
ATM 500: Atmospheric Dynamics

End-of-semester review, December 2 2021

Here, in bullet points, are the key concepts from the second half of the course.
They are not meant to be self-contained notes! Refer back to your course notes for
notation, derivations, sketches, and deeper discussion.

Static stability The vertical variation of density in the environment determines
whether a parcel, disturbed upward from an initial hydrostatic rest state, will
accelerate away from its initial position, or oscillate about that position.

For an incompressible or Boussinesq fluid, the buoyancy frequency is

N2 = −g
ρ̃

dρ̃

dz

For a compressible ideal gas, the buoyancy frequency is

N2 =
g

θ̃

dθ̃

dz

(the expressions are different because density is not conserved in a small upward
displacement of a compressible fluid, but potential temperature is conserved)

Fluid is statically stable if N2 > 0; otherwise it is statically unstable.

Typical value for troposphere: N = 0.01 s−1, with corresponding oscillation
period T = 2π/N ≈ 10 minutes.

Dry adiabatic lapse rate

Γd =
g

cp
= 9.8 K km−1

The rate at which temperature decreases during adiabatic ascent (for which
Dθ
Dt

= 0)

“Dry” here means that there is no latent heating from condensation of water
vapor.

Static stability criteria for a dry atmosphere Environment is stable to dry con-
vection if

dθ̃

dz
> 0 or − dT̃

dz
< Γd

and otherwise unstable.
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Buoyancy equation for Boussinesq fluid with background stratification

Db′

Dt
+N2w = 0

where we have separated the full buoyancy into a mean vertical part b̂(z) and

everything else (b′), and N2 = db̂
dz

. We often assume that N2 is a fixed back-
ground stratification and study how the motion depends on N2.

Vorticity is defined as the curl of the velocity field

~ω = ∇× ~v

It is a measure of the local spin of the fluid. The vector ~ω at any point is
the rotation vector that an infinitesimal paddle wheel would acquire if it were
placed in the fluid at that point. The direction of ~ω indicates the axis of
rotation through the right hand rule.

Shallow water equations Assume that a shallow layer of fluid is in hydrostatic
balance with a constant density ρ0, then integrate vertically. Then horizon-
tal pressure gradients are the same at every height, and are determined by
variations in the free surface height.

The equations of motion then simplify to a two-dimensional system:

D~u

Dt
+ fk̂ × ~u = −g∇η

Dh

Dt
+ h∇ · ~u = 0

where η(x, y) is the height of the free surface (measured from some reference
level z = 0) and h(x, y) is the full depth at every point. (For a flat-bottomed
fluid η = h).

Vorticity in shallow water In shallow water we can define

ζ = curlz~u = k̂ · ∇ × ~u =
∂v

∂x
− ∂u

∂y

which is the relative vorticity – a measure of the local spin of the fluid. The
absolute vorticity is ζ + f including the planetary vorticity f . Note that these
are scalars since the velocity field ~u(x, y) is strictly two-dimensional in the
shallow water model.
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Taking the curl of the momentum equation gives an equation for the absolute
vorticity in shallow water:

D

Dt
(ζ + f) = − (ζ + f)∇ · ~u

Conservation of shallow-water potential vorticity Combining the vorticity equa-
tion with continuity gives a conservation equation

D

Dt

(
ζ + f

h

)
= 0

The quantity Q = ζ+f
h

is called the shallow-water potential vorticity. It is
conserved for parcels in the shallow water system.

Cyclonic versus anticyclonic vorticity Motion for which ζ has the same sign as
f is called “cyclonic”. The relative spin is in the same direction as the Earth’s
rotation. For f > 0 (northern hemisphere) cyclonic means anti-clockwise. The
opposite spin is called anticyclonic.

Vortex stretching Conservation of PV in shallow water implies that any stretching
or squashing of a fluid column (changes in height) must be associated with a
change in the total rotation of the column – either change in relative vorticity,
change in latitude, or both.

Stretching out a column tends to increase its vorticity, in analogy with a figure
skater pulling his/her arms in to rotate faster.

Recipe for wave analysis Here is a generic recipe for analyzing wavelike motions
in a fluid. The key idea is that we linearize the equations for small perturba-
tions away from a known reference state.

1. Choose a set of governing equations.

2. Choose a reference state that satisfies those equations exactly (will neces-
sarily invoke some balance condition, e.g. hydrostatic balance).

3. Expand all variables in perturbations away from the reference state:

~v = ~v0 + ~v′

etc.

3



4. Substitute expanded variables into equation, subtract out the balanced
reference state.

5. Neglect all products of small primed quantities.

6. Assume a wavy solution with unknown frequency and wavenumbers.

7. Plug into equation and derive the conditions for which the wavy solution
is valid – a relationship between frequency, wavenumbers, and physical
parameters of the fluid known as the dispersion relation.

Phase speed The speed at which individual peaks and troughs travel in the three
coordinate directions is

cx =
ω

k
cy =

ω

l
cz =

ω

m

Dispersive vs. non-dispersive waves A wave is non-dispersive if the phase speed
does not depend on wavenumber(s). In this case long and short waves all travel
at the same speed, so a wave packet (the superposition of many different wave-
lengths) remains coherent as it travels. All other waves are dispersive.

Group velocity A vector with three components

~cg =

(
∂ω

∂k
,
∂ω

∂l
,
∂ω

∂m

)
Gives the speed and direction of the propagation of the wave envelope, which
is also the speed at which energy is carried by the wave.

For a non-dispersive wave (only) the components of ~cg are just the phase speeds.

Non-rotating shallow-water waves Linearize the non-rotating shallow-water equa-
tions for small perturbations about a state of rest with flat bottom and a mean
depth H, get a dispersion relation

ω = ±
√
gHk

Non-dispersive surface gravity waves with a phase speed
√
gH depending on

the mean depth. Waves do not have a preferred direction of propagation.

Rotating shallow-water waves Repeat the analysis on a f-plane. System now has
the possibility of a steady solution with non-zero variations in the free surface
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height, because Coriolis force can balance PGF. The dispersion relation has
three roots:

ω = 0

corresponds to the steady, geostrophically balanced solution. Otherwise

ω2 = f 2
0 + gHK2

with K2 = (k2 + l2) the horizontal wavenumber. Known as Poincaré waves,
surface gravity waves modified by rotation. Unlike non-rotating case, these
waves are dispersive.

The short-wave limit is ω2 = gHK2: short waves behave just like non-rotating
waves.

The long-wave limit is ω = ±f0: inertial oscillations.

Deformation radius

Ld =

√
gH

f

is a length scale that separates “short” from “long” in the shallow water system.
Waves with scales similar to Ld have properties of both rotating and non-
rotating motion.

Adjustment problem – non-rotating Start with initially discontinuous free sur-
face (a sudden drop in surface height at some location). Non-rotating fluid is
unbalanced: there are pressure forces with nothing to balance them. There
must be accelerations. Because non-rotating shallow water waves are non-
dispersive, surface fronts propagate coherently away toward infinity. Initial
disturbance radiates completely away, leaving no memory of itself at the initial
location.

Geostrophic adjustment With rotation, the final adjusted state has non-zero
height variations because these can be balanced by Coriolis force. Gravity
waves radiate away from initial location, but the initial condition is not com-
pletely forgotten. Use conservation of PV to find the final adjusted state: same
PV as the initial state, but velocity and height fields in geostrophic balance.
Find the free surface adjusts smoothly between the initial heights over a char-
acteristic distance Ld.

The deformation radius represents the smallest scales that can be geostrophically
balanced. Any variations in the free surface (i.e. in the pressure field) over scales
smaller than Ld will get smoothed out in the adjustment process.
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Beta plane First correction to the f-plane approximation accounting for changes in
f in the north-south direction. We write

f ≈ f0 + βy

where, from a Taylor series expansion of f = 2Ω sin θ we get

β =
2Ω cos θ

a

We evaluate β at a reference latitude θ0 and treat it as a constant in the
equations of motion.

Non-dimensional shallow-water equations Take the shallow-water equations and
write them in terms of non-dimensional variables:

Ro

(
∂~̂u

∂t̂
+ ~̂u · ∇~̂u

)
+
~̂
f × ~̂u = −∇η̂

Ro

(
L

Ld

)2
Dη̂

Dt̂
+

(
1 +Ro

(
L

Ld

)2

η̂

)
∇ · ~̂u = 0

with Ro = U
f0L

the Rossby number and Ld =
√
gH
f0

the deformation radius in
shallow water.

The non-dimensional form allows a careful scaling of the equations under var-
ious dynamical regimes, so we can be consistent about which terms can be
neglected.

Here Ro
(
L
Ld

)2
is the scaling for variations in the free surface height, relative

to the mean fluid depth H. If this number is small, the continuity equation
becomes simply ∇ · ~̂u = 0 (horizontal non-divergence).

Deformation radius for stratified fluid The equivalent scaling in a stratified fluid
is the ratio of vertical variations in buoyancy relative to background stratifi-
cation. In the Boussinesq system with background stratification N2 this ratio
is

Ro
L2(
NH
f0

)2
which reveals the equivalent of the deformation radius for the stratified fluid

Ld =
NH

f0
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For the mid-latitude atmosphere, we find N ≈ 0.01 s−1 (period of 10 minutes),
and Ld ≈ 1000 km. Thus for synoptic-scale systems, L/Ld is order-1.

Quasi-geostrophic approximation Derive a simplified set of equations to de-
scribe evolution of the geostrophic flow while eliminating faster, smaller-scale
motions (gravity waves).

Starting from the shallow water equations, make the following assumptions:

1. Ro << 1 – flow near geostrophic balance

2. Ro L2(
NH
f0

)2 is of the same order as Ro – implying variations in free surface

are small (shallow water) or variations in stratification are weak (stratified
fluid)

3. Variations in f are small – limiting to modest north-south variations

Formally expand the variables in power series using the Rossby number Ro as
the small parameter: u = u0 + Ro u1 + Ro2 u2 + ..., etc. Require that the
equations hold independently at every order of Ro.

Leading order in Rossby number expansion is simply geostrophic balance on
an f-plane:

fok̂ × ~̂u0 = −∇η̂0
where this zero-order wind field is exactly non-divergent:

∇ · ~̂u0 = 0

Importantly, this is simply a balance statement and does not give a prognostic
equation (needed to make predictions).

Geostrophic vorticity equation Taking the curl of the order Ro terms in the
momentum equation gives

∂ζ̂0

∂t̂
+ ~̂u0 · ∇

(
ζ̂0 + β̂ŷ

)
= −f0∇ · ~̂u1

which says that the geostrophic vorticity evolves due to the beta effect, and
also due to vortex stretching associated with the small ageostrophic divergence
/ convergence.
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Quasi-geostrophic potential vorticity The divergence is related to free-surface
changes through mass continuity. Together these give an equation that is closed
in terms of 0-order geostrophic quantities. It is a conservation equation for the
non-dimensional quantity

∇2ψ̂0 + β̂ŷ − f 2
0

(
L

Ld

)2

ψ̂0

where ψ0 is a streamfunction for the geostrophic velocity:

û0 = −∂ψ̂0

∂ŷ
, v̂0 =

∂ψ̂0

∂x̂

where the advecting velocity is the same order-0 geostrophic velocity.

Conservation of shallow water QGPV – dimensional form Under the quasi-
geostrophic conditions assumed above, the flow obeys

Dgq

Dt
= 0

where

q = ζ + βy − f0
H
η = ∇2ψ + βy − ψ

L2
d

is the shallow-water quasi-geostrophic potential vorticity.

The subscript g in the material derivative is a reminder that the advection is
strictly by the geostrophic velocity.

Inverting the QGPV Since q is advected by the geostrophic velocity, and the
geostrophic velocity in turn can be computed from q, the QGPV contains all
the information about its own evolution. We can thus construct a predictive
model for the flow by iterating through these steps:

1. Take the height field η at time 0, calculate geostrophic wind, vorticity,
streamfunction, and potential vorticity.

2. Step q forward in time using the QGPV equation:

∂q

∂t
=
∂ψ

∂y

∂q

∂x
− ∂ψ

∂x

∂q

∂y

where the terms on the RHS are all known at time 0. Get a prediction
for q at future time 1.
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3. Solve the boundary value problem

∇2ψ − ψ

L2
d

+ βy = q

for ψ(x, y) at time 1.

4. Use the new value of ψ to compute the advective velocities at time 1.

5. Go back to step 2.

Step 3, in which we solve for the velocity and height field using the geostrophic
relationships, is known as “inverting the PV”.

The beta effect Displace a motionless material line north and south of its resting
latitude. Relative vorticity increases where fluid is displaced to the south and
vice-versa. There is now a non-zero velocity acting to advect the material line.
Net effect is advection of the peaks and troughs to the west.

So the disturbance will propagate to the west because the planetary vorticity
increases to the north. The restoring force is the background PV gradient,
which we measure through the parameter β.

Rossby waves in shallow water Consider layer of shallow water on flat-bottomed
beta plane obeying the QG dynamics. For simplicity, consider the simplest case
L << Ld (valid for short waves). Linearize the QGPV equation about a basic
state with a constant background zonal wind U . We find a single wavy solution
with dispersion relation

ω = Uk − βk

k2 + l2

These are dispersive waves. The phase speed in the x direction is

cx =
ω

k
= U − β

k2 + l2

which is always to the west relative to the mean flow. Longer waves travel
westward faster than shorter waves.

Taking a typical wavelength for synoptic scale waves as k = l = 6000 km, we
get waves that travel westward at 7.5 m s−1 relative to the mean flow. Since the
mean westerly wind U is usually greater than this, most waves will be observed
to travel eastward, but at a slower speed than U . Very long waves might be
stationary with respect to the ground.
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The group velocity in the x-direction is

cxg =
∂ω

∂x
= U + β

k2 − l2

(k2 + l2)2

which can be either positive or negative. For the above example with k = l we
have simply cxg = U . The group velocity is thus eastward, and faster than the
phase speed. New disturbances can thus be expected to develop downstream
of existing disturbances.

Force balance in frictional boundary layer Three-way force balance between
PGF, Coriolis force and friction (assumed to act in the direction of −~u) re-
quires flow across isobars toward the low pressure.

Ekman layer A turbulent, frictional boundary layer in which we assume

• Boussinesq approximation (density variations are small)

• Finite depth of frictional effects, smaller than total depth of fluid

• Steady, hydrostatic motion

We integrate the horizontal momentum equation over the Ekman layer to get
the mass transport

~ME =
1

f
k̂ × ~τS

for the atmospheric Ekman layer, or

~ME = − 1

f
k̂ × ~τS

for the ocean top Ekman layer, where in both cases ~τS is the stress exerted by
the atmosphere on the surface.

These transports are equal and opposite, which is a consequence of Newton’s
laws of motion.

Ekman pumping Convergence or divergence of the Ekman mass transport must
be accompanied by vertical motion (to conserve mass). This is called Ekman
pumping, given by

wE =
1

ρ0
curlz

(
~τs
f

)
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where wE is the frictionally-induced vertical velocity, either at the top of the
atmospheric Ekman layer, or the bottom of the oceanic Ekman layer.

For the atmosphere, we infer that air is pumped upward by surface friction
near the center of a low pressure system and sucked downward near the center
of a high pressure system.

In the ocean, the stress is mainly determined by the overlying wind. Ekman
pumping pushes fluid in or out of the oceanic interior, setting the inner ocean
in motion far from the direct influence of the surface friction.

Internal gravity waves Linearize the non-rotating Boussinesq equations with back-
ground stratification N2 about a motionless hydrostatic reference state in the
x− z plane. Get the dispersion relation

ω = ± kN√
k2 +m2

Dispersive waves that propagate equally in two directions, with long waves
propagating faster than short waves.

Statically unstable environment If N2 < 0 then the above analysis shows that
a small disturbance grows exponentially with growth rate

± k
√
−N2

√
k2 +m2

which gives a simple model for convection in an unstable environment.

Internal waves as a generalization of the static stability concept Internal os-
cillations of pressure and velocity are always in phase with each other, so indi-
vidual parcels experience displacements along (sloping) lines of constant per-
turbation pressure. Thus they experience no PGF, and the only restoring force
is a component of buoyancy along the sloping phase line. Buoyancy varies in
the vertical due to the background stratification.

In this sense the parcel oscillates just like an isolated parcel in a stratified
environment, but rather than oscillating up and down, the oscillation occurs
at an angle θ and the frequency is smaller (period is slower) than N :

ω = ±N cos θ

(see Fig. 7.2 and 7.3 of Vallis Essentials).
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Propagation of internal waves The waves have some peculiar properties:

• All fluid parcel motions are parallel to wave fronts (i.e. lines of constant
phase) and perpendicular to the direction of phase propagation

• Group velocity is parallel to the motion of fluid parcels and perpendicular
phase propagation

• Specifically, the vertical phase speed has the opposite sign to the vertical
component of the group velocity, so energy propagates upward where wave
crests move downward (and vice-versa).

Critical lines • We can study the approximate effect of a spatially varying back-
ground velocity U on wave propagation by using a dispersion relation for
a constant U (e.g. the Rossby wave dispersion written above), so long as
U varies relatively slowly.

• A wave packet will propagate away from its source region at the group
velocity.

• The wave packet cannot propagate through a region where ~cg = 0.

• If the wave encounters such a region (known as a critical line), it will slow
down and its amplitude will grow until the wave breaks due to nonlinear
processes.

• This type of wave breaking affects both Rossby waves and internal waves,
and serves as an important source of wave-mean flow interaction (in the
atmosphere) and mixing (in the ocean).
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