ATM 500: Atmospheric Dynamics Homework 8

Due Thursday November 102016 by 10:15 am

1. In class we did a linear wave analysis for small perturbations in the x, z plane away from a state of rest $\left(\overrightarrow{v_{0}}=0\right)$ for the non-rotating simple Boussinesq system.
a. For these waves, show that the phase speed in the vertical direction $\left(c^{z}=\omega / m\right)$ is in the opposite direction of the vertical component of the group velocity, $c_{g}^{z}=$ $\partial \omega / \partial m$. (This means that energy must travel downward wherever peaks and troughs are propagating upward and vice-versa).
b. Consider now small perturbations away from a state with a constant background velocity in the x direction, $\overrightarrow{v_{0}}=U \hat{i}$ (where U is a constant). You may still assume that the motion is a function of x and z only as we did above. Show that the dispersion relation for these waves is

$$
\omega=U k \pm \frac{N k}{\sqrt{k^{2}+m^{2}}}
$$

c. How does the presence of a constant background velocity U change your answer in part (a)?

