
ATM 500: Atmospheric Dynamics
Homework 8

Due Wednesday November 10 2021

1. Energetics of geostrophic adjustment

First, please read Section 4.2.1 on the energetics of the shallow water system. The
potential energy and kinetic energy (both per unit mass) are given by
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where h is the total fluid depth.

Now consider the one-dimensional geostrophic adjustment problem described in class
and in Section 4.4.3 of Vallis Essentials, where the initial condition is a motionless fluid
with a discontinuity of the free surface at x = 0.

a. What is the kinetic energy of the initial state? (not a trick question)

b. Show that in the adjustment to the final geostrophically balanced state, the total
kinetic energy increases. More specifically, show that in the final state∫ ∞

−∞
(KE)dx = +

gη20Ld

2

c. Starting from the initial state, suppose you could instantly (“magically”) rear-
range the fluid so that the free surface was flat everywhere with depth H. Would
the total potential energy be larger or smaller than the initial state? Explain.

Here by “total” I mean the integral over the whole domain
∫∞
−∞ dx.

d. Now consider the actual change in potential energy during the geostrophic adjust-
ment. Show that the potential energy of the final geostrophic state is smaller than
the initial state. Furthermore, show that this decrease is actually greater than
the increase in kinetic energy you found above. Thus argue that total energy is
reduced by the geostrophic adjustment process.

e. Explain how to reconcile this result with conservation of total energy in shallow
water.

f. Once you’ve finished working through this problem, please read Section 4.5. Don’t
worry if the mathematics is unfamiliar, but try to follow the main arguments.
Think about the conclusion reached on page 80: Geostrophic balance is the mini-
mum energy state for a given field of potential vorticity.

(This is just a reading assignment, I don’t want you to answer any questions or
show any work here).
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2. Based on question 4.6 in Vallis Essentials

In this question you will investigate a variant of the geostrophic adjustment problem
using the shallow water equations. Here the initial imbalance exists because of a dis-
continuity in the velocity field rather than in the free surface or pressure field.

a. Starting from the conservation of potential vorticity Q = (f + ζ)/h for parcels in
the shallow water system, derive the linear result

∂q

dt
= 0, q = ζ ′ − f0

η′

H

for small perturbations of the height and velocity field on an f-plane with a flat
bottom. (We used this result in class already but did not show the derivation)

b. Suppose we have an infinite slab of shallow water on an f-plane. Initially, the fluid
surface is flat, the zonal velocity u is zero everywhere, but there is a meridional
velocity given by

v(x) = v0 sgn(x)

where v0 is a constant. This means that the fluid is moving northward at a speed
v0 everywhere to the east of x = 0, and southward at speed v0 everywhere to the
west of x = 0.

Verify that this initial condition is NOT a steady solution of the shallow water
equations (i.e. show that there must be a non-zero time tendency of velocities or
surface height or both, at least somewhere in the domain).

c. Show that q = 0 everywhere in the domain except at x = 0.

d. After the adjustment the system will reach a final steady state that can be de-
scribed with a geostrophic streamfunction ψ(x, y) satisfying

u = −∂ψ
∂y
, v =

∂ψ

∂x

Since the linearized PV field is fixed in space, the final steady state is the solution
of this equation:

d2ψ

dx2
− ψ

L2
d

= q

where q is the initial distribution of PV that you worked out above.

Solve the differential equation for ψ separately for x > 0 and x < 0. Apply a
physically sensible boundary condition for x → ±∞. Be sure to explain your
reasoning. There should be one unknown constant left in each solution.

e. Because of the discontinuity in the initial velocity field at x = 0, the initial relative
vorticity ζ is locally infinite at x = 0, and therefore q(x) is also. We can describe
this with a so-called ‘delta function’

q(x) = 2v0δ(x)
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where δ(x) = 0 by definition everywhere except x = 0, but it also has the property
that if we integrate over any interval, the result is finite and independent of the
interval: ∫ x2

x1

δ(x)dx = 1

so long as the interval contains x = 0 (i.e. x1 < 0 and x2 > 0).

To evaluate your unknown constants and complete your solution, apply these two
boundary conditions:

• η′ is continuous at the boundary in the final state.

• The integral
∫ +∞
−∞ q dx must be the same in the initial and final states.

Using these conditions, what is ψ(x)?

f. Solve for the final surface height and velocity fields. Draw a sketch of the final
adjusted state. Is there anything unusual or perhaps unphysical about the final
state?
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