature anomaly statistics suggests that ETEs need to be
considered in understanding the dynamical and thermodynamic
processes that operate at the weather—climate intersection
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Project Motivation

 One or several extreme temperature events (ETEs) during a
single season can contribute disproportionately to temperature
anomaly statistics for a particular season

* The disproportionate contribution of ETEs to seasonal
temperature anomaly statistics suggests that ETEs need to be
considered in understanding the dynamical and thermodynamic
processes that operate at the weather—climate intersection

* However, the antecedent environments associated with
continental U.S. ETEs exhibit considerable NPJ variability

 The development of an objective tool to characterize the state
and evolution of the upper-tropospheric flow pattern over the
North Pacific is desirable



Outline

1)

2)

3)

4)

Develop the NPJ Phase Diagram

Examine the influence of the prevailing NPJ regime on the
downstream flow pattern over North America and the
development of continental U.S. ETEs

Examine the GEFS forecast skill in the context of the NPJ phase
diagram

Apply the NPJ phase diagram to a period characterized by
reduced GEFS forecast skill in late-February 2017



The Development of the
NPJ Phase Diagram



The NPJ Phase Diagram

* Removed the mean and the annual and diurnal cycles from
6-hourly, 250-hPa zonal wind data from the CFSR (1979-2014)
(Saha et al. 2014)

* Restricted data to the cool season (Sept.—May)

* Performed an EOF analysis on the zonal wind anomalies within
the domain: 10—-80°N , 100°E—-120°W

Analysis techniques and resultant EOF patterns are consistent
with related work on the NPJ:

e Athanasiadis et al. (2010)
e Jaffe et al. (2011)
e Griffin and Martin (2017)



The NPJ Phase Diagram
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Sept.—May 250-hPa zonal wind EOF 1 pattern: shading — EOF 1: Jet Retraction




The NPJ Phase Diagram

EOF 1 - Jet Extension/Retraction | | Hypothetical
E [Retr | : | S

< _—

e e T rms= T
_______ f/”\ =
¢ ‘
,_J

-6 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16

Sept.—May mean 250-hPa zonal wind: black contours + EOF 1: Jet Extension
Sept.—May 250-hPa zonal wind EOF 1 pattern: shading — EOF 1: Jet Retraction




The NPJ Phase Diagram
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The NPJ Phase Diagram
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The NPJ Phase Diagram
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The NPJ Phase Diagram
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The NPJ Phase Diagram
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The NPJ Phase Diagram
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The NPJ Phase Diagram
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The NPJ Phase Diagram
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The NPJ Phase Diagram
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The NPJ Phase Diagram

—

0000 UTC 26 February 2017 |_ | | 250-hPa wind speed shaded

————————————————————————————————————————————

iE 8 6 18b 160 A4

Sole Seoson,, 5

8_1 g .”‘. L JYON g 4(|) 5? 6(|) '7(|) 80 90 100 110 m S_l
-2} Analyzed 250-hPa zonal wind anomalies can be
= O N \ projected onto EOF1 and EOF2 to describe the
L FoualorverdSWR N evolution of the NPJ

PC1



Influence of the Prevailing NPJ
Regime on North American
Weather



NPJ Regime Composites

Determined the position within the NPJ phase diagram at all analysis
times in the CFSR between Sept.—May 1979-2014
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NPJ Regime Composites

Isolated the analysis times during which there was a strong projection
onto one of the four NPJ regimes (i.e., >1 PC unit from the origin)
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NPJ Regime Composites

Isolated periods during which the NPJ resided within the same
quadrant of the NPJ phase diagram for 3 consecutive days
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Heights (contours), Geo. Height Anom. (contours):

250-hPa Wind Speed (shading), Geo.

Jet Extension D+4

'S (
?
|
le
|
¢ Y
| g N
1 .
|,| — =
\T'l
| ll .
! o
| « )
| Y I
— - 2
| -
g8 |
.o e . !
% o .9. l
S g o2
= A T
...\.. ™ 0
I A2 AN\©
. k A
: I
|
ﬁ %
\\ — Il_ .m
[/4] « .lﬂ.
\\\s \ ¢ m
oo l i = B/.q —
() | )
B 4 .’ [ 0
,,.A --- s. i m
I J0N b 1}
| Q..- s\& | o
S b TR 8 c
o -. 9
iy ; <
.- . L]
9 “.:.“ \ Q.
,-.- ' . m
m , —‘— Py —.¢¢. [ e
\”--%—- T
I . (%
YN ©
- -wbw—vw.o | o |/
. (W e
Ve , <
—.ﬁr.o. o o
! ;» 8\ L2
! [y AN A LN
s S 0
&\ m
Y a e
B\ WY L W S
J _ o
' LY |
o n
. .”,. ! w ' uoIsua)x3 33
J | ~—
Lob. i
d I, -
N \ m & -
|||||||||| . = w
| “ 2
[ | S
: | < 3 5|
T g a. gl
P —
|
L _ v
M uoidenay jor
. NUUL T




250-hPa Wind Speed (shading), Geo. Helghts (contours), Geo. Height Anom (contours):
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250-hPa Wind Speed (shading), Geo. Heights (contours), Geo. Height Anom. (contours):
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250-hPa Wind Speed (shading), Geo. Heights (contours), Geo. Height Anom. (contours):
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NPJ Regime Characteristics

Extreme Temperature Events:

 Employed 1-h forecasts of 2-m temperature from the CFSR
(0.5°x 0.5°) at 6-h intervals during 1979-2014 (Saha et al. 2014)

* Compiled times during which at least one grid point was
characterized by a temperature < 15 percentile or > 99
percentile within separate domains over the western and
eastern U.S.

* Identified times that R, | 3
ranked in the top 5% in ‘ ‘
terms of the number of LA ERE 1
grid points < 1st ‘
percentile or > 99t — N —
percentile as extreme a RS

temperature events 130 120 10 -100 90 b i80 e alp0



Western U.S. — All Events Extreme Cold Event Centroids
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Western U.S. — All Events
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Eastern U.S. — All Events
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EaStern U,S, — A" Events Extreme Warm Event Centroids
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EaStern U,S, — A" Events Extreme Warm Event Centroids
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March 2012 Heat Wave

250-hPa U-Wind Anomalies (13—-24 March 2012) Surface Temp. Anomalies (13-24 March 2012)
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Summary: NPJ Regime Characteristics

* The NPJ phase diagram is a tool that objectively characterizes the
state and evolution of the upper-tropospheric flow pattern over
the North Pacific

 The NPJ phase diagram characterizes the relationship between
each NPJ regime and the downstream flow pattern over North
America

* The NPJ phase diagram illuminates the variability that
characterizes the antecedent environments associated with
continental U.S. extreme temperature events



Summary: NPJ Regime Characteristics

* The NPJ phase diagram is a tool that objectively characterizes the
state and evolution of the upper-tropospheric flow pattern over
the North Pacific

 The NPJ phase diagram characterizes the relationship between
each NPJ regime and the downstream flow pattern over North
America

* The NPJ phase diagram illuminates the variability that
characterizes the antecedent environments associated with
continental U.S. extreme temperature events

 Knowledge of both the downstream upper-tropospheric flow
pattern and forecast skill associated with each NPJ regime
offers the potential to increase confidence in operational
temperature forecasts over the continental U.S.



GEFS Forecast Skill in the
Context of the NPJ Phase
Diagram



NPJ Phase Diagram Forecast Skill

Determined the position within the NPJ phase diagram for all 0-h forecasts
during Sept.—May 1985-2014 in the GEFS Reforecast v2 (Hamill et al. 2013)
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GEFS Ensemble Mean Error by NPJ Regime
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GEFS Ensemble Mean Error by NPJ Regime
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Forecasts initialized during jet retractions exhibit significantly larger errors than

jet extensions in the 192-216-h forecast period



GEFS Ensemble Mean Error by NPJ Regime
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Forecasts verifying during equatorward shifts and jet retractions exhibit significantly
larger errors than jet extensions and poleward shifts in the 96—-216-h forecast period



NPJ Regime Forecast Frequency

The percent frequency that an NPJ regime is over/under forecast relative to
verification at various forecast lead times in the GEFS ensemble mean reforecasts
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Best/Worst NPJ Phase Diagram Forecasts

Comparison between the periods characterized by the best/worst
medium-range forecasts

Criteria: Forecasts must rank in the top/bottom 10% in terms of both:
(1) The average GEFS ensemble mean error in the Day 8 and 9 forecasts
(2) The average GEFS ensemble member error in the Day 8 and 9 forecasts
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Best/Worst NPJ Phase Diagram Forecasts

Comparison between the periods characterized by the best/worst
medium-range forecasts

Criteria: Forecasts must rank in the top/bottom 10% in terms of both:
(1) The average GEFS ensemble mean error in the Day 8 and 9 forecasts
(2) The average GEFS ensemble member error in the Day 8 and 9 forecasts

Represents a forecast with

negligible ensemble member
error

(1) Ens. Mean error=0 /"
(2) Avg. Ens. Member error=0
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Best/Worst NPJ Phase Diagram Forecasts

Comparison between the periods characterized by the best/worst
medium-range forecasts

Criteria: Forecasts must rank in the top/bottom 10% in terms of both:
(1) The average GEFS ensemble mean error in the Day 8 and 9 forecasts
(2) The average GEFS ensemble member error in the Day 8 and 9 forecasts

Hypothetical Intermediate Forecast
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Best/Worst NPJ Phase Diagram Forecasts

Comparison between the periods characterized by the best/worst
medium-range forecasts

Criteria: Forecasts must rank in the top/bottom 10% in terms of both:
(1) The average GEFS ensemble mean error in the Day 8 and 9 forecasts
(2) The average GEFS ensemble member error in the Day 8 and 9 forecasts

Represents a forecast with Hypothetical Intermediate Forecast
negligible ensemble mean % %
error
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Best/Worst NPJ Phase Diagram Forecasts

Comparison between the periods characterized by the best/worst
medium-range forecasts

Criteria: Forecasts must rank in the top/bottom 10% in terms of both:
(1) The average GEFS ensemble mean error in the Day 8 and 9 forecasts
(2) The average GEFS ensemble member error in the Day 8 and 9 forecasts

Represents a forecast with
considerable ensemble
member error

Hypothetical Intermediate Forecast

(1) Ens. Mean error=0 /"
(2) Avg. Ens. Member error >>0 ¢

@ \Verification
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Best/Worst NPJ Phase Diagram Forecasts

Comparison between the periods characterized by the best/worst
medium-range forecasts

Criteria: Forecasts must rank in the top/bottom 10% in terms of both:
(1) The average GEFS ensemble mean error in the Day 8 and 9 forecasts
(2) The average GEFS ensemble member error in the Day 8 and 9 forecasts

Hypothetical Worst Forecast

X X
x O X

@ \Verification
QO Ensemble Mean Position O >< ><

X Individual Ens. Member




Best/Worst NPJ Phase Diagram Forecasts

Comparison between the periods characterized by the best/worst
medium-range forecasts

Criteria: Forecasts must rank in the top/bottom 10% in terms of both:
(1) The average GEFS ensemble mean error in the Day 8 and 9 forecasts
(2) The average GEFS ensemble member error in the Day 8 and 9 forecasts

Represents a forecast with Hypothetical Worst Forecast
considerable ensemble mean % %
error
(1) Ens. Mean error >>0 X >< ><

@ \Verification
QO Ensemble Mean Position >< ><

X Individual Ens. Member




Best/Worst NPJ Phase Diagram Forecasts

Comparison between the periods characterized by the best/worst
medium-range forecasts

Criteria: Forecasts must rank in the top/bottom 10% in terms of both:
(1) The average GEFS ensemble mean error in the Day 8 and 9 forecasts
(2) The average GEFS ensemble member error in the Day 8 and 9 forecasts

Represents a forecast with
considerable ensemble
member error

Hypothetical Worst Forecast

(1) Ens. Mean error >>0 X
(2) Avg. Ens. Member error >> 0 %

@ \Verification

QO Ensemble Mean Position
X Individual Ens. Member




Best/Worst NPJ Phase Diagram Forecasts

Comparison between the periods characterized by the best/worst
medium-range forecasts

I e e KT

Best Forecasts

(N=475)

Worst Forecasts 90 145 90 112 326
(N=763)

Best/Worst Ratio 0.86 0.43 0.70 0.54 0.65

(Ave = 0.62)



Best/Worst NPJ Phase Diagram Forecasts

Comparison between the periods characterized by the best/worst
medium-range forecasts

I e e KT

Best Forecasts

(N=475)
Worst Forecasts 90 145 90 112 326
(N=763)
Best/Worst Ratio 0.86 0.43 0.70 0.54 0.65
(Ave = 0.62)

* The best forecasts occur disproportionately more during jet extensions and
poleward shifts

* The worst forecasts occur disproportionately more during jet retractions and
equatorward shifts




Best/Worst NPJ Phase Diagram Forecasts

Comparison between the periods characterized by the best/worst
medium-range forecasts

Avg.
APC1

Avg. 10-d Traj.

Length. Statistically
Best Forecasts 0.09 0.16 3.50 significant at the
(N=475) Poleward PC units 99.9% confidence
Shift interval
Worst Forecasts (.01 —-0.21 4.33
(N=763) Equast::irf\;vard PC units

 The best forecast periods are typically characterized by poleward shifts over the
next 10 days and anomalously short trajectories within the NPJ phase diagram

 The worst forecast periods are typically characterized by equatorward shifts over
the next 10 days and anomalously long trajectories within the NPJ phase diagram



Best/Worst NPJ Phase Diagram Forecasts

Comparison between the periods characterized by the best/worst
medium-range forecasts

I e e KT

Best Forecasts

(N=475)
Worst Forecasts 90 145 90 112 326
(N=763)
Best/Worst Ratio 0.86 0.43 0.70 0.54 0.65
(Ave = 0.62)

What are the synoptic flow patterns associated with the best and
worst forecasts initialized during a particular NPJ regime?



Best/Worst NPJ Phase Diagram Forecasts

Comparison between the periods characterized by the best/worst
medium-range forecasts

Best Forecasts
(N=475)

Worst Forecasts
(N=763)

Best/Worst Ratio
(Ave = 0.62)

90

0.86

63

145

0.43

2l ) K
63 61 211

90 112 326

0.70 0.54 0.65

What are the synoptic flow patterns associated with the best and
worst forecasts initialized during a particular NPJ regime?



Initialization of a Worst Forecast durlng Jet Retraction (N 145)
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Composite Difference: (Worst — Best) at0 h

y __________ :

e Relative to the best forecast periods, the worst forecast
periods are frequently characterized by significantly higher
heights over the eastern North Pacific at the time of forecast
initialization
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* Relative to the best forecast periods, the worst forecast
periods are frequently characterized by significantly higher
heights at high latitudes and significantly lower heights at
low latitudes over the North Pacific

 The above composite difference pattern suggests that the
worst forecast periods are often associated with upper-
tropospheric blocking events over the North Pacific
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* Relative to the best forecasts, the worst forecast periods exhibit
significantly higher heights over the eastern North Pacific
irrespective of the NPJ regime at the time of forecast initialization
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 The composite differences suggest that the worst forecast periods
are often associated with upper-tropospheric blocking events over
the North Pacific 8 days following forecast initialization irrespective
of the NPJ regime at the time of forecast initialization



Summary: GEFS Forecast Skill

* Forecasts initialized during jet retractions are characterized by
larger errors than those initialized during jet extensions

* Forecasts verifying during jet retractions and equatorward shifts
are characterized by substantially larger errors than those
verifying during jet extensions and poleward shifts



Summary: GEFS Forecast Skill

Forecasts initialized during jet retractions are characterized by
larger errors than those initialized during jet extensions

Forecasts verifying during jet retractions and equatorward shifts
are characterized by substantially larger errors than those
verifying during jet extensions and poleward shifts

The worst forecasts are more frequently initialized during jet
retractions and equatorward shifts

The worst forecast periods are associated with equatorward
shifts and longer trajectories within the NPJ phase diagram
during the 10-day period following forecast initialization

The worst forecast periods are often associated with upper-
tropospheric blocking events over the North Pacific



Application of the NPJ Phase
Diagram



Real Time NPJ Phase Diagram Forecasts

Error (PC units)

Time series of 2016—2017 GEFS ensemble mean
9-day forecast error classified by initialization date
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Real Time NPJ Phase Diagram Forecasts

Time series of 2016—2017 GEFS ensemble mean
9-day forecast error classified by initialization date
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I Mean
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9-day NPJ phase
diagram forecasts
initialized during
December,
February, and
early-March were
characterized by
substantial errors



February 2017 NPJ Regime Change

Composite Temperature Anomalies 20-28 Feb
-—NOM/ESRL Physical Sciences Division
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0000 UTC 16 February: 250-hPa Jet (shading) and Precipitable Water Anom. (shading)
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0000 UTC 16 February: MSLP (contours), Thick. (contours), 850-hPa Temp. Anom. (shading)
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0000 UTC 18 February 250-hPa Jet (shading) and Precipitable Water Anom. (shading)
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0000 UTC 18 February: MSLP (contours), Thick. (contours), 850-hPa Temp. Anom. (shading)
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0000 UTC 20 February: 250-hPa Jet (shading) and Precipitable Water Anom. (shading)
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0000 UTC 22 February: 250-hPa Jet (shading) and Precipitable Water Anom. (shading)
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0000 UTC 24 February 250-hPa Jet (shading) and Precipitable Water Anom. (shading)
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0000 UTC 26 February: 250-hPaJ

Poleward Shift ... =

et (shading) and Precipitable Water Anom. (shading)
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0000 UTC 26 February: MSLP (contours), Thick. (contours), 850-hPa Temp. Anom. (shading)
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0000 UTC 26 February: 250-hPa Jet (shading) and Precipitable Water Anom. (shading
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0000 UTC 26 February: MSLP (contours), Thick. (contours), 850-hPa Temp. Anom. (shading)

1016 ————e === ——— = W_ N - =
| = = Ay |
I ~“\| - 'I'~ >% T %900 - S e - = —_
~ Y ey | | 5
~ - %1032 SR D N , =~ 10 R s
P 10 101 ~-_J | s 1y By “N\~
I’-» 28 f"_ Ss ! \% c 9 —f< —" I
, L S | - =
. o’ 42 ‘ N ‘; M ' —
P ,° I | \\ I L fd = Iy ' =<
4’54 : 40 | ~ = = I o
4 ’
t’ 0‘ i\ ! ~ u?b‘
[ = = A\- - ey A —— e " CEl= =T 4 = = /A . _
==%520 <! ! : i /\3 8 i v
3 ~ | ~ QSR =
& \K\\ : ) o _— ':IQ Z r'100h
| ~ | /RS i N '3 == S -
~ K.~ 1016 ==1 -~ o 4
. D .7 ! _.’5 ~Eo
e’ R SR
LS o J- R~~~ N
I ~ o PR e
,,,,,,, —_— - = - [ N/ D b _
- o ~e=2~ 1016~ = =, _ S ~ - ‘
Y=
-1 1 2 3 4 5 ' S0 R




Western U.S. — All Events Extreme Cold Event Centroids
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February 2017 NPJ Regime Change

Composite Dif

ference: (Worst — Best) at 192 h
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* Recall, the worst NPJ phase diagram forecasts initialized during a
jet extension are frequently associated with significantly higher
heights over the North Pacific and significantly lower heights
over North America 8 days after forecast initialization
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0000 UTC 26 February: 250-hPa Jet (shading) and Precipitable Water Anom. (shading)
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February 2017 NPJ Regime Change

9-day Probabilistic Forecast Trajectory Initialized at 0000 UTC 17 February 2017
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 The GEFS
ensemble forecast
indicated the NPJ
regime transition
was likely



February 2017 NPJ Regime Change

9-day Probabilistic Forecast Trajectory Initialized at 0000 UTC 17 February 2017

26 Feb. 2017
GEFS Mean 0.9 ensemble forecast

GFS Analysis indicated the NP
: regime transition
1oz was likely

1
Poleward Shift § 17 Feb. 2017 e The GEFS

los ® The GEFS
ensemble did not
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l,. equatorward shift
of the NPJ axis
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* This 9-day forecast
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GEFS Ensemble Mean Error by NPJ Regime
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Forecasts verifying during equatorward shifts and jet retractions exhibit significantly
larger errors than jet extensions and poleward shifts in the 96—-216-h forecast period



Summary: February 2017 NPJ Regime Change

 Knowledge of both the forecast skill and the downstream upper-
tropospheric flow pattern associated with each NPJ regime offers
the potential to increase confidence in operational temperature
forecasts over the continental U.S.

* The retraction and equatorward shift of the NPJ in late-February
2017 was associated with the development of an upper-
tropospheric block over the North Pacific, as well as above-
normal/below-normal temperatures in the eastern/western U.S.

 The NPJ regime transition towards a jet retraction and
equatorward shift was characterized by large medium-range NPJ
phase diagram forecast errors



NPJ Phase Diagram Web Interface

* A web interface has been developed that offers real time NPJ
phase diagram forecasts and extreme event composites:

http://www.atmos.albany.edu/facstaff/awin
ters/realtime/About_EOFs.php



NPJ Phase Diagram Web Interface

This work is supported by NOAA Grant NA15NWS4680006

Archive | Verification | Composites | About

Phase Diagram (left): Shows the GFS analysis trajectory over the previous 10 days in black with diamonds corresponding to a position in the phase diagram at 00Z on the day labeled to
the upper-right of its respective diamond. The red and blue symbols show the forecasted GFS and GEFS ensemble mean trajectories, respectively, within the phase diagram over the next
9 days with diamonds corresponding to a position in the phase diagram at 00Z on the day listed to the upper-right of its respective diamond. The green diamond shows the position within
the phase diagram at 00Z on the day listed in the title.

Synoptic Maps (right): Depicts GFS deterministic forecasts of (1) 250-hPa wind speed, geo. heights, and standardized geo. height anomalies, (2) 500-hPa relative vorticity, geo. heights,
and standardized geo. height anomalies (3) mean sea level pressure, 1000-500-hPa thickness, and 850-hPa standardized temperature anomalies, and (4) 24-h accumulated precipitation.
The 24-h forecasted accumulated precipitation is also used as 'verification' in Days -10 to 0.
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NPJ Phase Diagram Web Interface

* A web interface has been developed that offers real time NPJ
phase diagram forecasts and extreme event composites:

http://www.atmos.albany.edu/facstaff/awin
ters/realtime/About_EOFs.php

Contact: acwinters@albany.edu

Collaborators: Mike Bodner (WPC), Arlene Laing (NOAA), Dan
Halperin (WPC), Bill Lamberson (WPC), Josh
Kastman (WPC), and Sara Ganetis (WPC)
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NPJ Regime Characteristics
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* The frequency of each NPJ regime exhibits considerable
inter-annual and intra-annual variability



NPJ Regime Characteristics

Composite 250-hPa Zonal Wind Anomalies (m s™)
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NPJ Regime Characteristics
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Jet extensions
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PNA
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NPJ Regime Characteristics

El Nifo La Nina

80N 80N
TN
- 70N

~ 55| 6N
60N

o] 55N
oS 50N

ol 45N W
g 40N zfﬁ‘N

\ " 3 8 3N ”,,.
- 30NH -
' . \ 25N e
, : \ﬁ{i : 20N
. )| 15N
10N : . T TTa—— : ; —ciean | [ : :
120 140E 160E 180 160W 140W 120W 100W 8OW 60W' Y 70g 140E 160E 180 160W 1400 120W 00w
Composite 250-hPa Zonal Wind Anomalies (m s™2) Composite 250-hPa Zonal Wind Anomalies (m s™2)
<N T T T T T T T T T T <N T [ T T T T T T 17
-0 -8 -6 -4 -2 0 2 4 6 8 10 -0 -8 -6 -4 -2 0 2 4 6

* El Nino favors anomalously strong zonal wind speed east of the
dateline over the North Pacific

* La Nina favors anomalously weak zonal wind speed east of the

dateline over the North Pacific
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NPJ Regime Characteristics
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NPJ Regime Characteristics

e The Madden—Julian Oscillation
(MJO) is a leading mode of
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NPJ Regime Characteristics
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* The Madden—Julian Oscillation
(MJO) is a leading mode of
intra-annual variability in the
tropics with a period of 30-60
days

* The MJO is characterized by an
eastward propagating region of
enhanced convection in the
equatorial Indian and Pacific
Oceans

Climate Prediction Center



NPJ Regime Characteristics
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The Madden—Julian Oscillation
(MJO) is a leading mode of
intra-annual variability in the
tropics with a period of 30-60
days

The MJO is characterized by an
eastward propagating region of
enhanced convection in the
equatorial Indian and Pacific
Oceans

The location of convection
can strongly modulate the
midlatitude circulation

Climate Prediction Center



NPJ Regime Characteristics
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Extreme Event Identification

Extreme Warm Events:

* Employed 1-h forecasts of 2-m temperature from the CFSR
(0.5°x 0.5°) at 6-h intervals (Saha et al. 2014)

e Compiled data for each grid
point within 21-day windows
centered on each analysis
time for 36 years, 1979-2014

e Each grid point has 756 (21 x 36)
data points for each analysis time

 Determined the temperature
that corresponds to the 99t
percentile for each grid point
at a given analysis time

% Near Albany, NY (43°N; -74°W) — 1900 UTC 30 May

70

60}

n
(=]

Frequency

N
o

w
(=)

(756 total ‘obs)

99th Percentile
32°C

20 25 30 35

15
2-m Air Temperature (°C)

Frequency distribution of 2-m temperature at
1900 UTC 30 May for a grid point near Albany, NY
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Extreme Event Identification

99th Percentile 2-m Temperatures — 1900 UTC 30 May
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Extreme Event Identification

Extreme Warm Events:

 (Cataloged times during which at least one grid point was
characterized by a temperature > 99th percentile

16

' Easterﬁ uUs

95th Percentile:

 Ranked times within each 724 grid points

domain by the number of
grid points > 99" percentile

Frequency (10°)

* |dentified times that rank in
the top 5% in terms of the
number of grid points > 99th

Maximum:
1169 grid points |

percentile within each b 200 400 600 800 1000 1200

. # of Grid Points
domain as extreme warm . . -
Frequency distribution of times exhibiting at

events least one grid point > 99t" percentile



Extreme Event Identification

Eastern U.S. Domain

Extreme Warm Events:
304 Events

Areal Coverage Threshold:

224 grid points
(~7.0°%7.0° box)

Extreme Cold Events:
225 Events

Areal Coverage Threshold:

221 grid points
(~7.0°x7.0° box)

Western U.S. Domain

Extreme Warm Events:
264 Events
Areal Coverage Threshold:
144 grid points
(~5.5°%5.5° box)

Extreme Cold Events:
269 Events
Areal Coverage Threshold:
125 grid points
(~5.0°x5.0° box)



Extreme Event Identification

Extreme Warm Event Frequency: Eastern U.S. Domain (N = 304)




Extreme Event Identification
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Extreme Event Identification

Extreme Warm Event Centroids: Eastern U.S. Domain (N = 304)

l l
Northern Plains Cluster (N=116)
B | Southern Plains Cluster (N=102)
™ Eastern U.S. Cluster (N=86)

50'%2%,{--%_-:\(___ _______
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3 geographic clusters
objectively identified
using a k-means
clustering algorithm
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Extreme Event Identification

Extreme Warm Event Centroids: Eastern U.S. Domain (N = 304)

l l

Northern Plains Cluster (N=116)
Southern Plains Cluster (N=102)
Eastern U.S. Cluster (N=86)

=% . [

40

Considerable North
Pacific Jet variability
characterizes the
antecedent
environments associated
with events in each

geographic cluster




Eastern U.S. — S. Plains Cluster | Extreme Warm Event Centroids
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250-hPa North Pacific Zonal Wind Variability

(N = 225)

Extreme Cold Event Centroids: Eastern U.S. Domain




250-hPa North Pacific Zonal Wind Variability

Extreme Cold Event Centroids: Eastern U.S. Domain (N = 225)
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4 geographic clusters
objectively identified
4 using a k-means

clustering algorithm




250-hPa North Pacific Zonal Wind Variability

Extreme Cold Event Centroids: Eastern U.S. Domain (N = 225)
I I ' '
Northern Plains Cluster (N=65)
Southern Plains Cluster (N=58)
Southeast Cluster (N=50)
Northeast Cluster (N=52)

V& g

Projecting antecedent environments associated with extreme cold events onto the
North Pacific Jet phase diagram can identify flow patterns conducive to the
development of these events




Eastern U.S. — S. Plains Cluster | Extreme Cold Event Centroids

COLD EVENTS (N = 48)

- Poleward Shift

Jet Retraction
Jet Extension
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Events during
Sept. — May
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phase diagram

Each pointis an
average of the
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3-7 days prior
to an event
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PC 2

Eastern U.S. — S. Plains Cluster
COLD EVENTS (N = 48)
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Events during
Sept. — May
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phase diagram

Each pointis an
average of the
PCs
3-7 days prior
to an event
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250-hPa Wind Speed, Geo. Height
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Western U.S. — Pac. NW Cluster Extreme Cold Event Centroids
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Western U.S. — Pac. NW Cluster | Extreme Warm Event Centroids
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GEFS Forecast Skill



Best/Worst Forecast Statistics

10-d trajectory comparison between periods characterized by
the best/worst medium-range forecasts

Good Forecasts (475) 0.09 0.04 0.09 0.16 3.50
Bad Forecasts (763) -0.18 -0.08 -0.01 -0.21 4.33
Good Forecasts (77) 1.54 -0.09 -0.98 0.40 3.69
Bad Forecasts (90) 1.35 -0.01 -1.41 -0.14 4.57
Good Forecasts (63) -1.36 0.14 1.09 0.04 3.77
Bad Forecasts (145) -1.58 -0.11 1.18 -0.25 4.56
Good Forecasts (63) 0.12 1.45 0.00 -0.81 3.59
Bad Forecasts (90) -0.02 1.40 -0.31 -1.44 4.62
Good Forecasts (61) 0.20 -1.42 0.36 1.08 3.52
Bad Forecasts (112) -0.17 -1.52 0.05 1.09 4.36
N T T T N T
Good Forecasts (211) -0.03 0.07 0.13 0.12 3.31

Bad Forecasts (326) -0.04 0.01 -0.06 -0.31 4.08



Jet Regime-Dependent Forecast Skill

Percent Difference Between the Frequency of Forecasts with

Below-Normal and Above-Normal RMSE
25

Jet Extension (1165)
== Jet Retraction (1250)
= Poleward Shift (1260)
= Equatorward Shift (1142)

F r eqbelow—normal = F r eqabove—normal

N
o

-
6)]

Higher frequency of
forecasts with

[" below-normal RMSE

(i.e., more good forecasts)

(&)

Percent Difference (%)
o

Higher frequency of
forecasts with
above-normal RMSE

24 48 72 96 120 144 168 192 216 240 (i.e., more bad forecasts)
Forecast Hour (h)




Reliability Diagram

Event Occurrence
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GEFS Ensemble Mean Error — Season
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Real time NPJ Phase Diagram
Verification Statistics
2016-2017



Reliability Diagram (Sept 1 — May 31)

Reliability Diagram Sept 1 2016—-May 31 2017
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GEFS Ensemble Mean Error — Regime

Average Error (PC Units)
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GEFS Probability of Detection — Regime

GEFS POD Sept 1 2016-May 31 2017
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(PC units)

Time Series of GFS and GEFS Mean Error

GFS 9-Day Forecast GEFS Mean
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25

Forecasts since 1 Sept 2016

== Extend N=75
Retract N=57 Colored dots identify the NPJ

== Poleward N=83 regime on a particular day
== Equator N=56



NPJ Phase Diagram Technical
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Geographic Event Clusters

Extreme Warm Event Centroids East of the Rockies




Geographic Event Clusters

Extreme Warm Event Frequency for Northern Plains
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Real Time North Pacific Jet Phase Diagram

 Each point on the phase diagram is a weighted average of the
principal components within +/- 1 day of the time under
consideration

Example: 0000 UTC 8 November 2014
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Real Time North Pacific Jet Phase Diagram

250-hPa wind speed: shaded

0000 UTC 8 November 2014
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Real Time North Pacific Jet Phase Diagram

250-hPa wind speed: shaded

0000 UTC 10 November 2014
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Real Time North Pacific Jet Phase Diagram

0000 UTC 12 November 2014
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250-hPa wind speed: shaded
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Real Time North Pacific Jet Phase Diagram
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Real Time North Pacific Jet Phase Diagram

0000 UTC 16 November 2014
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Real Time North Pacific Jet Phase Diagram

250-hPa wind speed: shaded

0000 UTC 18 November 2014

ms™'

80 90 100

70

60

40

Poleward Shift

uoIsua)Xxd }of

]
-

16
15
14

10
12 43

uondedY I19f

Equatorward Shift

-2

—

-
1

°©
<2



Real Time North Pacific Jet Phase Diagram

16—-19 November 2014 Composite Anomalies
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PC2

E. Rockies — S. Plains Cluster
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Real Time North Pacific Jet Phase Diagram
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GEFS Ensemble TraJector es Initialized 0000 UTC 24 May 2016
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