
ATM 500: Atmospheric Dynamics

Midterm review, October 19 2015

Here, in bullet points, are the key concepts from the first half of the course.
They are not meant to be self-contained notes! Refer back to your course notes for
notation, derivations, and deeper discussion.

Advection is the transport of properties by the movement of fluid parcels. The
local rate of change of any quantity A due to advection is

−~v · ∇A

Material Derivative expresses the rate of change of any quantity in the Lagrangian
framework, moving with the fluid.

D

Dt
=

∂

∂t
+ ~v · ∇

i.e. the difference between the Eulerian change (at fixed points) and the ad-
vection.

Most of the laws of physics are expressed as conservation statements for parcels
of fluid, so are most naturally written in the Lagrangian form with material
derivatives.

Conservation of mass Conservation of mass for individual fluid parcels is ex-
pressed, for a moving continuum, in either Eulerian form as

∂ρ

∂t
+∇ · (ρ~v) = 0

or in Lagrangian form
1

ρ

Dρ

Dt
+∇ · ~v = 0

Fundamental forces “Fundamental” forces are those that act on parcels in all
reference frames, including the inertial frame. We almost always express forces
on fluids per unit mass, so the forces have units of acceleration.

Pressure gradient force −1
ρ
∇p

Gravitational force −gk̂
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Viscous force ν∇2~v

Momentum equation Newton’s second law for a moving fluid: acceleration of
parcels = net force per unit mass

∂~v

∂t
+ ~v · ∇~v = −gk̂ − 1

ρ
∇p+ ν∇2~v

Hydrostatic balance A balance between the vertical component of the pressure
gradient force and gravity (or more precisely, effective gravity for a rotating
fluid on a sphere, see below).

∂p

∂z
= −ρg

Equation of state Every fluid has an equation of state, which is a diagnostic (not
prognostic) relationship between the thermodynamic state variables for that
fluid. For the atmosphere we usually use the ideal gas law

p = ρRdT

with Rd the gas constant for dry air.

Barotropic vs. baroclinic fluid A fluid is barotropic if ρ = ρ(p), i.e. there is a
one-to-one relationship between density and pressure. Otherwise the fluid is
baroclinic and the density depends on another state variable, e.g. ρ = ρ(p, T ).

An ideal gas is barotropic if temperature is constant on surfaces of constant
pressure.

Scale height Assume temperature is vertically uniform, then integrate the hydro-
static relation vertically to get

ρ = ρ0 exp
(
− z

H

)
, p = p0 exp

(
− z

H

)
where H = RdT

g
≈ 8 km is the scale height for the atmosphere (approximate

e-folding scale for vertical variations of density and pressure).

1st law of thermodynamics Conservation of energy: the sum of internal energy
changes and work done must equal the external heating rate Q̇.

DI

Dt
+ p

Dα

Dt
= Q̇
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For an ideal gas, internal energy is proportional to temperature, dI = cvdT .
So the first law can also be written

cv
DT

dt
+ pα∇ · ~v = Q̇

Potential temperature Define potential temperature θ as

θ = T

(
pref
p

)κ
Then changes in temperature due to pressure-work upon expansion or contrac-
tion are accounted for, and we can write the 1st law as

cp
Dθ

Dt
=
θ

T
Q̇

Adiabatic processes If there is no external energy source (Q̇ = 0) then potential
temperature θ is conserved:

Dθ

Dt
= 0

This would be true e.g. for a freely ascending parcel of air. Temperature
decreases due to pressure decrease (adiabatic expansion) while potential tem-
perature remains constant.

Sound waves Fast wave motion associated with adiabatic expansions and contrac-
tions. The restoring force is the compressibility of the fluid. Dispersion relation
is ω = ±csk, where the phase speed is given by

c2s =
cp
cv
RT

Inertial vs. non-inertial frames A non-inertial frame of reference is one in which
the coordinates are accelerating. The rotating system is one example of a non-
inertial frame.

Rate of change of vectors in rotating frame Here ~Ω is the rotation vector for
the reference frame. The general transformation (subscripts indicate “inertial”
and “rotating”): (

d ~B

dt

)
I

=

(
d ~B

dt

)
R

+ ~Ω× ~B
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Apply this transformation, the relationship between velocities in the two frames
are

~vI = ~vR + ~Ω× ~r
and for the accelerations (need to apply the transformation twice):(

d~vR
dt

)
R

=

(
d~vI
dt

)
I

− 2~Ω× ~vR − ~Ω×
(
~Ω× ~r

)
Apparent forces Because of the coordinate transformation, two non-inertial forces

appear in the rotating momentum equation:

Centrifugal force
~FCe = −~Ω×

(
~Ω× ~r

)
= Ω2~r⊥

acts radially outward from axis of rotation

Coriolis force
~FCo = −2~Ω× ~vR

acts at right angles to the relative velocity field ~vR. (Think of it as “ex-
cess centrifugal force” for the parcel moving at a different speed than the
Earth).
~FCo does no work since it is always directed perpendicular to the motion.

Effective gravity We define the geopotential Φ as surfaces along which the vec-
tor sum of Newtonian gravity and centrifugal force is zero, so a parcel feels
no gravitational acceleration along such surfaces (which are oblate spheroids).
The “effective gravity” is the force acting perpendicular to these surfaces. New-
tonian gravity (which always points to Earth’s center) is slightly modified by
rotation.

~geff = −∇Φ = ~ggrav + Ω2~r⊥

We reference motion and our coordinate system to Φ surfaces rather than the
true sphere. Then ~geff points locally down everywhere, and we treat is as a

constant, −∇Φ ≈ −gk̂

Momentum equation in rotating frame follows directly from the above trans-
formations:

D~v

Dt
+ 2~Ω× ~v = −1

ρ
∇p−∇Φ

Now we must write the Coriolis force explicitly in the equation.
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Rates of change of unit vectors on the sphere In spherical coordinates (unlike
Cartesian coordinates) the unit vectors î, ĵ, k̂ change direction with location:

Dî

Dt
=

u

r cos θ

(
ĵ sin θ − k̂ cos θ

)
Dĵ

Dt
= −u tan θ

r
î− v

r
k̂

Dk̂

Dt
=
u

r
î+

v

r
ĵ

Momentum equation in spherical coordinates The three components are

Du

Dt
−
(

2Ω +
u

r cos θ

)
(v sin θ − w cos θ) = − 1

rρ cos θ

∂p

∂λ
Dv

Dt
+
wv

r
+
(

2Ω +
u

r cos θ

)
u sin θ = − 1

rρ

∂p

∂θ

Dw

Dt
− u2 + v2

r
− 2Ωu cos θ = −1

ρ

∂p

∂r
− g

Scale analysis for mid-latitude synoptic motion We choose typical scales (or-
ders of magnitude only):

L horizontal length, 1000 km

V horizontal velocity, 10 m s−1

a radius of Earth, 107 m

δP horizontal pressure fluctuations, 10 hPa

ρ typical near-surface air density, 1 kg m−3

T = L/V advective time scale, 105 s (about 1 day)

Can show that many terms in the full momentum equations are negligible –
including most of the metric terms, the vertical component of the Coriolis
force, and the contributions to the horizontal Coriolis force associated with the
vertical wind.

Primitive equations We make a set of three approximations to the momentum
equations simultaneously:

Shallow fluid r ≈ a where a is the Earth’s radius
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Hydrostatic Drop all terms in vertical momentum equation except PGF and
gravity

Traditional Drop all terms involving w from the horizontal momentum equa-
tion

to get

Du

Dt
− fv − uv tan θ

a
= − 1

aρ cos θ

∂p

∂λ

Dv

Dt
+ fu+

u2 tan θ

a
= − 1

aρ

∂p

∂θ

0 = −1

ρ

∂p

∂z
− g

where f = 2Ω sin θ is the projection of the rotation vector ~Ω onto the local
vertical direction.

In vector notation we write ~f = 2Ω sin θk̂

f-plane approximation For motions with small meridional extent we can approx-
imate

~f ≈= ~f0 = f0k̂

where f0 is evaluated at some reference latitude θ0.

Then the horizontal momentum equations become

D~u

Dt
+ ~f0 × ~u = −1

ρ
∇zp

where ~u = uî+ vĵ is the horizontal velocity.

Inertial motion Consider 2D flow on an f-plane in the absence of any pressure
gradient force. Then we get circular motion of radius U/f0 and frequency f0.

Beta plane First correction to the f-plane approximation accounting for changes in
f in the north-south direction. We write

~f = (f0 + βy) k̂

where, from a Taylor series expansion,

β =
2Ω cos θ

a
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. We evaluate β at a reference latitude θ0 and treat it as a constant in the
equations of motion.

Boussinesq approximation • Expand the density field as ρ = ρ0+δρ(x, y, z, t)
with a constant background density ρ0

• Scale the equations for small density variations δρ << ρ0

• Break up total pressure field into hydrostatic part that balances ρ0, and
everything else

The Boussinesq equations are

D~v

Dt
+ 2~Ω× ~v = −∇φ+ bk̂

∇ · ~v = 0
Db

Dt
= ḃ

φ =
δp

ρ0
b = −g δρ

ρ0

where, if we make the traditional approximation, we would replace 2~Ω×~v with
~f × ~v in the momentum equation.

Energy budget Kinetic energy is K = ~v · ~v, so to get evolution equation for K,
take ~v· (momentum equation)

Total energy equation for adiabatic Boussinesq system is

∂

∂t

(
1

2
v2 + bΦ

)
+∇ ·

(
~v

(
1

2
v2 + bΦ + φ

))
= 0

where Φ = −z is the potential, bΦ is potential energy.

Anelastic approximation Similar to Boussinesq but we allow a vertical variation
in the mean density:

• ρ = ρ̃(z) + δρ(x, y, z, t)

• Assume δρ << ρ̃

• A more accurate approximation for compressible atmosphere, since ρ de-
creases roughly exponentially with height.

Continuity equation is

∇ · ~u+
1

ρ̃

∂

∂z
(ρ̃w) = 0
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Momentum equation depends on specific choice of ρ̃(z). Using constant θ, get
the same equation as Boussinesq but the buoyancy is

b = g
δθ

θ0
φ =

δp

ρ̃(z)

Pressure coordinates Any variable that has a one-to-one (monotonic) relationship
with height z can be used as a vertical coordinate instead of z. This works
for pressure if the flow is in hydrostatic balance. In this case the adiabatic
equations of motion are

D~u

Dt
+ ~f × ~u = −∇pΦ

Dθ

Dt
= 0

∂Φ

∂p
= −α ∇p~u+

∂ω

∂p
= 0

The density ρ no longer appears explicitly in the momentum equation, which
is a considerable mathematical simplification.

Scaling for hydrostatic balance For unstratified Boussinesq fluid, scale analysis
of vertical momentum equation using non-divergence gives

Dw
Dt
∂φ
∂z

∼ H2

L2

from which we conclude that hydrostatic balance is a small aspect ratio ap-
proximation.

Rossby number

Ro =
U

fL

gives a measure of importance of advection relative to Coriolis force in horizon-
tal momentum equation. Ro << 1 implies flow is close to geostrophic balance
between Coriolis force and PGF.

RoT =
1

fT
=
Tinertial
T

is the temporal Rossby number. Slow motions tend to be geostrophic.

8



Geostrophic balance If Ro << 1 then there is an approximate horizontal force
balance

~f × ~u ≈ −1

ρ
∇zp

We use this balance to define geostrophic velocities

ug = − 1

ρf

∂p

∂y
vg =

1

ρf

∂p

∂x

Some properties of geostrophic flow

• Flow is everywhere parallel to isobars

• Flow is anti-clockwise around low pressure if f > 0 (clockwise if f < 0)

• Flow is approximately non-divergent in the horizontal

Taylor columns For a barotropic fluid that is in both geostrophic and hydrostatic
balance, we have the Taylor-Proudman theorem:

∂u

∂z
=
∂v

∂z
= 0

The fluid cannot have any vertical shear – the motion is the same at every
level. This is referred to as “vertical rigidity”.

Geostrophic balance in pressure coordinates

~f × ~ug = −∇pΦ

or in components

ug = − 1

f

∂Φ

∂y
vg =

1

f

∂Φ

∂x

The flow is parallel to lines of constant geopotential height, and ∇p · ~ug = 0 on
an f-plane.

Thermal wind relation The generalization of the Taylor-Proudman theorem to a
baroclinic fluid. For flow that is in geostrophic and hydrostatic balance,

~f × ∂~ug
∂p

=
R

p
∇pT
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or in components
∂vg
∂p

= − R
fp

∂T

∂x

∂ug
∂p

=
R

fp

∂T

∂y

The vertical shear of the geostrophic wind is proportional to (quasi-horizontal)
temperature gradients on pressure surfaces

If cold air lies to the north and f > 0, the wind must become more westerly
with height.

Note that this is a constraint of the shear ∂ug
∂p

, not on the value of ug itself.
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