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Maps	of	tropopause	pressure	
help	to	identify	the	location	

of	the	jets.

While	each	jet	occupies	its	
own	climatological	latitude	
band,	substantial	meanders	

are	common.
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Modified	from	Defant and	Taba
(1957)

Maps	of	tropopause	pressure	
help	to	identify	the	location	

of	the	jets.

While	each	jet	occupies	its	
own	climatological	latitude	
band,	substantial	meanders	

are	common.

Occasionally,	the	latitudinal	
separation	between	the	jets	
can	vanish	resulting	in	a	
vertical	jet	superposition.
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Modified	from	Defant and	Taba
(1957)

The	pole-to-equator	
baroclinicity is	combined	
into	a	much	narrower	zone	
of	contrast	in	the	vicinity	of	

a	jet	superposition.

Intensified	frontal	structure	
is	often	attended	by	a	
strengthening	of	the	

superposed	jet’s	transverse	
circulation.
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Christenson	et	al.	(2017)	
highlight	three	locations	
that	experience	the		
greatest	frequency	of	
jet	superpositions:

1)	Western	Pacific

2)	North	America

3)	Northern	Africa

Christenson	et	al.	(2017)

Climatological	frequency	of	Northern	
Hemisphere	jet	superposition	events	per	cold	

season	(Nov–Mar)	1960–2010
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Hemisphere	jet	superposition	events	per	cold	

season	(Nov–Mar)	1960–2010
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greatest	frequency	of	
jet	superpositions:

1)	Western	Pacific
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3)	Northern	Africa



Jet	Superpositions and	High-Impact	Weather

Moore	et	al.	(2012)

Jet	superpositions can	be	an	element	
of	high-impact	weather	events

1–3	May	2010	Nashville	Flood
• Jet	superposition	enhanced	the	poleward
moisture	transport	via	its	ageostrophic
circulation	(Winters	and	Martin	2014;	2016).

The	Tennessean
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1–3	May	2010	Nashville	Flood
• Jet	superposition	enhanced	the	poleward
moisture	transport	via	its	ageostrophic
circulation	(Winters	and	Martin	2014;	2016).

18–20	December	2009	Mid-Atlantic	Blizzard
• Jet	superposition	was	associated	with	a	
rapidly	deepening	East	Coast	cyclone	
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of	high-impact	weather	events
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How	do	these	structures	
develop?



Jet	Superposition	Conceptual	Model

Winters	and	Martin	(2017)



Jet	Superposition	Conceptual	Model

Winters	and	Martin	(2017)

Polar	cyclonic	PV	anomalies:

1) Often	referred	to	as	coherent	
tropopause	disturbances	(Pyle	et	
al.	2004)	or	tropopause	polar	
vortices	(Cavallo and	Hakim	2010).

2) Typify	a	dynamical	environment	
conducive	to	midlatitude
cyclogenesis.
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Jet	Superposition	Conceptual	Model

Winters	and	Martin	(2017)

Tropical	anticyclonic PV	anomalies:

1) Typify	a	thermodynamic	environment	
characterized	by	weak	upper-
tropospheric	static	stability.

2) Atmospheric	rivers	often	form	within	
the	poleward-directed	branch	of	
their	circulation.



Jet	Superposition	Conceptual	Model
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Jet	Superposition	Conceptual	Model
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The	relative	importance	of	these	PV	
anomalies	is	highly	variable	between	

jet	superposition	events

Jet	Superposition	Conceptual	Model

Winters	and	Martin	(2017)



GOAL:	To	determine	the	characteristic	
types	of	interaction	that	exist	between	
upper-tropospheric	PV	anomalies	during	

a	jet	superposition	event

Jet	Superposition	Conceptual	Model

Winters	and	Martin	(2017)



Jet	Superposition	Event	
Identification	and	Classification



Isolated	grid	points	
over	North	America	in	
the	CFSR	(Saha et	al.	
2014) characterized	by	
a	polar	and	subtropical	
jets	during	Nov–Mar	
1979–2010.
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Jet	Superposition	Frequency	– All	Times
N	=	61660

Jet	Superposition	Event	Identification
1. Isolated	grid	points	over	
North	America	in	the	
CFSR	(Saha et	al.	2014)	
characterized	by	a	jet	
superposition	during	
Nov–Mar	1979–2010.



Jet	Superposition	Event	Identification

Jet	Superposition	Frequency	– Top	10%	Times
N	=	19485

1. Isolated	grid	points	over	
North	America	in	the	
CFSR	(Saha et	al.	2014)	
characterized	by	a	jet	
superposition	during	
Nov–Mar	1979–2010.

2. Retained	analysis	times	
that	rank	in	the	top	10%	
in	terms	the	number	of	
grid	points	characterized	
by	a	jet	superposition.



Jet	Superposition	Frequency	– Top	10%	Times
N	=	19485

Jet	Superposition	Event	Identification

326	unique	jet	superposition	events

1. Isolated	grid	points	over	
North	America	in	the	
CFSR	(Saha et	al.	2014)	
characterized	by	a	jet	
superposition	during	
Nov–Mar	1979–2010.

2. Retained	analysis	times	
that	rank	in	the	top	10%	
in	terms	the	number	of	
grid	points	characterized	
by	a	jet	superposition.

3. Filtered	retained	analysis	
times	to	group	together	
jet	superpositions that	
are	<	30	h	and	<	1500	km	
of	one	another.
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Jet	Superposition	Event	
Composites:

Polar	Dominant	
vs.	

East	Subtropical	Dominant
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Summary

Polar	Dominant	Events:



Summary

Polar	Dominant	Events:
1) Anticyclonic wave	breaking	event	amplifies	the	

flow	over	North	America
2) QG	descent	beneath	the	jet	core	forced	by	

geostrophic	CAA	facilitates	jet	superposition
3) Downstream	precipitation	slows	the	propagation	

of	the	upper-level	trough

CAA

Precip.



Summary

East	Subtropical	Dominant	Events:



Summary

East	Subtropical	Dominant	Events:
1) Antecedent	precipitation	and	southerly	flow	amplify	

ridge	over	eastern	North	America
2) Arrival	of	upper-level	trough	is	associated	with	

geostrophic	CAA	at	the	time	of	jet	superposition
3) Geostrophic	CAA	forces	QG	descent	beneath	the	jet	

core	and	completes	jet	superposition

CAA

Antecedent	
moisture	and	
precip.



Future	Work

• Apply	piecewise	PV	inversion	(e.g.,	Davis	and	Emanuel	1991)	to	
quantify	the	influence	that	polar	cyclonic	and	tropical	anticyclonic
PV	anomalies	have	on	deforming	the	tropopause during	each	type	
of	superposition	event.

• Examine	the	impact	that	each	type	of	jet	superposition	event	has	
on	the	evolution	of	the	downstream	large-scale	flow	pattern.

• Utilize	numerical	simulations	of	jet	superposition	events	to	
examine	the	sensitivity	of	jet	superposition	to	diabatic processes.

• Further	illuminate	the	connection	between	jet	superposition	
events	and	high-impact	weather	events	(e.g.,	severe	weather,	
cyclogenesis,	floods).
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Jet	Superposition	Event	Identification



Jet	Superposition	Event	Identification

Calculated	the	centroid	of	
each	jet	superposition	
based	on	all	valid	grid	
points	at	a	particular	
analysis	time.

To	calculate	the	centroid,	
there	must	exist	a	group	of	
18	superposition	grid	
points,	of	which	no	
superposition	grid	point	is	
>1000	km	away	from	
another	superposition	grid	
point.

Used	for	calculation	

Not	used	for	calculation	
Jet	superposition	centroid	

Sample	Jet	Superposition	Centroid	Calculation



Frequency	of	
East	Subtropical	
Dominant	Jet	
Superposition	

Events

N	=	76

Jet	Superposition	Event	Identification

Centroid	of	all	
events
Composite	
movement	of	
superposition

Legend



Frequency	of	
West	Subtropical	
Dominant	Jet	
Superposition	

Events

N	=	53

Jet	Superposition	Event	Identification

Centroid	of	all	
events
Composite	
movement	of	
superposition

Legend



Fr
eq

ue
nc

y

All times (N=717)
Polar dominant (N=158)
Subtropical dominant (N=295)
Hybrid events (N=264) 

Jet	Superposition	Event	Classification



250-hPa	Jet,	Geo.	Height,	&	Geo.	Height	Anom.,	&	300-hPa	Geo.	Temp	Adv.

250-hPa	Jet,	MSLP	Anom.,	PWAT	Anom.,	&	OLR	Anom.
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250-hPa	Jet,	Geo.	Height,	&	Geo.	Height	Anom.,	&	300-hPa	Geo.	Temp	Adv.
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Dynamic	Tropopause
Potential	Temperature

Pyle	et	al.	(2004)

Jet	Superposition	Conceptual	Model



Heather	Archambault

Jet	Superposition	Conceptual	Model
Dynamic	Tropopause
Potential	Temperature



Lang	and	Martin	(2012)

Traditional	four-quadrant	
model

Geo.	cold-air	advection	(CAA)			
along	the	jet	axis	promotes	

subsidence through	the	jet	core

Geo.	warm-air	advection	(WAA)
along	the	jet	axis	promotes	
ascent through	the	jet	core

Ageostrophic Transverse	Jet	Circulations



Insight	into	how	the	tropopause	can	be	restructured	from	a	PV	perspective	
can	be	found	by	consulting	Wandishin et	al.	(2000)

Two	processes	can	account	for	
“foldogenesis”:

1) Differential	vertical	
motions can	vertically	
steepen the	tropopause.

2) Convergence or	a	vertical	
shear can	produce	a	
differential	horizontal	
advection of	the	
tropopause	surface.

These	same	mechanisms	are	also	likely	to	play	an	important	role	in	
superpositions.

Wandishin et	al.	2000

Background



Background

Christenson	et	al.	(2017)


