ATM 316, Fall 2014
Hint for Problem Set 5, question 1 (a):
In class we derived an expression for the height h of the free surface of the water in a rotating tank:

$$
h(r)-h(0)=\frac{\Omega^{2} r^{2}}{2 g}
$$

where $h(r)$ is the height at a radial distance r from the center and $h(0)$ is the height at the center.

The problem here is that we don't know what $h(0)$ is after the tank starts rotating. All we know is that $h=z_{0}$ everywhere before it starts rotating. You need to express $h(0)$ in terms of known parameters: Ω, r_{0}, z_{0}, g. To do this, you need to use the fact that the total volume of water in the tank does not change.

You can work out the total volume of water in a cylindrical tank by dividing the tank up into lots of thin concentric cylindrical shells and adding them up. The volume of each thin shell would be

$$
d V=2 \pi r h d r
$$

since $2 \pi r$ is the circumference of the circle of radius r, h is the height of the shell, and $d r$ is the radial width of the thin shell.

So the total volume of water in the tank can be calculated by integrating from the center to the edge:

$$
V=\int_{0}^{r_{0}} d V=\int_{0}^{r_{0}} 2 \pi r h(r) d r
$$

