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ABSTRACT

Planetary obliquity determines the meridional distribution of annual mean insolation. For obliquity exceeding 55◦,

the weakest insolation occurs at the equator. Stable partial snow and ice cover on such a planet would be in the form

of a belt about the equator rather than polar caps. An analytical model of planetary climate is used to investigate

the stability of ice caps and ice belts over the widest possible range of parameters. The model is a non-dimensional

diffusive Energy Balance Model, representing insolation, heat transport and ice-albedo feedback on a spherical planet.

A complete analytical solution for any obliquity is given, and validated against numerical solutions of a seasonal model

in the “deep water” regime of weak seasonal ice line migration. Multiple equilibria and unstable transitions between

climate states (ice-free, Snowball, or ice cap/belt) are found over wide swaths of parameter space, including a “Large

Ice Belt Instability” and “Small Ice Belt Instability” at high obliquity. The Snowball catastrophe is avoided at weak

radiative forcing in two different scenarios: weak albedo feedback and inefficient heat transport (favoring stable partial

ice cover), or efficient transport at high obliquity (favoring ice-free conditions). From speculative assumptions about

distributions of planetary parameters, 3/4 to 4/5 of all planets with stable partial ice cover should be in the form of

Earth-like polar caps.
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1. INTRODUCTION

To first order, surface temperature on Earth decreases

from equator to pole proportionally to the meridional

distribution of insolation. The distribution is deter-

mined by solar luminosity, average distance to the sun,

and the axial tilt or obliquity angle β, which is currently

23.45◦. Permanent snow and ice cover on Earth (aside

from small regions at high elevation) is at present lim-

ited to polar caps where insolation is low.

For a planet at high obliquity this familiar situation

would be reversed, because the annual-mean insolation

(or instellation) at obliquities β > 55◦ is largest at the

poles and smallest at the equator. If such a planet were

to have stable, permanent partial snow and ice cover, the

icy region would be in the form of a belt about the equa-

tor rather than polar caps. This arrangement is sketched

in Fig. 1. We introduce the term “ice belt” to describe

this hypothetical climatic state. The sketch also indi-

cates the direction of the meridional heat transport by

large-scale fluid motions in the two arrangements: pole-

ward at low obliquity, but equatorward at high obliquity.

In both cases, the transport will carry energy across the

ice edge from warm to cold regions.

In this paper we investigate the conditions under

which the ice caps and ice belts sketched in Fig. 1 should

be expected. We are motivated by ongoing advances

in exoplanet observations, which have revealed a wide

diversity of planetary sizes, orbits, and host star char-

acteristics. Composition of these planets is still largely

unknown and unconstrained. This suggests the use of

the simplest possible models of planetary climate to in-

vestigate wide ranges of parameters. Our primary goal is

to offer some constraints on the planetary characteristics

that favor formation of stable ice belts at high obliquity,

and compare these to the more familiar low-obliquity

case. Although tidally-locked planets may support sta-

ble partial ice cover over a wide range of parameter space

(Checlair et al. 2017), we limit our study to planets in

circular orbits with asynchronous rotation. We make the

basic assumption that our hypothetical planet is Earth-

like with a N2/H2O/CO2 atmosphere and a surface that

is at least partially water-covered for habitability (Kast-

ing et al. 1993).

We are interested in investigating the ice-albedo cli-

mate feedback in the most generic planetary settings.

On Earth, it is well-known that the higher albedo of

frozen surfaces relative to unfrozen surfaces introduces

a powerful amplifying feedback on externally-driven cli-

mate changes, and can result in a runaway feedback

leading to the so-called Snowball Earth scenario. The

degree to which the planetary albedo of ice-free and ice-

covered regions differ depends on the spectral energy

distribution of a planet’s host star, the ice type (water,

CO2, etc.), and cloud cover. Water ice is not nearly as

reflective of near-IR wavelengths as it is of visible light,

such that Joshi & Haberle (2012) argued ice-albedo feed-

back for water ice ought to be suppressed on a planet

orbiting an M star compared to a G star, like the sun,

all other things being equal. Shields et al. (2013) tested

this hypothesis with a hierarchy of models, consisting

of a column radiative transfer model, an energy balance

model, and a General Circulation Model (GCM). In all

three models, Shields et al. confirmed that ice-albedo

feedback was suppressed.

Proposals for ice-belt climatic states go back at least

to Williams (1975), who argued that many of the pecu-

liar features of the Neoproterozoic glaciations on Earth

(including low-latitude glaciation and apparent strong

seasonality) were consistent with high-obliquity insola-

tion. The Neoproterozoic high-obliquity hypothesis has

largely been ruled out, both by detailed chronologies

and geochemical lines of evidence in support of a “hard

Snowball” global glaciation (Pierrehumbert et al. 2011;

Hoffman et al. 2017), and by the demonstration that

large variations in Earth’s obliquity are suppressed by

gravitational interactions with our Moon (Laskar et al.

1993; Levrard & Laskar 2003).

This hypothesis, however, did prompt a number of in-

vestigations of high-obliquity states with climate mod-

els adapted to early Earth conditions (e.g. Hunt 1982;

Oglesby & Ogg 1999; Chandler & Sohl 2000; Jenkins

2000, 2001; Donnadieu et al. 2002; Jenkins 2003). Most

of these studies used some form of atmospheric GCM

coupled to a shallow mixed-layer ocean and a thermo-

dynamic sea ice model, and thus included representa-

tions of the seasonal cycle, dynamical heat transport by

the atmosphere, and feedbacks from water vapor and

surface albedo. More recent studies of high-obliquity

climate have been motivated instead by exoplanet con-

siderations (Williams & Kasting 1997; Williams & Pol-

lard 2003; Spiegel et al. 2009; Abe et al. 2011; Ferreira

et al. 2014; Armstrong et al. 2014; Wang et al. 2016).

The studies cited in the above paragraph span a

wide diversity of planetary parameters (e.g., solar con-

stant, greenhouse gas amount, continental configura-

tion, obliquity, rotation rate) as well as model realism

(e.g., resolution, parameterization of hydrological cy-

cle, ocean heat transport, sea ice physics, land surface

model). This diversity makes it difficult to generalize

about the conditions under which a stable ice belt might

occur. However most of the above-cited studies have

investigated ranges of parameters spanning both warm

(ice-free) and cold (Snowball) climatic states and thus

might have found an intermediate ice belt state. Ice belt
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Figure 1. Schematic of annual mean insolation patterns for low and high obliquity, with the corresponding distribution of
ice-covered and ice-free regions. We expect ice caps for low obliquity (minimum insolation at the poles) and ice belts for high
obliquity (minimum insolation at the equator). Light-red arrows indicate the direction of atmosphere and ocean heat transport.
The series expansion of insolation is presented in Section 2.

climates in models with ice-albedo feedback have been

reported by Oglesby & Ogg (1999), Donnadieu et al.

(2002) and Abe et al. (2011). Studies that have explic-

itly looked for ice belts in such models and not found

them include Chandler & Sohl (2000), Williams & Pol-

lard (2003) and Ferreira et al. (2014). Jenkins (2000,

2001, 2003) found perennial snow cover on a tropical su-

percontinent, but did not find any belt-like arrangement

of sea ice on tropical oceans. Some of these studies may

also be compromised by short integration times; the ice

belt may in some cases be a brief transient as the climate

drifts towards a fully glaciated Snowball state (e.g., Fig.

8 of Jenkins 2003).

There is a long history in the climate literature of

studying and quantifying the ice-albedo feedback in sim-

ple models of the zonal-average planetary energy bud-

get. Here we present one well-known version of this

model, the one-dimensional diffusive Energy Balance

Model (EBM) (North 1975a,b), and generalize it to

the exoplanet context. We subject it to a formal non-

dimensional analysis to identify the minimal set of in-

dependent parameters. We first examine the seasonal

cycle of temperature in a time-varying version of the

model. These results offer some insight into the rela-

tive roles of local heat storage and heat transport at

damping the seasonal temperature range for different

obliquities. Limiting our analysis to a regime of weak

seasonal amplitudes, we then adopt the more familiar

steady annual-mean version of the EBM. This model

solves for the equilibrium surface temperature distribu-

tion in response to annual mean solar forcing, and offers

a generic first-order description of the some of the im-

portant processes on any planet with the possibility of

ice-albedo feedback (henceforth just “albedo feedback”

for shorthand). There are four parameters, all of which

could vary widely in the exoplanet context: radiative

forcing (a combined measure of insolation and green-

house effect), heat transport efficiency, albedo feedback,

and the meridional gradient in annual mean insolation.

This last parameter is determined entirely by obliquity.

It is well known that the annual mean EBM has mul-

tiple equilibria over parts of its parameter space. For

large parts of the parameter space with strong albedo

feedback and/or efficient heat transport, we find no sta-

ble solutions with an ice edge – only ice-free, completely

ice-covered (Snowball), or both. We show that for high-

obliquity planets, stable ice edges are less likely than for

low-obliquity planets, in the sense that they exist over

a smaller range of the parameter space. In the absence

of unforeseen negative feedbacks, multiple equilibria ap-

pear to be a robust characteristic of planets with albedo

feedback. However the familiar stable ice edges of Earth

may be more rare on high-obliquity worlds.

The rest of our paper is laid out as follows. In Section

2 we present a series approximation for insolation valid

at arbitrary obliquity. In Section 3 we introduce the

EBM, transform into non-dimensional form, and explore

properties of the seasonal cycle. In Section 4 we present

our analytical solutions to the annual-mean model with

albedo feedback. In Section 5 we use these solutions to

investigate the stability of ice caps and ice belts, derive

some estimates for relative likelihoods of observing sta-

ble ice edges at different obliquities, and quantify the

Snowball bifurcation at low and high obliquity, with im-

plications for planetary habitability. In Section 6 we
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verify our analytical results against numerical solutions

of a seasonal EBM. We conclude in Section 7.

2. OBLIQUITY AND INSOLATION

2.1. Effects of obliquity on insolation

Obliquity has a profound effect on the meridional and

seasonal distribution of insolation. Fig. 2 shows the

complete patterns of daily-mean insolation for four rep-

resentative values of obliquity: β = 0◦ (the perpetual

equinox), β = 23.45◦ (Earth’s present-day value), β =

55◦ (the critical value at which the annual mean equator-

to-pole insolation gradient reverses), and β = 90◦ (the

sub-solar point is at the North Pole at its summer sol-

stice). In addition to the reversal of the annual-mean

gradient for β > 55◦, the seasonality of insolation is

much stronger at high obliquity.

In the following section we describe an approximate

series expansion for the daily average insolation, and

show the dependence of the expansion coefficients on

the obliquity angle β. We do not treat the diurnal cycle

since we use a zonally averaged model.

2.2. Series expansion of insolation for non-eccentric

orbits

In pursuit of a non-dimensional formalism for the

planetary albedo-feedback problem, we begin by ex-

panding the daily average insolation S(x, t) in a Fourier-

Legendre series (e.g. North & Coakley 1979):

S(x, t) = Qs(x, t) (1a)

s(x, t) =
∑

l=0, k=0

(alk cos kωt+ blk sin kωt)Pl(x) (1b)

where Q is the global, annual average insolation in W

m−2 (4Q would be known as the solar constant for

Earth), s(x, t) is the normalized daily-mean insolation

(unit global, annual mean), Pl(x) is the lth order Legen-

dre polynomial, ω = 2π/tyear where tyear is the length of

the year, and we use the independent variable x = sinφ

where φ is latitude. As shown by North & Coakley

(1979), all odd coefficients in this expansion aside from

l = 1 vanish. For simplicity we will limit our analysis

to circular orbits (zero eccentricity), for which the first

harmonic is sufficient when l = 1, and the second har-

monic is sufficient for l = 2. Therefore we truncate the

series to

s(x, t) = 1+s11 cos(ωt)P1(x)+(s20 + s22 cos(2ωt))P2(x)

(2)

where P1(x) = x, P2(x) = 1
2

(
3x2 − 1

)
are the 1st and

2nd Legendre polynomials. Here we are choosing to set

t = 0 at the NH winter solstice.

For a planet in a circular orbit, s20 (annual-mean

equator-pole insolation gradient), s11 (amplitude of the

annual cycle), and s22 (amplitude of the semiannual cy-

cle) are all simple functions1 of the obliquity angle β:

s11 = −2 sinβ (3a)

s20 = − 5

16

(
2− 3 sin2 β

)
(3b)

s22 =
15

16
sin2 β (3c)

These coefficients are plotted in Fig. 3 for β between

0◦ and 90◦. The distribution of error associated with

the expansion (2) is shown with dashed lines in Fig. 2.

The RMS error of the global, annual mean is less than

7% for any obliquity (lower panel of Fig. 3). Most of

this error lies in the spatial structure of the annual-

mean at obliquities near zero, and in the annual cycle

at higher obliquity, so improving this fit would require

higher-order Legendre polynomials at low obliquity, and

higher harmonics of the annual cycle at high obliquity.

Since the bulk of this paper focuses on the annual

mean energy balance, we note here that the annual mean

insolation is

s(x, t) = 1 + s20P2(x) (4)

where the overbar denotes an annual average. The co-

efficient s20 is negative for low, Earth-like obliquity (in-

solation decreases poleward), reaches zero at the critical

obliquity βc = arcsin(
√

2/3) ≈ 55◦, and is positive for

high obliquity (β > βc) for which the poles receive more

sunlight annually than the equator. Since β can range

between 0 and 90◦, s20 ranges between -5/8 and +5/16.

We emphasize again that (3b) is a good approximation

to the annual-mean insolation for all but very low obliq-

uity (for which s goes to zero at the poles).

3. THE ENERGY BALANCE MODEL

3.1. Seasonally-varying model

We now adopt the diffusive EBM (North 1975b; North

& Coakley 1979), which expresses the zonal-mean en-

ergy budget for the climate system in terms of the zonal-

mean surface temperature T (x, t). In its seasonally-

varying form, the model can be written

C
∂T

∂t
= aQs(x, t)− [A+BT ] +

K

R2
∇2T (5)

1 Formula (3a) is given by North & Coakley (1979). A deriva-
tion of (3b) from first principles is given by Nadeau & McGehee
(2017). (3c) was fitted numerically but appears to be exact for
circular orbits.
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Figure 2. Spatiotemporal distribution of daily-average insolation for four different obliquity values β. Colored contours show the
normalized daily-average insolation s(x, τ) (unit global, annual mean) with x = sinφ an area-weighted latitude and τ = 2πt/tyear
a seasonal time angle. For the present-day value β = 23.45◦ we use realistic present-day eccentricity and precessional parameters.
For the other three cases (β = 0◦, 55◦, 90◦) the eccentricity is set to zero. The thin contours indicate error of the truncated
series fit (2), (3) (contour interval is 0.1, negative contours dashed). The right-most panel shows the annual mean insolation for
the four obliquity values (solid), along with the truncated series fit s(x) = 1 + s20P2(x) (dashed). These illustrate the reversal
of the annual-mean insolation gradient at the critical value β ≈ 55◦.

Figure 3. Coefficients s20, s11, and s22 of the Fourier-
Legendre series expansion of insolation as functions of obliq-
uity β (for planets in circular orbits). The three-term fit
captures the pattern with less than 7% RMS error (normal-
ized by global-mean insolation) for any obliquity. The dot-
ted line in the bottom panel shows the RMS error of the fit
s(x) = 1 + s20P2(x) to the annual-mean insolation.

where for convenience we define a dimensionless merid-

ional Laplacian operator on the sphere:

∇2 ≡ ∂

∂x

[(
1− x2

) ∂

∂x

]
(6)

The LHS of (5) is the seasonal heat storage, with C a

column heat capacity in J m−2 ◦C−1. The first term on

the RHS is the absorbed solar radiation, with a the co-

albedo (the absorbed fraction of the incident solar radi-

ation). The insolation function s(x, t) depends on obliq-

uity angle β and length of year tyear = 2π/ω as described

in section 2. A+BT is a linear parameterization of the

Outgoing Longwave Radiation (OLR), with dimensional

parameters A and B governing its efficiency (dependent

on atmospheric properties such as greenhouse gas con-

centration, cloudiness, lapse rate, etc.). The third term

on the RHS represents the convergence of heat transport

due to atmospheric and oceanic motions. The transport

is parameterized as a diffusive flux down the large-scale

temperature gradient, with diffusivity parameter K set-

ting its efficiency.2 Finally R is the planetary radius.

Albedo feedback is introduced into the model by in-

voking a temperature dependence of the coalbedo, a =

a[T (x, t)]. Following many classic studies (e.g. Budyko

1969; Held & Suarez 1974; North 1975b) we adopt a sim-

ple step function in which the ice and snow line is tied

to a particular isotherm T0:

a[T (x, t)] = ay =




a0, T (x, t) > T0

a1, T (x, t) < T0
(7)

where a0 > a1. The temperature-dependence of ay in-

troduces a non-linearity into the EBM and raises the

possibility of multiple equilibria and unstable ice growth.

For the seasonal model, the natural choice for thresh-
old temperature T0 would be the relevant freezing point

(0◦C or about −2◦C for Earth’s land and ocean sur-

faces respectively). Note that the actual freezing point

for seawater is salinity-dependent and would be lower for

a hypersaline ocean (as low as -21.1◦C for a NaCl-water

brine).

3.2. Annual mean model

Many studies using an EBM to analyze features of

Earth’s climate have focussed on annual-mean condi-

tions driven by annual-mean insolation s(x, t). Averag-

ing the seasonal EBM (5) over a steady seasonal cycle

2 K has units of W ◦C−1, which is the product of a physical
diffusivity in m2 s−1 and a depth-integrated atmospheric heat
capacity in J m−2 ◦C−1.
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yields

0 = Qas−
[
A+BT

]
+
K

R2
∇2T (8)

which is the starting point for many classic studies of

Earth’s energy balance (e.g. North 1975b,a).

It is often supposed that seasonal covariance between

insolation and albedo can be ignored or parameterized.

We can define an “effective coalbedo” ã for the annual

mean energy budget as the ratio

ã =
as

s
(9)

The insolation term in (8) is then replaced with Qãs,

with s given as a function of latitude and obliquity by

(4). The annual-mean EBM is then closed with an as-

sumption about the dependence of ã on annual-mean

temperature T .

Historically the step-function form of (7) has been ap-

plied to the annual mean model, with a threshold tem-

perature Tf typically less than the instantaneous freez-

ing temperature T0. Specifically:

ã = ay =




a0, T (x) > Tf

a1, T (x) < Tf
(10)

where the canonical choice is Tf = −10◦C (e.g. North

et al. 1981). Why is the relevant threshold −10◦C rather

than 0◦C? This question has received relatively little

attention in the EBM literature. The choice of thresh-

old appears to go back to the seminal work of Budyko

(1969), who noted that the transition to permanent

year-round ice and snow cover in the Arctic occurs at

a mean latitude of 72◦N, and −10◦C is roughly the ob-

served annual mean temperature at this latitude.

Presumably, the transition to permanent ice and snow

on a planet with very weak seasonal temperature vari-

ations would occur at a location with annual mean

temperature closer to 0◦C. We thus hypothesize that

the magnitude of the difference T0 − Tf is linked to

the amplitude of the seasonal cycle. Although prelim-

inary theoretical investigation of this relationship ap-

peared promising, numerical solutions revealed that a

step-function parameterization of the coalbedo is un-

likely to work when the amplitude of the seasonal cycle

is large. We thus defer deeper analysis of (10) to future

work. For now we will simply note that our formal anal-

ysis (beginning below) relies on Tf or T0 as a reference

point for the non-dimensionalization.

3.3. Nondimensionalization

For the seasonal model (5), a total of 11 dimensional

parameters have been introduced: Q, a0, a1, A, B, K,

R, β, T0, tyear, and C. Similarly, the annual model (8)

depends on 9 parameters – the first eight in the seasonal

list, plus Tf (which we hypothesize to be an implicit

function of the seasonal parameters). For present-day

Earth, many of these parameters are known or can be

estimated from observations3, and s20 = −0.48 gives

a good approximation of present-day annual mean in-

solation. Thus the annual model is often presented as

having only one free parameter, the heat diffusion con-

stant K, which is tuned to reproduce the modern-day

climate (e.g. North 1975a). However, these parameters

can vary widely among exoplanets. It is therefore impor-

tant to identify all the key non-dimensional parameters

in order to investigate the full range of possible climates

embodied in the EBM.

We introduce the following dimensionless constants:

τ = ωt = 2πt/tyear (11a)

γ =
Cω

B
(11b)

δ =
K

R2B
(11c)

q =
a0Q

A+BTref
(11d)

α =
a0 − a1
a0

(11e)

and non-dimensionalize the surface temperature and

outgoing longwave radiation with

T ∗(x) =
A+BT (x)

A+BTref
(12)

The reference temperature Tref in (11d) and (12) is

taken to be the temperature threshold – either T0 for

the seasonal model or Tf for the annual model, so that

in either case T ∗ = 1 at the ice edge.

The seasonal EBM can then be written

γ
∂T ∗

∂τ
−δ∇2T ∗+T ∗ = qs(x, τ)





1, T ∗ > 1

1− α, T ∗ < 1
(13)

Substituting in the insolation expansion (2) and using

(3), we conclude that the seasonal model has five appar-

ently independent parameters: γ, δ, q, β, α. These five

are usually taken as uniform in latitude.

3 In principle A, B, a0 and a1 can all be estimated from satellite
measurements of top-of-atmosphere radiative fluxes. However the
complexity of cloud cover on Earth makes unambiguous determi-
nation of these parameters difficult, and estimates in the literature
have varied substantially (e.g. Graves et al. 1993; Marani 1999)
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The annual EBM can be written as

δ∇2T ∗ − T ∗ = −q [1 + s20P2(x)]





1, T ∗ > 1

(1− α), T ∗ < 1

(14)

The annual model has just four independent parameters:

δ, α, q, s20 (with s20 uniquely determined by obliquity β).

However the definitions of T ∗ and q are not identical in

(13) and (14) because the reference temperatures may

differ.

3.4. Physical interpretation of dimensionless

parameters

Here we describe the parameters defined in (11) in

physical terms. We provide typical Earth-like values for

each parameter and note some factors governing their

plausible ranges for habitable exoplanets. The Earth

values are derived from dimensional parameters in North

(1975b). More accurate or up-to-date values are cer-

tainly possible, but our main interest here is in situat-

ing the non-dimensional model within the existing EBM

literature.

T ∗: Proportional to both temperature and OLR. T ∗ =

1 by definition at the ice edge.

γ: Seasonal heat capacity of the system relative to the

radiative decay of temperature over 1 year. γ de-

creases with length of year and radiative damping,

and increases with fractional ocean coverage and

efficiency of ocean mixing. With the dimensional

parameters from North (1975b) we have γ ≈ (0.55

m−1) H where H is a depth of water. γ ≈ 1 for

a dry Earth whose heat capacity is dominated by

land and atmosphere. A realistic value for Earth

is in between 5 and 20, with larger values appro-

priate for the ocean-dominated Southern Hemi-

sphere. To apply a uniform gamma requires a

compromise across this range.

δ: Efficiency of dynamical heat transport. δ measures

the relative importance of transport versus local

radiative damping in the response to a localized

heat source (Stone 1978). Transport will smooth

out meridional temperature variations over length

scales smaller than
√
δR (Lindzen & Farrell 1977).

δ depends on atmospheric properties such as mass,

greenhouse gas levels and cloud cover, and dynam-

ical factors such as rotation rate and planetary ra-

dius (Williams & Kasting 1997; Vallis & Farneti

2009). Other factors might include topographic

forcing of atmospheric stationary waves (e.g. Cook

& Held 1988), and the temperature-dependence

of latent heat transport (e.g. Caballero & Lan-

gen 2005). The role of oceans on the effective

value of δ is complex due to the multiple spa-

tial scales of ocean heat transport and their tight

coupling to the ice extent (e.g. Rose & Marshall

2009; Rose et al. 2013; Ferreira et al. 2014; Rose

2015). Ocean heat transport has been found to

increase with rotation rate in uncoupled simula-

tions (Cullum et al. 2014) but decrease in coupled

atmosphere-ocean simulations (Vallis & Farneti

2009). For present-day Earth we take δ ≈ 0.31 fol-

lowing North (1975b). δ could vary widely across

different planets.

q: Radiative forcing. The numerator in (11d) is the

global mean absorbed shortwave for an ice-free

planet. The denominator is outgoing longwave ra-

diation at the ice edge. q is sensitive to solar irra-

diance (Q), greenhouse gas amount (A) and plan-

etary albedo, as well as choice of reference tem-

perature. q could of course range widely across

planets with different orbital distances and stellar

output. The region of interest is the habitable zone

near q ≈ 1, since planets at large or small q would

be locked into very warm or Snowball climates re-

spectively. For Earth, q ≈ 1.2 in the annual mean

model and 1.1 in the seasonal model.

α: A measure of the potential ice-albedo feedback. α

is bounded between 0 (no feedback; no change in

albedo across the ice edge) and 1 (extreme feed-

back). α will be reduced for a cloudier planet and

vice-versa. α is also systematically reduced for

cooler host stars with longer emission wavelengths

(Shields et al. 2013). For Earth, North (1975b)

used values corresponding to α = 0.44.

3.5. Deep and shallow limits of the seasonal model

Before presenting our analysis of the stability of the

annual-mean model (14) at high and low obliquity, we

take a brief detour into the effects of the seasonal cycle

in the time-dependent seasonal EBM. An explicit goal

of this analysis is to determine the non-dimensional pa-

rameter regime in which the seasonal effects are small,

which then justifies the use of the annual-mean model.

We begin by removing the nonlinearity from (13), by

taking α = 0 (uniform, constant albedo). This simplifi-

cation makes (13) a linear PDE for T ∗, and allows us to

obtain periodic seasonal solutions of the form

T ∗ = T ∗(x)+T ∗11P1(x) cos (τ − Φ11)+T ∗22P2(x) cos (2τ − Φ22) ,

(15)

where T ∗(x) is the annual-mean temperature, T ∗11 and

Φ11 are the amplitude and phase lag (relative to inso-
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lation) of the annual cycle, and T ∗22 and Φ22 are the

same quantities for the semiannual cycle. We non-

dimensionalize T ∗11 = BT11/(A + BT0) and T ∗22 =

BT22/(A+BT0) such that they have zero annual mean.

Solutions for T ∗(x) are discussed later in Section 4.1.

In the appendix we derive solutions for the seasonal de-

partures. For the annual cycle we find:

Φ11 = arctan

(
γ

1 + 2δ

)
(16a)

T ∗11 =
qs11√

(1 + 2δ)2 + γ2
(16b)

which implies that temperature is coherent across lati-

tudes in phase and increases in amplitude linearly with

|x| towards the pole in each hemisphere. The solutions

for the semiannual component are:

Φ22 = arctan

(
2γ

1 + 6δ

)
(17a)

T ∗22 =
qs22√

(1 + 6δ)2 + (2γ)
2

(17b)

The above solutions show the relative roles for local

heat storage and meridional heat transport in the sea-

sonal cycle. Setting δ = 0 gives a local radiative equi-

librium solution in the absence of transport, and em-

phasizes the role of γ in both damping the temperature

seasonal amplitude and shifting its phase relative to the

insolation.

The deep-water limit is γ � 1 + 2δ, appropriate for

a planet with a deep mixed ocean layer or short solar

year. In this limit the phase shifts for both annual and

semiannual components are nearly π/2 and the temper-

ature seasonal amplitude is weak. Present-day Earth is

much closer to this limit than the shallow water limit to

be discussed below, as evidenced by the observed phase

shift of our seasons. To leading order in γ−1, the deep-

water limits for the annual and semiannual components

are

Φ11 ≈
π

2
− 1 + 2δ

γ
T ∗11 ≈

qs11
γ

(18a)

Φ22 ≈
π

2
− 1 + 6δ

2γ
T ∗22 ≈

qs22
2γ

(18b)

It is notable that the (weak) seasonal amplitude becomes

independent of δ in this limit.

Conversely, the shallow-water limit γ � 1 + 2δ is ap-

propriate for a dry planet with a very long solar year.

In this case the temperature has large seasonal ampli-

tude nearly in phase with the sun. Specifically we get,

to leading order,

Φ11 ≈
γ

1 + 2δ
T ∗11 ≈

qs11
1 + 2δ

(19a)

Φ22 ≈
2γ

1 + 6δ
T ∗22 ≈

qs22
1 + 6δ

(19b)

It is notable that even in this limit the seasonal am-

plitude is substantially smaller than the local radiative

equilibrium value (δ = 0) due to transport from other

latitudes. Physically, the amplitude of the annual cycle

of insolation increases poleward, but this is offset by the

poleward increase of seasonally-varying convergence of

heat transport from lower latitudes. There is a tradeoff

between the damping of the seasonality due to local heat

storage versus that due to meridional transport. This

damping is stronger for the semiannual than for the an-

nual component, which contributes to the smallness of

the semiannual component away from the equator.

In the next section we will present our analysis of

the non-linear annual-mean model with albedo feedback.

The annual model is independent of the heat capacity

parameter γ, and through (10) assumes a sharp bound-

ary between the ice-covered and ice-free regions. The

relevance of these results in the presence of substantial

seasonal migration of the snow and ice line is question-

able. We therefore limit ourselves to consideration of

the deep-water regime γ � 1 + 2δ in which those mi-

grations are small, noting that this restriction is more

stringent for small, slowly-rotating planets (for which δ

is larger). We will revisit this question with numerical

integrations of a seasonal model in Section 6.

4. SOLUTIONS OF THE ANNUAL MEAN MODEL

We now provide explicit analytical solutions to the

non-dimensional annual-mean model (14). In what fol-

lows we denote the latitude of the ice edge as xs, i.e.
T ∗(xs) = 1.

4.1. Ice-free solutions

Before considering partially ice-covered planets, we

first consider solutions with constant albedo across the

whole domain. In this case (14) is linear and simple

exact solutions can be written:

T ∗ = q

(
1 +

s20
1 + 6δ

P2(x)

)
(20a)

for ice-free conditions, and

T ∗ = (1− α)q

(
1 +

s20
1 + 6δ

P2(x)

)
(20b)

for Snowball conditions.
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Figure 4. Contour plot of the minimum radiative forcing
qfree for which an ice-free solution exists, as a function of
obliquity and heat transport efficiency. A logarithmic scale
is used for δ since it may vary over orders of magnitudes. For
comparison to Earth-like planets, the red contour shows q =
1.2 (the present-day value based on (11d)), and the Earth
symbol (circle with cross) indicates qfree for β = 23.45◦, δ =
0.31 from (21). The fact that this point sits on the red line
indicates that present-day Earth is near a radiative forcing
that supports an ice-free state according to this model.

An ice-free planet requires the coldest temperature

anywhere to be at or above Tf , so T ∗ ≥ 1 everywhere.

The coldest temperature occurs at the pole (x = 1) for

low obliquity but at the equator (x = 0) for high obliq-

uity. We define qfree as the minimum radiative forc-

ing for which an ice-free planet can exist. Noting that

P2(1) = 1 and P2(0) = −1/2, the condition is

q−1free =





1 + s20
1+6δ , s20 < 0

1− s20
2(1+6δ) , s20 > 0

(21)

where we remind the reader that s20 ranges between

-5/8 (for β = 0◦) and +5/16 (for β = 90◦) (Fig. 3).

Notice that this says that ice-free conditions can exist

for weaker radiative forcing on high-obliquity planets

compared to low-obliquity planets with the same heat

transport efficiency, both because |s20| is small (even

at extreme β = 90◦ it is still smaller than for present-

day β = 23.5◦), and because of the extra factor of 1/2

when s20 > 0 (β > 55◦). Equivalently, warm climates

can exist with weaker heat transport efficiency on high

obliquity planets compared to low obliquity planets at

the same radiative forcing. Physically this arises because

annual mean insolation is larger at the equator for high

obliquity than it is at the poles for low obliquity.

As a concrete example, if δ = 0.31 for an Earth-like

planet, the condition (21) says that an ice-free climate

is possible for q ≥ 1.2 for β = 23.5◦. Thus present-day

Earth is near a radiative forcing that supports an ice-free

climate. On the other hand for β = 90◦ the condition is

q ≥ 1.06, meaning the planet could support an ice-free

climate even under a 10% reduction in insolation (or a

similar reduction in global mean temperature from re-

duced greenhouse gases). Fig. 4 shows qfree plotted as

a function of β and δ. The smallest radiative forcing

for which ice-free conditions are possible occur at values

of obliquity close to βc = 55◦. Here, the annual mean

insolation has zero meridional gradient, and qfree → 1.

Under these conditions the surface is essentially isother-

mal and just above the freezing point.

More generally, Fig. 4 shows that qfree is substantially

smaller for high obliquity than low obliquity over a wide

range of transport parameters δ. All non-dimensional

parameters being equal, a high-obliquity planet is more

likely to be perennially ice-free than a low-obliquity

planet.

4.2. Snowball solutions and multiple equilibria

We can similarly define qsnow as the maximum radia-

tive forcing for which a completely ice-covered climate

can exist:

q−1snow =
(
1− α

)

1 +

|s20|
1 + 6δ





1/2, s20 < 0

1, s20 > 0








(22)

It is well-known from EBM studies of Earth’s climate

that both climatic extremes (ice-free and Snowball) are

possible over a wide range of radiative forcings, i.e.

qsnow >> qfree. The equilibrium climate is multiple-

valued and capable of undergoing hysteresis, which is

central to the Neoproterozoic Snowball Earth hypothe-

sis (e.g. Hoffman et al. 2017). How general is this result?

What combination of parameters permits coexistence of

the ice-free and Snowball solutions? From (21) and (22),

both solutions are possible for a range of q values so

long as the albedo parameter α is sufficiently large; that

is, if the planet has a strong enough albedo feedback.

Specifically, we can define a minimum value of α that

permits both solutions for some range of radiative forc-

ings (whether we are actually in the multiple equilibrium

regime would then depend on q). The condition on α is

α ≥ 3

2





[
1
2 − 1+6δ

s20

]−1
, s20 < 0

[
1 + 1+6δ

s20

]−1
, s20 > 0

(23)

Or, since s20/(1 + 6δ) is a small number, to a crude

approximation we can write

α(1 + 6δ) &
3

2
|s20| (24)

for either sign of s20. For the Earth-like parameter val-

ues cited above, we have α(1 + 6δ) ≈ 1.3. This con-

dition is then satisfied for any obliquity. We conclude
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that multiple equilibria are a rather common property

of planets with albedo feedback, perhaps especially in

the high-obliquity regime since |s20| is smaller.

4.3. Solutions with interior ice edge

When temperature crosses the ice threshold T ∗ = 1

somewhere in the domain, (14) becomes non-linear.

However if we assume the ice edge xs is known, then

the problem is piecewise-linear in the warm and icy re-

gions. We can then solve for the parameter values that

would give the assumed ice edge. This is the basis for the

analytical solutions given by North (1975b) and North

et al. (1981). Here we extend these solutions to the high-

obliquity case. Details are given in the appendix but we

outline the solution method here.

Because the icy region exists on opposite sides of xs
in the low- and high-obliquity regimes, the appropriate

form of the RHS of (14) is slightly different depending

on the sign of s20. The upper form applies for s20 < 0

and x < xs, or for s20 > 0 and x > xs, while the lower

form with the factor (1 − α) applies for s20 < 0 and

x > xs, or for s20 > 0 and x < xs.

These are second-order ODEs (forms of Legendre’s

equation) for T ∗(x). Since the annual-mean model is

symmetric about the equator, we solve on the hemi-

sphere x ∈ [0, 1]. We split this domain into two regions

x < xs, x > xs, and solve a two-point boundary value

problem in both regions. The particular solution is pro-

portional to P2(x) following the insolation, and the gen-

eral solution to the homogeneous equation is written in

terms of Legendre functions on both sides. Four bound-

ary conditions are determined by conservation of energy:

zero heat transport at the pole (x = 1) and the equator

(x = 0), and continuous transport at xs (which requires

that both T ∗ and its derivative are matched at xs). The

fifth condition is the ice edge condition T ∗(xs) = 1, from

which we derive a relationship between unknown model

parameters valid for a given xs (see appendix):

q−1 =





1 + s20
1+6δP2(xs)− αF (xs), s20 < 0

(1− α)
(

1 + s20
1+6δP2(xs)

)
+ αF (xs), s20 > 0

(25)

where F (xs) is a special function computed in terms

of hypergeometric functions, and depends on model pa-

rameters δ and s20/(1+6δ); the formula is given in (B7).

Equation (25) gives the radiative forcing q required for a

given ice edge xs. Although it seems perverse to solve for

q(xs) rather than xs(q), the inverse of (25) is multiple-

valued and does not have a closed form.

5. CAPS AND BELTS: EXPLORING THE

PARAMETER SPACE

5.1. Stable vs. unstable ice edges

The expressions in (25) define the solution space for

the EBM. If planetary properties δ, α and β (and hence

s20) are known, then from (25) we can calculate the ra-

diative forcing q necessary for any ice edge. We might

also think of q as known and use (25) to compute the

albedo or transport efficiency necessary for a given ice

edge. The point is that (25) defines a relationship be-

tween the four model parameters for any ice edge xs.

Note that s20 only appears in the solutions (including

in the definition of F ) as the ratio s20/(1+6δ). This fac-

tor arises because the particular solutions to any forcing

term P2(x) in the diffusion equations (14) are damped

by a factor 1/(1 + 6δ); diffusion acts to smear out the

local forcing, producing a weaker temperature gradient.

In Fig. 5 we plot the solutions q(xs) for a range of val-

ues of δ and α, and for both Earth-like and high obliq-

uity. Because the location of the icy region is reversed

at high obliquity (Fig. 1), we have reversed the y-axis in

the β = 90◦ plots in the lower row so that up is always

cold and towards an ice edge (if it exists). This simplifies

visual interpretation of the stability criterion discussed

below. These solutions are multiple-valued: there are

anywhere from 1 to 5 different equilibrium ice edges for

any given radiative forcing (which we can visualize by

drawing a vertical line through the plot). At most 3 of

these solutions are stable equilibria (and thus physically

realizable).

The physical basis of the stability condition is straight-

forward: the equilibrium size of the icy region should de-

crease with an increase in radiative forcing, so that small

perturbations in the ice extent will excite a net negative

radiative feedback and decay. For polar ice caps at low

obliquity the ice edge is stable if

dq

dxs
> 0 (26a)

a condition known as the “slope-stability theorem” (Ca-

halan & North 1979). Locations on the graphs where

the slope dq/dxs changes sign therefore indicate bifur-

cation points of the ice-climate system. For the familiar

low-obliquity case, there are both minimum and max-

imum sizes for stable polar ice caps (North 1984; Roe

& Baker 2010). The associated instabilities have been

called Small Ice Cap Instability (SICI) and Large Ice

Cap Instability (LICI) or simply Snowball instability.

The green curve in Fig. 5b is reasonably close to

Earth-like parameters (β = 23.5◦, δ = 0.32, α = 0.44,

q = 1.2), and serves to illustrate the classic Snowball

Earth hysteresis. The analog of the present-day climate

sits on the stable ice cap branch with xs near 60◦ lati-

tude in this case (though xs is closer to 70◦ for Earth).



Ice caps and ice belts 11

unstable

stable

unstable

unstable

unstable

stable

unstable

unstable

a b c d

e f g h

Figure 5. The radiative forcing q required as a function of ice edge latitude arcsin(xs), for various parameter values. Upper
row: Earth-like obliquity β = 23.5◦; ice cap is poleward of the indicated latitude. Lower row: β = 90◦, warmest temperatures
at the poles, ice belt is equatorward of the indicated latitude. The latitude axis is flipped so that the icy region is above the
indicated latitude in all cases. Panels a-c and e-g show q(xs) computed from (25) for several different values of δ ranging from
0.04 to 2.56. Stable equilibria exist wherever the graphs slope upward to the right. Panels d and h show the ranges of possible
stable ice edges as a function of the albedo feedback parameter α. For a given δ value, stable ice edges are possible only within
the shaded region α < αcrit.

A reduction in greenhouse gases or solar constant suffi-

cient to reduce q by about 2% would cause the climate

to cool and the ice cap to expand, following the green

curve down to the bifurcation point around 38◦ latitude.

Further reduction in q would then trigger unstable ice

expansion down to the equator (the horizontal line at

the bottom of the graph). Exiting the Snowball sce-

nario would then require sufficient radiative forcing to

raise the equatorial surface temperature past the melt-

ing point, i.e. q ≥ qsnow. From (22) this threshold is

about 1.65, or about a 38% increase over the present-day

value of 1.2. The planet would then undergo an unsta-

ble transition to extremely warm and ice-free conditions

(the horizontal line at the top of the graph). Qualita-

tively, the same statements can be made for any curve

in the upper panels that features a stable ice cap over

some range of q.

Analogous stability diagrams can be easily computed

for any obliquity value. In particular, the perpetual

equinox case β = 0 is qualitatively similar to the upper

row of Fig. 5 but somewhat more stable (not shown).

However this result should be treated with caution be-

cause of the misfit of the series approximation to s(x)

near the poles for β = 0 (Figs. 2 and 3).

For high obliquity, since the ice sits equatorward of xs,

the stability condition is reversed. A stable equatorial

ice belt requires

dq

dxs
< 0 (26b)

Since we have reversed the axes in the high-obliquity

plots in Fig. 5e-f, the stable solution branches are still

readily identifiable in all cases as regions of positive

slope. As in the low-obliquity case, there are mini-

mum and maximum sizes for stable ice belts (latitudes

at which the slope of the graphs in Figs. 5e-f change

sign). Here we introduce new terminology to describe

these bifurcations: the Small Ice Belt Instability (SIBI)

and Large Ice Belt Instability (LIBI) near the top and

bottom of the graphs respectively.

Stable finite ice cover is far from universal through-

out the parameter space at both high and low obliquity.

There are, for example, no stable ice edges for very large

δ (blue curves); more modest δ admits stable solutions

only for small α (weak albedo feedback, e.g. magenta

and green curves). Stable ice edges are possible when

neither δ nor α is large. In fact we have already estab-

lished in (23) and (24) that the product α(1+6δ) governs

the existence of multiple equilibria due to albedo feed-

back, and the existence of stable ice edges appears to

require that this same product not exceed some thresh-

old. This can also be illustrated through the following

approximate stability condition, following Rose (2015).
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Suppose that an equilibrated climate is subject to a

small globally-uniform warming or cooling ∆T ∗, which

displaces the ice area by ∆xs. This perturbation is sta-

ble if and only if the negative temperature feedback out-

weighs the positive albedo feedback:

∆T ∗ > αqs(xs)|∆xs| (27)

(where the absolute value accounts for the reversed ice

orientation at high obliquity). For small perturbations,

the ice edge displacement is determined by the local tem-

perature gradient: ∆T ∗ = −∆xs
dT∗

dx

∣∣
xs

. Taking tem-

perature gradients from the linear solutions (20) then

gives

α(1 + 6δ) <
3xs|s20|

1 + s20P2(xs)
(28)

Evaluating this condition near xs = 0.5 (half global ice

cover) gives, to a good approximation,

α(1 + 6δ) <
3

2
|s20| (29)

(effectively the opposite of (24)). This is clearly an

overly stringent condition because the linear solutions

(20) underestimate the temperature gradient near the

ice edge, but it serves to illustrate the dependence of

stable branches on α and δ. Furthermore, (29) suggests

that the condition is more stringent for high obliquity

where insolation gradients are weaker, as found in Fig. 5.

The exact stability condition can be derived from (25)

by setting dq/dxs = 0 and solving for α. Stable ice

edges are possible wherever α < αcrit(xs, δ, s20), where

the critical value takes on different forms for low and

high obliquity:

αcrit =





s20P
′
2(xs)

(1+6δ)F ′(xs)
, s20 < 0(

1− (1+6δ)F ′(xs)
s20P ′2(xs)

)−1
, s20 > 0

(30)

where the primes refer to derivatives with respect to x

evaluated at xs. αcrit is shown in Figs. 5d,h. Again, as

either α or δ increases, the range of latitudes at which

stable ice caps or ice belts can be found is reduced.

The model predicts that stable ice edges should be

rarer under high obliquity than low obliquity. For ex-

ample, for Earth-like α = 0.44, but 90◦ obliquity, stable

ice edges occur only for weak heat transport (δ = 0.16,

red curve, and smaller), and these are very sensitive

(large ice edge displacements for small changes in ra-

diative forcing) relative to their corresponding solutions

at Earth-like obliquity. For large parts of the param-

eter space, the only physically realizable solutions are

the ice-free and Snowball states, which are plotted as

horizontal lines at 0◦ and 90◦ in Fig. 5.

Finally, Fig. 5 also shows that stable ice edges are

frequently found in regions of the parameter space in

which both ice-free and Snowball solutions are also pos-

sible. This is particularly true for the stable ice belts

at high obliquity. For example, the red curve in Fig. 5f

has a stable ice belt branch, but the entire branch co-

exists with the ice-free and Snowball branches. There

are thus no possible transitions from either ice-free or

Snowball conditions into this stable ice belt state in-

volving a hysteresis in q (radiative forcing). In this case

the ice belt is possible but difficult to realize as there

is no ready mechanism by which the climate can drift

into this state from warmer or colder initial conditions.

The abundance of inaccessible ice belts may help explain

why ice belt states have only rarely been found in GCM

studies (see our introduction).

5.2. Likelihood of stable ice edges as a function of

obliquity

As we argued above, the annual-mean EBM predicts

that stable high-obliquity ice belts should be rarer than

stable low-obliquity ice caps. Here we quantify this

statement under some simple, speculative assumptions

about the probability distributions of planetary param-

eters. We will evaluate the relative likelihood Lice of

finding a stable ice edge as a function of obliquity –

where “relative” here means that Lice will be normal-

ized by the probability for the same planetary properties

but Earth’s current obliquity.

Suppose that we have a known probability distribution

of planetary properties

hplanet(q, δ, α) (31)

In principle, given δ, α and q we can calculate the ice

edge xs and its stability. Since we have a functional form

for q(xs) rather than xs(q), we compute probability of a

stable ice edge by integrating over all possible ice edges:

Pice(β) =

∫ 1

0

∫∞
0

∫ αcrit

0
hplanet (q(xs, δ, s20, α), δ, α) dα dδ dxs∫∞

0

∫∞
0

∫ 1

0
hplanet (q, δ, α) dα dδ dq

(32)

where the denominator is equal to unity. By taking the

integral in the numerator only over the interval 0 < α <

αcrit(xs, δ, s20), we sample just the part of the solution

space that contains stable ice edges. We then normalize

by the value of Pice at Earth’s obliquity:

Lice(β) =
Pice(β)

Pice(β⊕)
. (33)

There is one further complication involving the inac-

cessible stable solutions branches discussed at the end



Ice caps and ice belts 13

of Section 5.1. We exclude from our probability cal-

culation all states that are inaccessible from either the

ice-free or Snowball branch through a hysteresis in q.

The method is illustrated in Fig. 6. For given values of

δ and s20, αwarm (magenta curve) is defined implicitly

by the solution of q(xs, α = αcrit) = qfree. Similarly

αcold (cyan curve) is defined implicitly by the solution

of q(xs, α = αcrit) = qsnow evaluated at αcrit. These

conditions describe the parameter space boundaries for

transitions to the stable ice edge branch respectively

from the ice-free and Snowball branches. We then re-

duce the limit of the integration in (32) from αcrit to a

smaller value αmax given by

αmax(xs, δ, s20) = min (αcrit,max (αwarm, αcold)) (34)

The maximum value in (34) ensures that we include all

stable ice edges that are accessible (through a radiative

hysteresis) from at least one side.

We are unable to solve analytically for αmax (it in-

volves a transcendental equation for xs), but numeri-

cal solution with a root-finding algorithm is straightfor-

ward. We thus compute two version of the likelihood

Lice: one in which all possible stable ice edges are ac-

counted for using (32), and another in which inaccessible

stable states are excluded by replacing αcrit with αmax
in the limits of integration.

Calculating Lice requires a plausible form for the prob-

ability distribution hplanet. We assume here that the

three parameters q, δ, α are independent of each other,

so that their joint probability distribution is separable:

hplanet (q, δ, α) = hq(q) hδ(δ) hα(α) (35)

Alternatively we might consider some parameter inter-

dependence; e.g., α and δ might co-vary due to the ef-

fects of stronger albedo contrasts on atmospheric baro-

clinicity and eddy activity. We make the separable as-

sumption here for simplicity. Recall that q = a0Q(A +

BTref )−1 and δ = KR−2B−1 are products of several pa-

rameters – each of which may vary considerably – and

both variables are also positive definite, with no upper

bound. These features suggest that taking lognormal

distributions for hq and hδ may be reasonable. We lack

such a firm basis for the form of hα, but as α is bounded

on [0, 1], both uniform and beta distributions seem rea-

sonable.

We adopt three different sets of assumptions, result-

ing in three different curves in Fig. 7. For PDF0 (blue

curve), we assume the following: hα is uniform on [0, 1];

hδ is lognormal on [0,∞] with shape parameter 1.0,

scale parameter 1.0 and location parameter 0 (mode at

δ = 0.37, median at δ = 1); hq is lognormal on [0,∞]

with shape parameter 0.5, scale parameter 1.0 and loca-

tion parameter 0 (mode at q = 0.78, median at q = 1).

PDF1 (green curve) is the same as PDF0 except hδ gives

more weight to both small and large values of δ (lognor-

mal with shape parameter 2.0 and scale parameter e;

mode at δ = e−3, median at δ = e). Finally PDF2 (red

curve) is the same as PDF1 except hα is a parabolic beta

distribution on [0, 1] with a mode at α = 0.5 – thus giv-

ing higher probability to moderate albedo feedback. In

each case Lice is computed through numerical integra-

tion of (32) for a given obliquity value, and normalized

by its value at Earth obliquity.

Fig. 7 shows that in all cases the likelihood of a stable

ice cap decreases with increasing obliquity, approaching

zero at the critical obliquity of 55◦. The likelihood of a

stable ice belt then increases with obliquity between 55◦

and 90◦, but in all cases is lower than the likelihood of a

stable ice cap at Earth-like obliquity. The details appear

to be most sensitive to assumptions about hα (i.e. the

red curve is substantially different from the green and

blue curves). However in all cases the shape of Lice is

qualitatively similar to the annual-mean equator-to-pole

insolation gradient |s20|. As this gradient becomes small

near β = 55◦ the transport will have an increasingly

strong tendency to overwhelm the insolation gradient

and produce a nearly isothermal climate – either above

or below the ice threshold.

At high obliquity, the exclusion of inaccessible stable

states has a larger impact on Lice than at low obliq-

uity (as anticipated by the shapes of the q(xs) curves

in Fig. 5). The relative rareness of radiative hysteresis

loops that access the stable ice belt configuration means

that such states are less likely to be observed (or mod-

eled). The tentative conclusion (based on these highly

speculative assumptions about the distributions of plan-

etary parameters) is that ice belts will be less probable

than ice caps, by a factor of 2 or so.

We can go one step further toward a general statement

about the observability of ice belts versus ice caps by

making an assumption about the distribution of obliq-

uities. If, for example, obliquity is uniformly distributed

between 0◦ and 90◦, the area under the curves in Fig. 7

on either side of the critical 55◦ define relative likeli-

hoods of finding stable ice caps versus ice belts. Under

this assumption, the proportion of all hypothetically ob-

servable stable ice edges comprised of ice belts is then 22,

24 or 17% using PDF0, PDF1 and PDF2 respectively.

So about 3/4 to 4/5 of all planets with partial ice cover

would be in the form of Earth-like low-obliquity polar

ice caps. Note that these numbers just represent rela-

tive likelihoods of ice caps versus ice belts; they do not
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Figure 6. Graphical illustration of the method for excluding inaccessible stable states. In colors we contour q(xs, α) from
(25) for the stable region bounded by αcrit from (30). Magenta curve is the implicit solution of q(xs, α) = qfree – the latitude
to which the ice edge would jump in an unstable transition from ice-free conditions. Cyan contour is the implicit solution of
q(xs, α) = qsnow – the analogous ice edge latitude resulting from unstable transitions from the Snowball state. αwarm in (34)
is the intersection of the magenta curve with αcrit. For α > αwarm, transitions from ice-free conditions would result directly
in a Snowball. Similarly, αcold is the intersection of the cyan curve with αcrit, giving the maximum α for which transitions
from Snowball to stable ice edge are possible. The thick black contour illustrates αmax from (34). Inaccessible stable states lie
between αmax and αcrit.

Figure 7. Estimates of the relative likelihood Lice of finding
a planet with stable finite ice cover – either ice caps (for low
obliquity) or ice belt (for high obliquity). The curves show
Lice calculated from (32) and (33) and for three different
forms of probability density hplanet as described in the text,
and normalized to a value of 1 at Earth’s obliquity of 23.45◦.
Dashed curves include all possible stable ice edges. Solid
curves exclude inaccessible stable states using (34).

represent probabilities of finding any of these stable ice

edge states relative to ice-free or Snowball conditions.

Is uniformly distributed obliquity a reasonable prior?

Miguel & Brunini (2010) simulated planetary accretion

and found a primordial obliquity distribution peaking

at 90◦. Taking hβ = sinβ to fit these results better

gives 46, 48 or 39% ice belts using PDF0, PDF1 and

PDF2 respectively. However it’s not clear that observ-

able obliquities have the same distribution as primordial

obliquities, as primordial obliquities can be altered by a

variety of mechanisms (e.g. Laskar & Robutel 1993; Cor-

reia & Laskar 2001). In particular, high obliquities will

be reduced by strong tidal interactions for planets close

to their host star, yielding a distribution closer to uni-

form. Better constraints on obliquity distributions and

all planetary parameters are clearly warranted.

5.3. The Snowball bifurcation at low and high obliquity

A question of relevance to life on other planets is

whether the Snowball catastrophe occurs at lower radia-

tive forcing at low or high obliquity. There is some con-

flict in the literature on the role of the Snowball bifurca-

tion in planetary habitability. On the one hand, defin-

ing habitability in terms of surface liquid water suggests

that a Snowball climate is uninhabitable, which has led

various authors to propose metrics of fractional or sea-

sonal habitability for planets with partial ice cover (e.g.,

Williams & Pollard 2003; Spiegel et al. 2008). On the

other hand, not only did photosynthesis persist through

Snowball events in Earth history, but the events may

crucially shaped the subsequent evolution of complex life

(e.g., Hoffman & Schrag 2002; Laasko & Schrag 2017;

Hoffman et al. 2017). The traditional habitable zone

concept assumes a planet with a functioning silicate-

weathering feedback and a positive CO2 greenhouse ef-

fect (Kasting et al. 1993; Kopparapu et al. 2013). Global

glaciation may be triggered on such a planet through

a rapid draw-down of atmospheric CO2 that reduces q

below the thresholds at which the non-Snowball states

disappear. In Earth history this seems to have occurred

through accidents of tectonics (Hoffman et al. 2017).

These events are self-terminating through the suppres-

sion of silicate weathering and accumulation of a strong

CO2 greenhouse. Such transitions can in principle occur

anywhere within the habitable zone. Our simple model

is unsuited to the tasks of diagnosing the inner edge of

habitability (where the relevant physics are the runaway

water vapor greenhouse and hydrogen loss to space) or

the outer edge (where the relevant physics are CO2 con-
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densation and Rayleigh scattering). However we can

compute the q value at which the bifurcation occurs as

a function of obliquity and other model parameters, and

whether the transition into the Snowball occurs from a

partially ice covered state (cap or belt) or directly from

the ice-free state.

We therefore define qhab as the smaller of the minimum

q necessary for ice-free conditions (given by (21)) and the

minimum q for which a stable ice edge exists (if any) (a

quantity we will call qstab), i.e.,

qhab = min
(
qstab, qfree

)
(36)

As discussed above, for large values of δ and α there are

no stable ice edges, so qstab is undefined. Elsewhere it is

given implicitly by the solution of α = αcrit(xs) for the

critical ice edge latitude xcrit (the bifurcation point at

which dq/dxs = 0 and the stable branch ends in Fig. 5).

We evaluate this numerically for given values of s20, δ, α.

Fig. 8 shows contour plots of qhab as a function of

obliquity and heat transport efficiency δ, for the same

three values of α used in Fig. 5. These are plotted so

that darker colors (red to black) indicate planets that

remain Snowball-free under weaker radiative forcing.

How does the ice-albedo feedback influence the loca-

tion and nature of the Snowball bifurcation? Fig. 8 il-

lustrates a number of different issues. The Snowball

catastrophe is moistly avoided on planets with very weak

albedo feedback (small α). Such planets can maintain

very narrow bands of open water even when the radiative

forcing is weak, and this is nearly equally true for low

and high obliquity planets. On the other hand, for more

than a trivial albedo change across the ice edge, some

clear differences emerge between low and high obliq-

uity worlds. The differences are best illustrated by the

black contours, which show the value of δ above which

qhab = qfree. Below this line, the Snowball bifurcation

is reached from partial ice cover (ice caps or ice belt).

Above this line, the bifurcation is reached from ice-free

conditions. Fig. 8 shows clearly that this threshold oc-

curs at substantially smaller δ values for high obliquity.

For a concrete example, consider the middle panel of

Fig. 8 with α = 0.44. At the Earth-like value of δ = 0.31

we have qhab = 1.18 for β = 23.45◦, but qhab = qfree =

1.05 for β = 90◦. The high obliquity planet remains

Snowball-free for substantially weaker radiative forcing,

and remains entirely ice-free before transitioning to the

Snowball for all but very small δ. With any significant

albedo feedback, a given planet is less likely to fall into

a Snowball state at mid-to-high obliquity than at low

obliquity.

In summary, there are essentially two rather different

scenarios that favor Snowball avoidance at low radiative

forcing: either weak albedo feedback and inefficient heat

transport, or efficient heat transport at mid- to high

obliquity. The first scenario might be associated with

large, rapidly rotating planets orbiting M-dwarfs, where

a partially unfrozen region is maintained by relatively

weak albedo feedback and inefficient heat transport due

to strong zonal flow. The second scenario might be as-

sociated with smaller, slowly-rotating planets at high

obliquity, which would remain completely ice-free even

with a potentially strong albedo feedback (large α) from

shorter wavelength insolation. Albedo feedback is more

likely to drive large climate changes under low obliquity

than high obliquity.

We emphasize that these calculations are relevant for

planets with oceans anywhere within the habitable zone.

Near the outer edge of the habitable zone, a planet with

a functioning silicate-weathering feedback should have

multiple bars of atmospheric CO2. The resultant strong

atmospheric scattering would effectively mask the sur-

face albedo, such that the relevant α value would be

small (Wordsworth et al. 2011).

6. EFFECTS OF THE SEASONAL CYCLE

The conclusions from Section 5 are based on an annual

mean model with a sharp transition between ice-free

and ice-covered regions, which we have argued should be

valid in the deep-water regime γ � 1 + 2δ. It is impor-

tant to verify (at least approximately) the validity of our

analytical results in the presence of a seasonally migrat-

ing snow and ice line – particularly since the seasonal

cycle is so much more pronounced at high obliquity.

We performed numerical solutions of the seasonal

EBM (13) with a seasonally migrating snow and ice

line. The seasonal model was forced with full realis-

tic insolation at low and high obliquity rather than the

series approximation (2). The seasonal model was im-

plemented and solved numerically using the open-source

Python package climlab (Rose et al. 2017). To exam-

ine the stability of ice caps and ice belts and generate

seasonal analogs of the q(xs) curves in Fig. 5, we im-

plemented a large parameter sweep designed to find all

stable states accessible through a hysteresis in radiative

forcing q from either the Snowball or fully ice-free state.

We began on the ice-free branch and reduced q by small

decrements until the Snowball state was reached. We

then increased q by small increments until the model was

ice-free again. If any partially ice-covered states were

found during either of these sweeps, they were used as

initial conditions for additional sweeps to map out the

stable branch. The seasonal model was integrated for

600 years for every parameter combination to ensure a

steady seasonal cycle. Fractional ice area was then aver-
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Figure 8. Contour plots of qhab, the minimum q required for a non-Snowball climate. qhab, defined by (36), is contoured for
fixed albedo contrast parameter α as a function of obliquity and heat transport efficiency δ. Darker colors indicate smaller qhab,
i.e. a planet less prone to the Snowball catastrophe. The black contours indicate values of δ above which qhab = qfree, i.e. the
Snowball bifurcation occurs directly from the ice-free state. For δ below this line, the bifurcation occurs from a stable partially
ice-covered state.

aged over a single year, and expressed as an equivalent

ice edge latitude (Rose et al. 2013) – the latitude of the

edge of ice caps or belts assuming inter-hemispheric and

zonally symmetry.

Two versions of this calculation were carried out with

differing heat capacities. A “deep water” case uses γ =

50, equivalent to about 90 m of water on Earth. The

results are plotted in Fig. 9. A more moderate case

uses γ = 5 or about 9 m of water, and is plotted in

Fig. 10. On both figures we reproduce (in dashed curves)

the analytical solutions of the annual mean model from

Fig. 5 for comparison, while the numerical results of the

seasonal calculations are plotted as solid dots.

Fig. 9 shows that the fit between the seasonal and

annual mean models is extremely good in the deep water

limit. In particular the seasonal model exhibits both

SICI and LICI at low obliquity, and LIBI and SIBI at

high obliquity, with nearly identical stability thresholds.

The exception to this near-perfect fit seems to be that

small ice caps are more stable in the seasonal model

at weak albedo feedback (α = 0.2). At 90◦ obliquity

the main misfit is the radiative threshold for exiting the

Snowball state at the bottom of the graphs, which occurs

at somewhat lesser values of q in the seasonal model

than the annual model. This figure also illustrates the

inaccessibility of many stable ice belt states as discussed

above. Our parameter sweep finds only those solution

branches that are accessible from either the ice-free or

Snowball state. Taking the lower middle panel with β =

90◦, α = 0.44 for example, all stable ice belt states are

excluded except the single branch for δ = 0.04 (weak

heat transport efficiency).

The results for γ = 5 in Fig. 10 are completely differ-

ent. Note that this is an intermediate case between the

deep- and shallow-water limits discussed in Section 3.5.

At low obliquity there is good agreement between the

seasonal and annual models for the behavior of large ice

caps and the LICI thresholds. However there is no SICI

in the seasonal model; instead there is a gradual and

smooth transition to perennially ice-free conditions as

the radiative forcing increases. At high obliquity there

is very little quantitative agreement between the annual

and seasonal models. In general the seasonal model pre-

dicts substantially more stable ice belts than was found

in Fig. 5. For moderate α there is still a well-defined

SIBI in the seasonal model but no analog of the LIBI. In-

stead we find a smooth transition from seasonal large ice

belts to perennially ice-covered Snowball conditions as

the radiative forcing decreases. The annual model pre-

dicts an unstable LIBI transition to the Snowball state

in all cases, which is not found in the seasonal model.

We conclude that the results based on the annual

mean model (Figs. 4 through 8) are valid for the deep

water regime in which the seasonal migrations of the

snow and ice line are small. Stability of highly seasonal

ice caps and ice belts in the intermediate γ regime re-

quires further investigation.

7. DISCUSSION AND CONCLUSION

In this paper we have invoked one of the simplest mod-

els of planetary climate that represents spherical geom-

etry and meridional heat transport to investigate how

the surface albedo feedback would manifest itself at dif-

ferent obliquities. In particular we set out to study the

stability properties of partially ice-covered states at high

obliquity in which the weakest annual insolation occurs

at the equator (which we term the Ice Belt), and com-

pare these to the more familiar Ice Cap states at Earth-

like obliquity. Although the diffusive EBM has been

studied in numerous previous works, it has not been ap-

plied in such a complete and general way to exoplanets.

We have expressed the model in non-dimensional form

to isolate the fundamental independent parameters, de-

rived a completely general analytical solution for any

obliquity (extending classic results from North (1975b)),
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Figure 9. Comparison of ice coverage in the seasonal and annual mean models in the deep water regime (γ = 50). Dashed lines
are the analytical solutions to the annual mean model, identical to Fig. 5. Solid dots represent the annual average of steady
seasonal solutions of the seasonal EBM. The seasonal model (13) is forced with real (unapproximated) insolation and integrated
numerically out to a steady seasonal cycle before averaging over one year. The dots represent annual average fractional ice area,
expressed as an equivalent ice edge latitude (Rose et al. 2013). The sets of dots are the result of a comprehensive parameter
sweep to find all stable states that are accessible through a hysteresis in radiative forcing q.

and explored properties of the solution over wide ranges

of planetary parameters. In addition to the novel ana-

lytical solutions themselves, we have presented a number

of new findings based on the EBM solutions, which we

briefly summarize below.

The minimum threshold radiative forcing to maintain

ice-free conditions is substantially smaller for high obliq-

uity than for low obliquity. Multiple equilibria exist over

wide swaths of the parameter space at both high and low

obliquity. Stable ice belts are possible but exist over a

smaller range of parameters than stable ice caps. Fac-

tors that favor the stability of both ice caps and ice

belts include: weaker albedo contrasts between ice-free

and ice-covered regions, weaker efficiency of heat trans-

port, and larger absolute annual-mean insolation gradi-

ents (i.e., obliquities not close to the critical value near

55◦). Many potentially stable high-obliquity ice belts

states are inaccessible from any hysteresis in the radia-

tive forcing from either ice-free or Snowball states, and

thus less likely to be found.

It is possible to calculate the relative likelihood of find-

ing planets with stable ice belts versus stable ice caps

based on probability distributions of planetary param-

eters. From our tentative but plausible assumptions of

these PDFs and uniformly distributed obliquities, we

find that stable ice belts are relatively rare. We spec-

ulate that about 3/4 to 4/5 of all partially-icy planets

would be in the form of polar ice caps at low obliquity.

A high-obliquity planet is more resistant to the Snow-

ball catastrophe than a low-obliquity planet, in the sense

that a larger reduction of the radiative forcing is required

to trigger the transition. The transition is also more

likely to occur directly from the ice-free state rather than

an intermediate state of stable partial ice cover.

Unstable transitions between partial ice cover and

both ice-free and Snowball climates are possible at both

high and low obliquity. We have coined the terms “Large

Ice Belt Instability” (LIBI) and “Small Ice Belt Insta-

bility” (SIBI) to describe the transitions from stable ice

belt states to Snowball and ice-free conditions respec-

tively, in analogy with the “Large Ice Cap Instability”
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Figure 10. Same as Fig. 9 but for the “intermediate water depth” regime, γ = 5.

(LICI) and “Small Ice Cap Instability” (SICI) that have

previously been discussed at Earth-like obliquity. The

validity of the annual mean model results have been ver-

ified against numerical solutions of the seasonal EBM

with migrating snow and ice line. The annual mean so-

lutions are very accurate in the deep water limit of large

heat capacity / short solar year, but less so in the in-

termediate water depth regime. LICI and SIBI (both

transitions involving ice lines at low latitudes) are rela-

tively robust to the inclusion of a seasonal cycle. SICI

and LIBI (transitions involving ice lines near the poles)

are less robust to seasonality. However we have demon-

strated that SICI and LIBI are still possible in seasonal

models in the deep water regime.

LICI (the traditional Snowball Earth instability) is

a fairly straightforward geometrical consequence of the

spherical shape of the Earth and the relative flatness of

insolation gradients near the equator (e.g. Roe & Baker

2010; Rose 2015). Thus its robustness to the seasonal

cycle is an expected result. The same physical argu-

ments should apply to SIBI at high obliquity, though

the more intense seasonality of insolation near the equa-

tor (e.g., Fig. 2) might play a confounding role. Our

seasonal model calculations show that SIBI is in fact ro-

bust to the seasonal cycle at 90◦ obliquity. The more

robust bifurcation at high obliquity is between the ice

belt and the ice-free state – not the Snowball.

On the other hand, SICI is more controversial. It is

found in the annual-mean diffusive EBM, but is not ro-

bust to details of the transport parameterization (North

1984), and its existence in more complex models con-

tinues to be debated (e.g. Huang & Bowman 1992; Lee

& North 1995; Maqueda et al. 1998; Langen & Alex-

eev 2004; Winton 2008; Rose & Marshall 2009; Ferreira

et al. 2011; Wagner & Eisenman 2015). Unlike LICI, the

physics of SICI does not readily submit to a geomet-

rical argument. Some have argued that the minimum

stable ice cap size is governed by the diffusive length√
δ (Lindzen & Farrell 1977; North 1984), but this scal-

ing is not obvious from Fig. 5 since the stable branch

disappears entirely at higher δ. Rather Fig. 5 shows

that the minimum ice cap size increases modestly with

both α and δ. The robustness of SICI is relevant here

because we have identified an analogous high-obliquity

LIBI (unstable transition from partial ice cover to Snow-

ball), which is presumably governed by similar physics.

Wagner & Eisenman (2015) found that SICI is sup-

pressed in a seasonal EBM even in the deep-water

regime. This is at odds with our results in Fig. 9. The

discrepancy seems to stem from differences in model
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formulation. Their albedo values are equivalent to a

smaller α than our “Earth-like” value of 0.44. Fig. 9

shows that SICI is suppressed in our seasonal model for

small α. Also, their model differs from (5) in the ice-

covered domain. They solve a thermodynamic equation

for sea ice thickness wherever T < T0. Effectively, the

heat capacity C governing seasonal temperature range is

much smaller wherever there is ice in their model. This

is an appropriate approximation for zonally symmetric

sea ice growing over an ocean mixed layer, but its rele-

vance to generic planets with mixed land and ocean cov-

erage, unknown atmospheric composition and arbitrary

length of year is not clear. Further study of the effects

of seasonality and model complexity on SICI and LIBI

are warranted. We emphasize again the robust bifur-

cation at either high or low obliquity involves ice edges

at low latitudes rather than high latitudes, and that at

high obliquity we expect to find bi-stability and unstable

transitions between ice belts and ice-free conditions.
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APPENDIX

A. LINEAR SEASONAL SOLUTIONS

Here we provide a few details of linear seasonal model solutions discussed in Section 3.5. First, plug the periodic

solution (15) into (13) and group the P1(x) terms to get

T ∗11P1(x) [(1 + 2δ) cos(τ − Φ11)− γ sin(τ − Φ11)] = qs11P1(x) cos τ (A1)

Canceling the spatial structure, expanding the cos and sin terms and regrouping, we get

T ∗11

[(
cos Φ11 +

γ

1 + 2δ
sin Φ11

)
cos τ +

(
sin Φ11 −

γ

1 + 2δ
cos Φ11

)
sin τ

]
=

qs11
1 + 2δ

cos τ (A2)

The phase shift (16a) follows directly from the requirement that the coefficient of sin τ vanish. The amplitude (16b)

then follows from the identity cos(arctanu) = (1 + u2)−1/2. In dimensional terms, (16) corresponds to a temperature

amplitude:

T11 =
a0s11Q

B(1 + 2δ)

√
(1 +

(
γ

1+2δ

)2
)

(A3)

The derivation of the semiannual solution (17) is very similar.

B. ANALYTICAL ICE EDGE SOLUTIONS

Here we provide details of the derivation of the annual-mean ice edge condition (25). We follow the notation in North

(1975b) and extend his solutions to high obliquity. The particular solution to (14) in each region (icy and ice-free)

is proportional to P2(x) (i.e., proportional to the annual-mean insolation). The general solution to the homogeneous

equation is given in terms of Legendre functions. The exact solution can be written

T ∗(x) = q



(

1 +
s20

1 + 6δ
P2(x)

)


1

1− α



+ α




C1(xs)f(x; δ)

C2(xs)P (x; δ)






 x < xs

x > xs
(B4a)

for s2 < 0 (low obliquity), and for s2 > 0 (high obliquity)

T ∗(x) = q



(

1 +
s20

1 + 6δ
P2(x)

)


1− α
1



− α




C1(xs)f(x; δ)

C2(xs)P (x; δ)






 x < xs

x > xs
(B4b)

4 Most recent version: https://github.com/brian-rose/

ebm-analytical

https://github.com/brian-rose/ebm-analytical
https://github.com/brian-rose/ebm-analytical
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Here f and P are Legendre functions of non-integer order that satisfy no-flux boundary condition at the equator

and pole respectively, and C1, C2 are coefficients chosen to match T ∗ and dT ∗/dx at xs. f and P can be computed as

hypergeometric functions 2F1:

f(x; δ) = 2F1

(
−ν

2
,

1 + ν

2
,

1

2
, x2
)

(B5a)

P (x; δ) = 2F1

(
1 + ν

2
,−ν

2
, 1, 1− x2

)
(B5b)

ν = −1

2

(
1 +

√
1− 4

δ

)
(B5c)

The constants C1, C2 depend on the ice edge xs:

C1(xs) = − 1

f − Pf ′

P ′

(
1 +

s20
1 + 6δ

(
P2 −

P ′2P

P ′

))
(B6a)

C2(xs) =
1

P − P ′f
f ′

(
1 +

s20
1 + 6δ

(
P2 −

P ′2f

f ′

))
(B6b)

where primes denote derivatives with respect to x, and all terms are evaluated at xs, e.g.,

P ′ =

(
d

dx
P (x; δ)

) ∣∣∣∣
x=xs

and the derivatives can be evaluated using the identity

d

dz
2F1 (a, b, c, z) =

ab

c
2F1 (a+ 1, b+ 1, c+ 1, z)

Evaluating (B4) at x = xs and setting T ∗(xs) = 1 gives the relationship (25) between model parameters for a given

ice edge. For convenience we have defined a special function

F (xs) =
1

1− Pf ′

fP ′

(
1 +

s20
1 + 6δ

(
P2 −

PP ′2
P ′

))
(B7)

which depends on model parameters δ and s20/(1 + 6δ).
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