
ATM 500: Atmospheric Dynamics
Homework 8

Due Thursday November 19 2015

1. Read section 3.7.3 in Vallis. The Kelvin wave is a special kind of gravity wave that exist
in the presence of a lateral boundary. The wave is in geostrophic balance in the direc-
tion perpendicular to the boundary, but unbalanced (and propagating at phase speed√
gH) in the direction along the boundary. (These waves are particularly important

for our understanding of tropical phenomena such as El Niño).

Why did we not find the Kelvin wave when we did our standard wave analysis of the
rotating shallow water equations in class?

2. In this question you will investigate a variant of the geostrophic adjustment problem
using the shallow water equations. Here the initial imbalance exists because of a dis-
continuity in the velocity field rather than in the free surface.

a. Starting from the conservation of potential vorticity Q = (f + ζ)/h for parcels in
the shallow water system, derive the linear result

∂q

dt
= 0, q = ζ ′ − f0

η′

H

for small perturbations of the height and velocity field on an f-place with a flat
bottom.

b. Suppose we have a infinite slab of shallow water on an f-plane. Initially, the fluid
surface is flat, the zonal velocity u is zero everywhere, but there is a meridional
velocity given by

v(x) = v0 sgn(x)

where v0 is a constant. This means that the fluid is moving northward at a speed
v0 everywhere to the east of x = 0, and southward at speed v0 everywhere to the
west of x = 0.

Verify that this initial condition is NOT a steady solution of the shallow water
equations (i.e. show that there must be a non-zero time tendency of velocities or
surface height or both, at least somewhere in the domain).

c. Show that q = 0 everywhere in the domain except at x = 0.

d. After the adjustment the system will reach a final steady state that can be de-
scribed with a geostrophic streamfunction ψ(x, y) satisfying

u = −∂ψ
∂y
, v =

∂ψ

∂x

Since the linearized PV field is fixed in space, the final steady state is the solution
of this equation:

d2ψ
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− ψ
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where q is the initial distribution of PV that you worked out above.

Solve the differential equation for ψ separately for x > 0 and x < 0. Apply a
physically sensible boundary condition for x → ±∞. Be sure to explain your
reasoning. There should be one unknown constant left in each solution.

e. Because of the discontinuity in the initial velocity field at x = 0, the initial relative
vorticity ζ is locally infinite at x = 0, and therefore q(x) is also. We can describe
this with a so-called ‘delta function’

q(x) = 2v0δ(x)

where δ(x) = 0 by definition everywhere except x = 0, but it also has the property
that if we integrate over any interval, the result is finite and independent of the
interval: ∫ x2

x1

δ(x)dx = 1

so long as the interval contains x = 0 (i.e. x1 < 0 and x2 > 0).

To evaluate your unknown constants and complete your solution, apply these two
boundary conditions:

• η′ is continuous at the boundary in the final state.

• The integral
∫ +∞
−∞ q dx must be the same in the initial and final states.

Using these conditions, what is ψ(x)?

f. Solve for the final surface height and velocity fields. Draw a sketch of the final
adjusted state.

3. In class we derived the full 3D vorticity equation in the inertial (non-rotating) frame
of reference. For an inviscid fluid with a uniform gravitation field this is

D
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ρ

)
=
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~ω

ρ

)
· ∇~v +

1

ρ3
(∇ρ×∇p)

where ~ω = ∇× ~v is the vorticity vector.

a. What is the vertical component of ~ω in terms of the components of the velocity
field?

b. Assume that the horizontal components of ~ω are negligible, and that we are
dealing with a shallow layer of fluid of depth h and uniform density ρ0. Under
these conditions, show that the vertical component of the full vorticity equation
is consistent with the shallow water potential vorticity equation (with f = 0):
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