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Modified from Defant and Taba
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Maps of tropopause pressure 
help to identify the location 

of the jets.

While each jet occupies its 
own climatological latitude 
band, substantial meanders 

are common.
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Modified from Defant and Taba
(1957)

Maps of tropopause pressure 
help to identify the location 

of the jets.

While each jet occupies its 
own climatological latitude 
band, substantial meanders 

are common.

Occasionally, the latitudinal 
separation between the jets 

can vanish resulting in a 
vertical jet superposition.
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Modified from Defant and Taba
(1957)

The pole-to-equator 
baroclinicity is combined 

into a much narrower zone 
of contrast in the vicinity of 

a jet superposition.

Intensified frontal structure 
is often attended by a 
strengthening of the 

superposed jet’s transverse 
circulation.
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Christenson et al. (2017) 
highlight three locations 
that experience the  
greatest frequency of 
jet superpositions:

1) Western Pacific

2) North America

3) Northern Africa

Christenson et al. (2017)

Climatological frequency of Northern 
Hemisphere jet superposition events per cold 

season (Nov–Mar) 1960–2010
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Jet Superpositions and High-Impact Weather

Moore et al. (2012)

Jet superpositions can be an element 
of high-impact weather events

1–3 May 2010 Nashville Flood
• Jet superposition enhanced the poleward

moisture transport via its ageostrophic
circulation (Winters and Martin 2014; 2016).
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Jet Superpositions and High-Impact Weather
Jet superpositions can be an element 

of high-impact weather events

1–3 May 2010 Nashville Flood
• Jet superposition enhanced the poleward

moisture transport via its ageostrophic
circulation (Winters and Martin 2014; 2016).

18–20 December 2009 Mid-Atlantic Blizzard
• Jet superposition was associated with a 

rapidly deepening East Coast cyclone 
(Winters and Martin 2016; 2017).

26 October 2010: Explosive Cyclogenesis Event
• Jet superposition over the West Pacific 

preceded the development of an intense 
Midwest U.S. cyclone.

25–28 April 2011 Tornado Outbreak
• Jet superposition occurred over the West 

Pacific prior to the outbreak (Knupp et al. 
2014; Christenson and Martin 2012).

How do these structures 
develop?
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Jet Superposition Conceptual Model

Winters and Martin (2017)

Polar cyclonic PV anomalies:

1) Often referred to as coherent 
tropopause disturbances (Pyle et 
al. 2004) or tropopause polar 
vortices (Cavallo and Hakim 2010).

2) Typify a dynamical environment 
conducive to midlatitude
cyclogenesis.
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Jet Superposition Conceptual Model

Winters and Martin (2017)

Tropical anticyclonic PV anomalies:

1) Typify a thermodynamic environment 
characterized by weak upper-
tropospheric static stability.

2) Atmospheric rivers often form within 
the poleward-directed branch of 
their circulation.
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The relative importance of these PV 
anomalies is highly variable between 

jet superposition events

Jet Superposition Conceptual Model

Winters and Martin (2017)



GOAL: To determine the characteristic 
types of interaction that exist between 

upper-tropospheric PV anomalies during 
a jet superposition event

Jet Superposition Conceptual Model

Winters and Martin (2017)



Jet Superposition Event 
Identification and Classification
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Jet Superposition Event Identification

Isolated grid points 
over North America in 
the CFSR (Saha et al. 
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Jet Superposition Frequency – All Times
N = 61660

Jet Superposition Event Identification
1. Isolated grid points over 

North America in the 
CFSR (Saha et al. 2014) 
characterized by a jet 
superposition during 
Nov–Mar 1979–2010.



Jet Superposition Event Identification

Jet Superposition Frequency – Top 10% Times
N = 19485

1. Isolated grid points over 
North America in the 
CFSR (Saha et al. 2014) 
characterized by a jet 
superposition during 
Nov–Mar 1979–2010.

2. Retained analysis times 
that rank in the top 10% 
in terms the number of 
grid points characterized 
by a jet superposition.



Jet Superposition Frequency – Top 10% Times
N = 19485

Jet Superposition Event Identification

326 unique jet superposition events

1. Isolated grid points over 
North America in the 
CFSR (Saha et al. 2014) 
characterized by a jet 
superposition during 
Nov–Mar 1979–2010.

2. Retained analysis times 
that rank in the top 10% 
in terms the number of 
grid points characterized 
by a jet superposition.

3. Filtered retained analysis 
times to group together 
jet superpositions that 
are < 30 h and < 1500 km 
of one another.



Jet Superposition Event Classification
1. Determined the mean 

position of the 2-PVU 
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1. Determined the mean 
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Jet Superposition Event Classification
1. Determined the mean 

position of the 2-PVU 
contour on the 320-K 
and 350-K surfaces at 
each analysis time in the 
CFSR. 
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Jet Superposition Event Classification
1. Determined the mean 

position of the 2-PVU 
contour on the 320-K 
and 350-K surfaces at 
each analysis time in the 
CFSR. 

2. Compared the position 
of the jet superposition 
centroid at the start of 
each event against the 
climatological position 
of the 2-PVU contour. 

•Polar Dominant
•Subtropical Dominant
•Hybrid
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Jet Superposition Event 
Composites:

Polar Dominant 
vs. 

East Subtropical Dominant
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E. Subtropical Dominant Jet Superposition Events

12 Hours Prior to Jet Superposition
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E. Subtropical Dominant Jet Superposition Events
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E. Subtropical Dominant Jet Superposition Events
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Summary

Polar Dominant Events:



Summary

Polar Dominant Events:
1) Anticyclonic wave breaking event amplifies the 

flow over North America
2) QG descent beneath the jet core forced by 

geostrophic CAA facilitates jet superposition
3) Downstream precipitation slows the propagation 

of the upper-level trough

CAA

Precip.
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East Subtropical Dominant Events:



Summary

East Subtropical Dominant Events:
1) Antecedent precipitation and southerly flow amplify 

ridge over eastern North America
2) Arrival of upper-level trough is associated with 

geostrophic CAA at the time of jet superposition
3) Geostrophic CAA forces QG descent beneath the jet 

core and completes jet superposition

CAA

Antecedent 
moisture and 
precip.



Future Work

• Apply piecewise PV inversion (e.g., Davis and Emanuel 1991) to 
quantify the influence that polar cyclonic and tropical anticyclonic 
PV anomalies have on restructuring the tropopause during each 
type of superposition event.

• Examine the impact that each type of jet superposition event has 
on the evolution of the downstream large-scale flow pattern.

• Utilize numerical simulations of jet superposition events to 
examine the sensitivity of jet superposition to diabatic processes.

• Further illuminate the connection between jet superposition 
events and high-impact weather events (e.g., severe weather, 
cyclogenesis, floods).
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Jet Superposition Event Identification

Calculated the centroid of 
each jet superposition 
based on all valid grid 
points at a particular 
analysis time.

To calculate the centroid, 
there must exist a group of 
18 superposition grid 
points, of which no 
superposition grid point is 
>1000 km away from 
another superposition grid 
point.

Used for calculation 
Not used for calculation 

Jet superposition centroid 

Sample Jet Superposition Centroid Calculation
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Pyle et al. (2004)

Jet Superposition Conceptual Model
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Lang and Martin (2012)

Traditional four-quadrant 
model

Geo. cold-air advection (CAA)   
along the jet axis promotes 

subsidence through the jet core

Geo. warm-air advection (WAA)
along the jet axis promotes 
ascent through the jet core

Ageostrophic Transverse Jet Circulations



Insight into how the tropopause can be restructured from a PV perspective 
can be found by consulting Wandishin et al. (2000)

Two processes can account for 
“foldogenesis”:

1) Differential vertical 
motions can vertically 
steepen the tropopause.

2) Convergence or a vertical 
shear can produce a 
differential horizontal 
advection of the 
tropopause surface.

These same mechanisms are also likely to play an important role in 
superpositions.

Wandishin et al. 2000

Background



Background

Christenson et al. (2017)


