
Decadal	  Climate	  Variability	  and	  
Predic2on	  

1.   Introduc+on	  to	  Decadal	  Climate	  Variability	  
	  
2.   The	  Atlan+c	  Mul+decadal	  Oscilla+on	  

	  
3.   The	  Pacific	  Decadal	  Oscilla+on	  

4.   Decadal	  Predic+on	  



The	  Cube…	  

Without	  touching	  or	  moving	  the	  cube	  in	  any	  way	  
make	  a	  predic2on	  of	  what	  is	  on	  the	  bo@om	  of	  
the	  cube	  
	  
Use	  the	  blank	  paper	  to	  record	  what	  your	  group	  
thinks	  is	  on	  the	  bo@om	  
	  
DO	  NOT	  PEAK	  –	  EVEN	  AFTER	  YOU	  ARE	  DONE	  



“Climate	  is	  now	  recognized	  as	  being	  
con+nuously	  variable,	  on	  all	  scales	  of	  +me”	  
	  
J.	  Murray	  Mitchell	  Jr.,	  Quaternary	  Research,	  1976	  



Bartlein,	  Encyclopedia	  of	  Quaternary	  Science,	  
2006	  



Make	  a	  Predic2on…	  

20	   40	   60	   80	  



…	  was	  anyone	  right?	  



Example	  1:	  Global	  temperature	  

NEWSWEEK	  published	  an	  
ar2cle	  in	  1975	  worried	  
about	  global	  cooling	  and	  a	  
new	  ice	  age!!	  	  
	  
*this	  was	  not	  the	  scien&fic	  
consensus	  at	  the	  2me	  
though	  
	  

From	  www.metoffice.gov.uk	  



Example	  1:	  Global	  temperature	  

	  
It	  is	  important	  to	  consider	  
decadal	  varia2ons	  on	  top	  
of	  any	  long	  term	  trend	  
	  

From	  www.metoffice.gov.uk	  



Example	  1:	  Global	  temperature	  

	  
It	  is	  important	  to	  consider	  
decadal	  varia2ons	  on	  top	  
of	  any	  long	  term	  trend	  
	  

From	  www.metoffice.gov.uk	  

Decadal	  variability	  
alternately	  disguises	  and	  
accentuates	  the	  secular	  
warming	  trend	  



Example	  2:	  The	  US	  Dust	  Bowl	  

Drought	  is	  a	  example	  of	  decadal	  climate	  variability	  that	  the	  public	  
understand.	  	  

McCrary	  and	  Randall,	  J.	  Climate,	  2010	  

Rainfall	  

During	  1930s,	  US	  experienced	  one	  of	  the	  most	  devasta2ng	  droughts	  
of	  the	  past	  century.	  Affected	  ~2/3	  of	  US,	  parts	  of	  Mexico	  and	  Canada	  	  



Example	  3:	  Sahel	  Drought	  

Wet	  condi2ons	  in	  50s	  and	  60s	  

Drought	  in	  70s	  and	  80s:	  
	  
*	  Affected	  20	  countries,	  150	  million	  people	  
*30	  million	  were	  in	  urgent	  need	  of	  food	  aid	  
*10	  million	  refugees	  seeking	  food	  and	  water	  
*100,000	  to	  250,00	  deaths	  
	  
	  



“An	  improved	  understanding	  of	  decadal	  
climate	  variability	  is	  very	  important	  because	  
stakeholders	  and	  policymakers	  want	  to	  know	  
the	  likely	  climate	  trajectory	  for	  the	  coming	  
decades	  for	  applica+ons	  to	  water	  resources,	  
agriculture,	  energy,	  and	  infrastructure	  
development.”	  
	  
Mehta	  et	  al.,	  BAMS,	  2011	  



2)	  The	  AMO:	  
	  
	  
	  

Atlan+c	  Mul+decadal	  Oscilla+on	  
	  

	  



AMO	  Spa2al	  Signature	  
Wang,	  State	  of	  the	  Climate	  2010,	  BAMS,	  2011	  

Posi2ve	  signal	  over	  whole	  North	  Atlan2c	  –	  horseshoe	  pa@ern	  
Weak	  SST	  signal	  across	  over	  global	  ocean	  regions	  



The	  AMO	  Index	  

Wang,	  State	  of	  the	  Climate	  2010,	  BAMS,	  2011	  

The	  AMO	  index	  is	  the	  
detrended	  SST	  
anomalies	  in	  the	  
North	  Atlan2c	  
	  
Removing	  basic	  
global	  warming	  signal	  
–	  we	  want	  the	  
decadal	  climate	  
variability	  



The	  AMO	  index:	  SST	  anomalies	  averaged	  over	  0°	  -‐	  70°N,	  75°	  -‐	  10°W	  
	   	   	   	  detrended	  
	   	   	   	  low-‐pass-‐filtered	  (extracts	  the	  decadal	  varia2ons)	  

WARM	  

COLD	  

???
???	  

???
???	  

???
???	  



•  How	  can	  we	  tell	  if	  it	  did	  or	  didn’t?	  

Did	  the	  AMO	  exist	  before	  1900?	  



Did	  the	  AMO	  exist	  before	  1900?	  

Gray	  et	  al.,	  Geophys.	  Res.	  Le@.,	  2004	  

12	  tree	  ring	  sites	  
(1567-‐1990),	  detrended	  
	  
Calibra2on	  period	  (1922-‐1990)	  
	  
Verifica2on	  period	  (1856-‐1921)	  
	  
Reconstruct	  a	  2me	  series	  of	  the	  
AMO	  index	  that	  agrees	  with	  SST	  
instrument	  measurements	  but	  
can	  be	  extended	  back	  in	  to	  the	  
past	  



AMO	  Reconstruc2on	  from	  Tree	  Ring	  
Data	  

SST	  observa2ons	  (in-‐
situ/satellite)	  

AMO	  Index	  from	  tree	  
rings	  

Warm/Cold	  AMO	  
periods	  



Principle	  Sources	  of	  Proxy	  Data	  for	  
Paleoclimate	  Reconstruc2ons	  

•  Glaciological	  (Ice	  Cores)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  Oxygen	  isotopes	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  Physical	  proper2es	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  Trace	  element	  &	  micropar2cle	  
concentra2ons	  

	  

Peru:h@p://bprc.osu.edu/Icecore/Quelccaya2003.html	  

Closeup	  view	  of	  layers	  
within	  a	  different	  
sample;	  arrows	  indicate	  
lighter	  summer	  layers	  
(right).	  

h@p://eo.ucar.edu/staff/rrussell/climate/paleoclimate/ice_core_proxy_records.html	  

The	  Greenland	  Ice	  
Sheet	  Project	  2	  drill	  
site,	  located	  on	  the	  
Greenland	  ice	  sheet	  
at	  72.6°	  N	  and	  38.5°	  
W	  at	  an	  eleva2on	  of	  
3,207	  meters.	  



Principle	  Sources	  of	  Proxy	  Data	  for	  
Paleoclimate	  Reconstruc2ons	  

•  Geological	  
	  	  A.	  Sediments	  
	  	  	  	  1.	  Marine	  (ocean	  sediment	  cores)	  
	  	  	   	  i)	  Organic	  sediments	  (planktonic	  &	  benthic	  fossils)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  Oxygen	  isotopes	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  Faunal	  &	  floral	  abundances	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  Morphological	  varia2ons	  
	  	  	  	   	  ii)	  Inorganic	  sediments	  
	  	  	  	  	  	  	  	  	  	  	  	  	  Mineralogical	  composi2on	  &	  surface	  texture	  
	  	  	  	  	  	  	  	  	  	  	  	  	  Distribu2on	  of	  terrigenous	  material 	   	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  Ice-‐rated	  debris	  
	  	  	  	  	  	  	  	  	  	  	  	  	  Geochemistry	  
	  	  	  2.	  Terrestrial	  
	  	  	  	  	  	  	  	  	  	  	  Periglacial	  features	  	  
	  	  	  	  	  	  	  	  	  	  	  Glacial	  deposits	  &	  erosional	  features	  
	  	  	  	  	  	  	   	  Glacio-‐eusta2c	  features	  (shorelines)	  
	  	  	  	  	  	  	  	  	  	  	  Aeolian	  deposits	  (sand	  dunes)	  
	  	  	  	  	  	  	  	  	  	  	  Lacustrine	  deposits/varves	  (lakes)	  
	  	  B.	  Sedimentary	  Rocks	  
	  	  	  	  	  	  	  	  	  Facies	  analysis	  
	  	  	  	  	  	  	  	  	  Fossil/microfossil	  analysis	  
	  	  	  	  	  	  	  	  	  Mineral	  analysis	  
	  	  	  	  	  	  	  	  	  Isotope	  geochemistry	  

	  

Scien2sts	  in	  SCUBA	  gear	  use	  a	  drill	  to	  extract	  
a	  coral	  sample	  from	  Clipperton	  Atoll	  (lower)	  
This	  X-‐ray	  image	  of	  coral	  samples	  from	  the	  
Galapagos	  Islands	  clearly	  shows	  the	  banded	  
growth	  pa@ern	  	  
	  
The	  ship	  JOIDES	  Resolu2on	  (top	  let)	  has	  
recovered	  thousands	  of	  sediment	  cores	  from	  
the	  ocean	  floor	  with	  a	  drilling	  rig.	  Scien2sts	  
aboard	  the	  ship	  (top	  right)	  clean	  and	  prepare	  
one	  of	  the	  9.5	  meter-‐long	  cores	  soon	  ater	  it	  
was	  pulled	  up	  from	  the	  deep	  ocean.	  The	  long	  
cores	  are	  cut	  into	  shorter	  segments	  and	  split	  
lengthwise	  down	  the	  middle.	  (lower)	  
	  

h@p://www.windows2universe.org/earth/climate/
CDcourses_inves2gate_climate.html	  



Principle	  Sources	  of	  Proxy	  Data	  for	  
Paleoclimate	  Reconstruc2ons	  

•  Biological	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  Tree	  rings	  (width,	  density,	  isotope	  analysis)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  Pollen	  (species,	  abundances)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  Insects	  

h@p://palynology.geoscienceworld.org/content/34/1/3.figures-‐only	  



Principle	  Sources	  of	  Proxy	  Data	  for	  
Paleoclimate	  Reconstruc2ons	  

•  Historical	  
	  meteorological	  records	  
	  parameteorological	  record	  (environmental	  
indicators)	  
	  phenological	  records	  (biological	  indicators)	  

The	  example	  above	  demonstrates	  how	  historical	  grape	  harvest	  dates	  
were	  used	  to	  reconstruct	  summer	  temperatures	  (April	  -‐	  September)	  in	  
Paris	  from	  1370	  -‐	  1879.	  [From	  Bradley,	  1990;	  based	  on	  data	  from	  Le	  
Roy	  Ladurie	  and	  Baulant,	  1980.]	  	  



The	  Thermohaline	  Circula2on	  (THC)	  

Atlan2c	  Meridional	  Overturning	  Circula2on	  (AMOC)	  





Warm	  N.	  Atlan2c	  

Sinking	  in	  N.	  Atlan2c	  



Future	  changes	  in	  the	  THC	  	  
(Atlan2c	  Meridional	  Overturning	  Circula2on)	  

25 June 2008 AGCI: Climate Prediction to 2030

Thermohaline Circulation in Atlantic Ocean
(Atlantic part of Ocean Conveyor Belt Circulation)

Density driven “Overturning” circulation

Self-regulating Changes in Overturning:

             T    Density    : Less sinking, less warm water from tropics, N. Atlantic cools

             T    Density    : More sinking, more warm water from tropics, N. Atlantic warms

Future:	  weakening	  of	  THC	  due	  to	  higher	  temperatures	  and	  more	  rain	  (freshwater	  is	  
less	  salty)	  

www.ipcc.ch	  



Observing	  the	  Ocean	  is	  Hard…	  

25 June 2008 AGCI: Climate Prediction to 2030

Ocean Observations: Argo Profiling Floats

Argo profile from the subtropical North Pacific 

(20.25N 121.4W, May 15 2004). 

This shows interleaving in the salinity data. 

To	  observed	  the	  THC	  we	  need	  
to	  measure	  below	  the	  surface	  
as	  deep	  as	  possible	  
	  
	  
This	  isn’t	  easy	  
	  
	  
ARGO	  floats	  have	  really	  
helped	  



Loca2ons	  of	  ARGO	  floats	  
	  
What	  regions	  are	  missing	  floats??	  

h@p://www.argo.ucsd.edu/	  



To	  measure	  the	  THC,	  and	  how	  it	  modulates	  the	  AMO	  we	  need	  a	  long	  term	  
record	  
	  
	  
ARGO	  float	  loca2ons	  over	  the	  past	  50	  years…	  

© Crown copyright   Met Office

Sub-surface ocean observations

19801960 2007

• Need historical tests to assess likely skill of
forecasts

• Far fewer sub-surface ocean observations in
the past

We	  need	  something	  in	  addi2on	  to	  observa2ons	  to	  supplement	  our	  understanding	  
of	  the	  ocean	  and	  how	  it	  impacts	  the	  atmosphere	  



What	  can	  General	  Circula2on	  Models	  
models	  tell	  us?	  

Long	  (~1400	  year)	  model	  integra2ons	  with	  HadCM3	  able	  to	  
simulate	  the	  observed	  pa@ern	  and	  amplitude	  of	  the	  AMO	  
(Knight	  et	  al.,	  2005)	  
	  
Model	  did	  not	  include	  any	  fluctua2ons	  in	  external	  forcing	  
(greenhouses	  gases,	  aerosols,	  etc.)	  
	  
→	  suggests	  AMO	  is	  internal	  climate	  variability	  persis2ng	  for	  
many	  centuries	  
	  
→	  Model	  hints	  that	  AMO	  results	  from	  variability	  in	  the	  oceanic	  
THC	  



Is	  it	  all	  natural?	  
LETTER

doi:10.1038/nature10946

Aerosols implicated as a prime driver of
twentieth-century North Atlantic climate variability
Ben B. B. Booth1, Nick J. Dunstone1*, Paul R. Halloran1*, Timothy Andrews1 & Nicolas Bellouin1

Systematic climate shifts have been linked to multidecadal variability
in observed sea surface temperatures in the North Atlantic Ocean1.
These links are extensive, influencinga rangeof climateprocesses such
as hurricane activity2 andAfrican Sahel3–5 and Amazonian5 droughts.
The variability is distinct from historical global-mean temperature
changes and is commonly attributed to natural ocean oscilla-
tions6–10. A number of studies have provided evidence that aerosols
can influence long-term changes in sea surface temperatures11,12,
but climate models have so far failed to reproduce these inter-
actions6,9 and the role of aerosols in decadal variability remains
unclear. Here we use a state-of-the-art Earth system climate model
to show that aerosol emissions and periods of volcanic activity
explain 76 per cent of the simulated multidecadal variance in
detrended 1860–2005 North Atlantic sea surface temperatures.
After 1950, simulated variability is within observational estimates;
our estimates for 1910–1940 capture twice the warming of previous
generation models but do not explain the entire observed trend.
Otherprocesses, such as ocean circulation,may also have contributed
to variability in the early twentieth century.Mechanistically, we find
that inclusion of aerosol–cloud microphysical effects, which were
included in few previous multimodel ensembles, dominates the
magnitude (80 per cent) and the spatial pattern of the total surface
aerosol forcing in the North Atlantic. Our findings suggest that
anthropogenic aerosol emissions influenced a range of societally
important historical climate events such as peaks in hurricane
activity and Sahel drought. Decadal-scale model predictions of
regional Atlantic climate will probably be improved by incorporat-
ing aerosol–cloud microphysical interactions and estimates of
future concentrations of aerosols, emissions of which are directly
addressable by policy actions.
An understanding of North Atlantic sea surface temperature

(NASST) variability is critical to society because historical Atlantic
temperature changes are strongly linked to the climate, and its impacts,
in neighbouring continental regions. For example, strong links
between NASST variability and periods of African Sahel drought are
found in observations4,13 and physical climate models3,5,14. Similar
covariation between NASSTs and rainfall in eastern South America
has been found5, as have links to changes in both mean rainfall15 and
rainfall extremes16, Atlantic hurricane activity2,10,14 and European
summer climate8. These changes are not solely limited to the regions
bordering theAtlantic, but also have links to Indianmonsoon rainfall14,
Arctic and Antarctic temperatures17, Hadley circulation1, El Niño/
Southern Oscillation18 and relationships between El Niño/Southern
Oscillation and the Asian monsoon19.
A link between multidecadal variability in NASST and circulation

changes internal to the ocean was first proposed in 1964 (ref. 20) and
later named the Atlantic Multidecadal Oscillation21. This variability is
often characterized as the detrended NASST between the equator and
latitude 60uN (longitude 7.5–75uW; ref. 8). Although it has recently
been questioned22, the present consensus remains that most of the
observed Atlantic temperature variations occur in response to the

ocean’s internal variability. This picture emerged from general circula-
tion models, a number of which inherently produce multidecadal
Atlantic variability in the absence of external climate forcing7 and,
when considered together as a multimodel mean, have shown
little evidence of forced changes projecting onto the NASSTs6,9.
Observationally, this interpretation has been accepted because the
Atlantic temperature changes seem to be oscillatory, both around
any secular long-term trend and when calculated as anomalies from
the global-mean change.
Motivated by the recent identification of the importance of aerosol

process complexity in interhemispheric Atlantic temperature
changes23, apparent aerosol correlation1,11 and volcanic modulation
of Atlantic variability22, we use new general circulation model simula-
tions to questionwhether theCMIP3 (ClimateModel Intercomparison
Project phase 3) models contained the complexity necessary to repres-
ent a forcedAtlanticMultidecadalOscillation7,9.WeuseHadGEM2-ES
(the Hadley Centre Global Environmental Model version 2 Earth
System configuration24), a next-generation CMIP5 (Climate Model
Intercomparison Project phase 5) model, which represents a wider
range of Earth system processes (in particular aerosol interactions25)
than do CMIP3 models.
To separate internal variability from forced changes, we present

climate model ensemble-mean NASSTs, averaged over parallel model
simulations started from different initial conditions26. If external
forcing dominates the NASST evolution then ensemble members will
evolve in phase and thus combine to produce a robust ensemble-mean
response. If internal ocean dynamics dominate then each member will
evolve separately and the resulting ensemble mean will show little
residual variation around the underlying warming trend. This
approach allows identification of physical mechanisms linking forced
changes to Atlantic temperatures and was used in previous CMIP3
studies6,9.
In Fig. 1a, we reproduce the multimodel-mean NASST response of

the six CMIP3 models used in ref. 9 (ENS1, blue) and the eleven
models used in ref. 6 (ENS2, green) (Supplementary Table 2). The
observations (Fig. 1) show marked multidecadal variations. The
multimodel-mean responses in both ENS1 and ENS2 do capture the
underlying trend through the century; they capture only weak multi-
decadal variability. For example, the ensembles’ 1950–1975 cooling is
only a small fraction of the observed value (Fig. 1a and Supplementary
Fig. 4). Therefore, the unexplained multidecadal signal was previously
attributed to internal ocean variability6,9.
By contrast, HadGEM2-ES (Fig. 1b) reproduces much more of the

observed NASST variability (correlation, 0.65; 75% of detrended
standard deviation (smoothed over 10-yr intervals to highlight multi-
decadal component)). The post-1950s cooling and subsequent warm-
ing now falls within the observed trends (Supplementary Table 1).
Observed warming in the earlier period (1910–1940) is larger than
simulated by HadGEM2-ES (Fig. 1b and Supplementary Table 1);
however, these new simulations capture roughly twice the early-
twentieth-century warming of previous CMIP3 generation models.

1Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK.
*These authors contributed equally to this work.

2 2 8 | N A T U R E | V O L 4 8 4 | 1 2 A P R I L 2 0 1 2

Macmillan Publishers Limited. All rights reserved©2012

O@era	  et	  al.,	  Nat.	  Geosc.,	  2010	  
	  
Booth	  et	  al.	  Nature,	  2012	  
	  



AMO	  Impacts	  

•  Warm	  SSTs	  over	  N.	  Atlan2c	  
	  
•  What	  poten2al	  impacts	  are	  there	  on	  
surrounding	  regions?	  
– Think	  of	  and	  write	  down	  3	  possible	  impacts.	  Could	  
be	  temperature,	  rainfall,	  storms,	  etc…	  



	  One	  method	  of	  looking	  at	  impacts	  is	  to	  make	  composite	  (or	  averages)	  of	  
warm	  and	  cold	  period	  and	  take	  the	  difference	  (e.g.	  1931/60	  –	  1961/90)	  

Su@on	  and	  Hodson,	  Science,	  2005	  

	  SLP	  (Pa)	   Precip	  (mm/day)	   Surf.	  temp.	  (°C)	  

Low	  SLP	  across	  Atlan2c	  
and	  N.	  America	  

Wet	  in	  West	  Africa,	  
Europe,	  dry	  in	  central	  US	  

Warm	  in	  East	  US	  

So,	  when	  the	  AMO	  is	  in	  a	  warm	  period:	  



AMO	  Impacts	  
Globally	  

rainfall is highly correlated with All India Summer
Rainfall [Parthasarathy et al., 1994]. Over west central
India, the multidecadal wet period is in phase with the
positive AMO phase (warm North Atlantic) during the
middle of the 20th century (!1926–1965); the dry
periods are in phase with the negative AMO phase during
both the early (!1901–1926) and the late 20th century
(!1965–1995) (Figures 1a and 1c). The time series of
west central India summer rainfall is in phase with Sahel
summer rainfall (Figures 1b and 1c). The leading spatial
pattern (EOF 1, from Empirical Orthogonal Function
analysis, Figure 2a) of observed 20th century summer
rainfall anomalies over the region covering both Africa
and India also suggests an in-phase relationship between
India and Sahel summer rainfall. The time series of this
spatial pattern is in phase with the observed AMO index
(Figures 1a and 1d).
[5] The observed AMO Index is also in phase with the

observed time series of the number of major Atlantic
hurricanes and the Hurricane Shear Index (Figures 1a
and 1e), consistent with previous studies [Gray, 1990;
Landsea et al., 1999; Goldenberg et al., 2001]. Here the
Hurricane Shear Index is defined as the anomalous 200-hPa–
850-hPa vertical shear of the zonal wind multiplied by "1,
computed during Hurricane season, August to October-

Figure 1. Observed and modeled variability. The color
shading is the low-pass filtered (LF) data and the green
dash line is the unfiltered data. (a) Observed AMO
Index(K), derived from HADISST [Rayner et al., 2003].
(b) Observed JJAS Sahel rainfall anomalies (averaged over
20!W-40!E, 10–20!N). All observed rainfall data is from
Climate Research Unit (CRU), University of East Anglia,
United Kingdom (CRU-TS_2.1). (c) Observed JJAS west
central India rainfall anomalies (averaged over 65–80!E,
15–25!N). (d) Observed time series of the dominant
pattern (PC 1) of LF JJAS rainfall anomalies. (e) Observed
anomalous Atlantic major Hurricane number (axis on the
left, original data from the Atlantic basin hurricane
database- HURDAT, with no bias-type corrections from
1944–1969 as recently recommended by Landsea [2005],
there is no reliable data before 1944), and observed
Hurricane Shear Index (1958–2000), derived from ERA-40
[Simmons and Gibson, 2000] (m/s, brown solid line for LF
data, brown dash line for unfiltered data, axis on the right).
(f) Modeled AMO Index(K). (g) Modeled JJAS Sahel
rainfall anomalies. (h) Modeled JJAS west central India
rainfall anomalies. (i) Modeled PC 1 of LF JJAS rainfall
anomalies. (j) Modeled Hurricane Shear Index(m/s). All LF
data in this paper were filtered using the Matlab function
’filtfilt’, with a Hamming window based low-pass filter and
a frequency response that drops to 50% at the 10-year
cutoff period. All rainfall time series are normalized by the
SD of the corresponding LF data, i.e. 9.1 and 5.5 mm/
month for Figures 1b and 1g; 12.5 and 7.1 mm/month for
Figures 1c and 1h, 371 and 261 mm/month for Figures 1d
and 1i. Light blue lines mark the phase-switch of AMO.

Figure 2. Leading spatial pattern of the 20th century low
frequency JJAS rainfall anomalies over Africa and India.
(a) EOF 1 (31%) of observed LF JJAS rainfall anomalies.
(b) EOF 1 (67%) of modeled LF JJAS rainfall anomalies.
(c) Regression of observed LF JJAS rainfall anomalies on
observed AMO Index. (d) Regression of modeled LF
JJAS rainfall anomalies on modeled AMO Index. The
observed rainfall is from CRU-TS_2.1. The original
regressions correspond to 1 SD of the AMO index,
Figures 2a and 2c are normalized by the SD of observed
time series of the dominant pattern, i.e. PC1 (371 mm/
month), and Figures 2b and 2d are normalized by the SD
of modeled PC1 (261 mm/month). The modeled EOF1
explains much higher percentage of variance due to
ensemble average.
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You	  can	  also	  look	  at	  
correla2ons	  between	  2me	  
series….	  

•  Sahel	  rainfall	  
•  Indian	  monsoon	  rainfall	  
•  Hurricane	  numbers?	  



Nigam	  et.	  al.,	  Geophys.	  Res.	  Le@.,	  2011	  

•  Dry	  condi2ons	  in	  Central	  US,	  especially	  in	  Fall	  
•  Wet	  condi2ons	  in	  Central	  America	  and	  Florida	  
•  Changes	  in	  wind	  accompany	  rainfall	  changes	  

AMO	  Impacts	  in	  the	  US	  
So,	  when	  the	  AMO	  is	  in	  a	  warm	  period:	  



Schubert	  et	  al.,	  2004	  

The	  AMO	  and	  the	  The Dust Bowl	  

Warm	  N.	  Atlan2c	  

Nigam	  et.	  al.,	  Geophys.	  Res.	  Le@.,	  2011	  

Dust	  Bowl	  



The	  AMO	  and	  Hurricanes	  

clone activity, the differences between the
warm and cold phases of the mode are statisti-
cally significant (34, 44). The single exception
is the number of U.S. Gulf Coast landfalling
major hurricanes. This is because the Gulf of
Mexico activity does not have a significant
relationship with !Vz! fluctuations in the MDR
(11, 12, 15) or to the multidecadal North At-
lantic SST fluctuations (Fig. 2A). The greatest
differences (ratios) are for major hurricanes,
hurricane days, U.S. East Coast major hurricane
landfalls, and especially Caribbean hurricanes
and U.S. damage. The Caribbean Sea has
shown dramatic changes in hurricane activity—
averaging 1.7 occurrences per year during the
warm periods compared with only 0.5 per year
during the cold period (34). The current warm
period has produced an average of 2.5 occur-
rences per year with an unprecedented (since
1944) six hurricanes in the region during 1996.
These multidecadal changes are illustrated in
Fig. 4, which clearly shows the enhancement of
overall Caribbean hurricane activity during
warmer periods. Not only is the entire Caribbe-
an region much less active during the colder
period (Fig. 4A), but the only hurricanes that

developed during that period in the Caribbean
Sea east of "73°W formed during the two
intermittent short warming periods (1979–1981
and 1987–1990) discussed earlier. Large multi-
decadal fluctuations of major hurricane land-
falls are especially evident for the U.S. East
Coast from the Florida peninsula to New En-
gland and are illustrated in Fig. 5. No major
hurricanes made landfall from 1966–1983.
This relatively quiet period was similar to, but
more extreme than, the low activity period dur-
ing the first two decades of the 20th century. In
contrast, during 1947–1965, 14 major hurri-
canes struck the East Coast (13). Overall, the
United States has experienced about five times
as much in median damages from tropical
storms and hurricanes during the warm (high
activity) than during the cold (low activity)
phases of the Atlantic multidecadal mode (44).
The Atlantic tropical cyclone record, which

(except for U.S. landfall data) is not considered
reliable before 1944 (33), shows less than one
complete cycle of the multidecadal signal. The
record for the SST signal represented by the
Atlantic multidecadal mode (Fig. 2B), however,
which has demonstrated a robust relation to the

observed activity, shows about two complete
cycles-—with some proxy records extending
back several additional cycles (42). In addition,
U.S. landfall data are able to show almost two
periods of the signal (13, 44). Because of the
multidecadal scale of the Atlantic SST variabil-
ity portrayed here, the shift since 1995 to an
environment generally conducive to hurricane
formation—warmer North Atlantic SSTs and
reduced vertical wind shear—is not likely to
change back soon (45). This means that during
the next 10 to 40 years or so, most of the
Atlantic hurricane seasons are likely to have
above average activity, with many hyperactive,
some around average, and only a few below
average. Furthermore, consistent with experi-
ence since the active phase began in 1995, there
would be a continuation of significantly in-
creased numbers of hurricanes (and major hur-
ricanes) affecting the Caribbean Sea and basin-
wide numbers of major hurricanes. The Gulf of
Mexico, however, is expected to see only minor
differences. Tragic impacts of the heightened
activity have already been felt, especially in the
Caribbean [e.g., Hurricanes Georges and Mitch
(46)]. In addition, an increase in major hurri-
cane landfalls affecting the U.S. East Coast is
anticipated, but has not yet materialized (47).
One may ask whether the increase in activity

since 1995 is due to anthropogenic global
warming. The historical multidecadal-scale
variability in Atlantic hurricane activity is much
greater than what would be “expected” from a
gradual temperature increase attributed to global
warming (5). There have been various studies
investigating the potential effect of long-term
global warming on the number and strength of
Atlantic-basin hurricanes. The results are incon-
clusive (48). Some studies document an increase
in activity while others suggest a decrease (49).
Tropical North Atlantic SST has exhibited a
warming trend of "0.3°C over the last 100
years (38); whereas Atlantic hurricane activity

Fig. 3. Percentage of
south-central portion
(10°–14°N, 20°– 70°W)
of the main develop-
ment region (see Fig.
2A) where !Vz! # 6 m
s$1 (values extremely
conducive for tropical
cyclone development)
for ASO. Dashed curved
line is 5-year running
mean. Higher and lower
percentages indicate
conditions that aremore
or less conducive to de-
velopment, respectively.

Fig. 4. Contrast of Caribbean hurricanes between colder (A) and warmer
(B) values of the Atlantic multidecadal mode. The solid green (thin) and
red (thick) lines indicate where the hurricanes were at nonmajor and
major hurricanes intensities, respectively. Tropical storm intensity is
indicated by dotted lines in cases where a hurricane weakened to tropical

storm strength and then re-intensified to hurricane status. The years are
similar to (34) except that the first nine warmer years (1944–1952) are
not included to make the number of colder and warmer years equal. The
colder years (24 years) include 1971–1994. The warmer years (24 years)
include 1953–1970 and 1995–2000.

R E P O R T S
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Goldenberg	  et	  al.,	  Science,	  2001	  

Cold	  AMO	  period	   Warm	  AMO	  period	  

1971	  –	  1994	  
Cold	  N.	  Atlan2c	  and	  small	  Atlan2c	  
warm	  pool	  
15	  major	  hurricanes,	  few	  hit	  US	  
Cheap	  insurance	  
Li@le	  public	  and	  industry	  awareness	  
of	  climate	  risk	  shits	  

1953	  –	  1970	  &	  1995	  -‐	  2000	  
Warm	  N.	  Atlan2c	  and	  large	  Atlan2c	  
warm	  pool	  
33	  major	  hurricanes,	  lots	  hit	  US	  
Expensive	  insurance	  
More	  public	  and	  industry	  awareness	  
of	  climate	  risk	  shits	  

**	  Essen+al	  to	  consider	  decadal	  changes	  in	  hurricanes	  when	  assessing	  impact	  
of	  climate	  change	  **	  



	  
•  AMO	  plays	  an	  important	  role	  in	  modula2ng	  climate	  on	  mul2decadal	  2me	  scales	  

in	  US	  and	  Europe,	  especially	  during	  boreal	  summer	  and	  fall	  

•  Low	  pressure	  centers	  over	  SE	  US	  and	  UK	  
•  Enhanced	  rain	  in	  western	  Europe,	  Florida,	  Sahel	  and	  N.	  Africa	  
•  Reduced	  rain	  central	  US	  and	  Mexico	  
•  Warm	  surface	  temperature	  anomalies	  over	  US	  and	  central	  Europe	  

	  
•  May	  affect	  not	  only	  mean	  climate	  but	  also	  frequency	  of	  extreme	  events	  (US	  

droughts,	  hurricanes,	  heat	  waves)	  
	  
•  Phase	  change	  of	  AMO	  around	  1960	  may	  have	  caused	  summer2me	  cooling	  in	  US	  

and	  Europe	  
	  
•  Most	  recent	  phase	  change	  (around	  1990)	  may	  have	  contributed	  to	  rapid	  

warming	  

MUST	  CONSIDER	  THESE	  DECADAL	  CHANGES	  WHEN	  ASSESSING	  CLIMATE	  CHANGE	  

Summary:	  AMO	  Impacts	  on	  Climate	  



3)	  The	  PDO:	  
	  
Pacific	  Decadal	  Oscilla+on	  
	  



Pacific Decadal Oscillation: SST Pattern 

Warm phase       Cold Phase 

See http://jisao.washington.edu/pdo 

ENSO-‐like	  pa@ern	  but	  strongest	  SST	  	  changes	  in	  extratropics	  



Pacific Decadal Oscillation: Timeseries 

PDO	  and	  ENSO	  are	  on	  different	  
2me	  scales	  
	  
Time	  series	  have	  similari2es	  but	  
are	  not	  iden2cal	  



PDO	  Impacts	  in	  US	  

Warm	  PDO:	  
	  
•  Wet	  S,	  SW	  US	  
•  Dry	  in	  NW,	  Great	  Lakes	  

•  Warm	  in	  E.	  Canada,	  Alaska	  
•  Cold	  in	  E	  US	  

•  Snow	  pack	  and	  streamflow	  in	  NW	  
US	  is	  reduced	  

•  Winter	  and	  spring	  flood	  risk	  in	  NW	  
US	  is	  reduced	  

	  

Mantua	  and	  Hare,	  J.	  Oceanog.,	  2002	  



Combined	  Impacts	  



Note	  that	  the	  PDO	  and	  AMO	  operate	  on	  different	  2me	  scales	  too!	  

McCabe	  et	  al.,	  PNAS,	  2004	  



The	  PDO	  and	  AMO	  combined:	  Drought	  
Frequency	  

McCabe	  et	  al.,	  PNAS,	  2004	  



McCabe	  et	  al.,	  2004	  

More	  than	  half	  (52%)	  of	  spa2otemporal	  variance	  in	  mul2decadal	  drought	  
frequency	  over	  US	  a@ributable	  to	  combined	  PDO	  /	  AMO	  influence	  

Recent	  US	  droughts	  (1996,	  1999–2002)	  associated	  N.	  Atlan2c	  warming	  (posi2ve	  
AMO)	  and	  NE	  and	  tropical	  Pacific	  cooling	  (nega2ve	  PDO)	  

→	  Much	  of	  the	  long-‐term	  predictability	  of	  drought	  frequency	  may	  reside	  in	  
the	  mul2-‐decadal	  behavior	  of	  the	  N.	  Atlan2c	  

•  AMO+	  (warm)	  :	  much	  of	  US	  under	  drought	  condi2ons,	  regardless	  of	  PDO	  state	  

PDO	  vs.	  AMO	  impacts	  in	  the	  US	  



“The	  decadal	  +me	  scale	  offers	  a	  cri+cal	  bridge	  
for	  informing	  adap+on	  strategies	  as	  climate	  
varies	  and	  changes”	  
	  
Meehl	  et	  al.,	  BAMS,	  2009	  



Decadal	  Predic2on	  
Now	  we	  know	  about	  ways	  the	  climate	  varies	  on	  
decadal	  2mescales	  so	  the	  next	  ques2ons	  are:	  
	  

–  Is	  it	  predictable?	  

–  Can	  we	  predict	  it?	  
	  
The	  decadal	  2me	  scale	  is	  widely	  recognized	  as	  a	  key	  
planning	  horizon	  for	  governments,	  businesses,	  and	  
other	  societal	  en22es	  
	  



Decadal	  Predictability	  

days, seasons, or years. In contrast, daily weather 
forecasts and shorter-term SI climate predictions [e.g., 
El Niño–Southern Oscillation (ENSO) forecasts] can 
be thought of as “initial value problems,” for which 
detailed knowledge of the observed current condi-
tions are crucially needed to define the starting point 
(the initial conditions). Lorenz (1963) demonstrated 
how, even if one possessed a hypothetically perfect 
numerical model representing all of the physical 
processes completely and without error, unavoidable 
uncertainties in the initial conditions will invariably 
grow and contaminate the numerical simulation of 
transient weather systems. This sensitivity to initial 
conditions (sometimes referred to as the “butterfly 
effect”) limits to about 2 weeks the time period 
over which even a perfect model could yield skillful 
weather forecasts. When considering El Niño, a quasi-
oscillatory phenomenon that evolves more slowly than 
synoptic weather systems, skillful numerical forecasts 
of monthly mean or seasonal mean conditions (Shukla 
1984) can be made with a lead time of 6–12 months 
(Kirtman et al. 2002). For example, at 8 months 
multimodel correlation coefficients for Niño-3.4 are 

approximately 0.75, and 
then they drop to 0.6 at 10 
months, and then 0.5 at 12 
months. However, predict-
ability varies on decadal 
time scales (e.g., Tang et al. 
2008), and the ultimate pre-
dictability limits are not 
well established.

For many climate vari-
ables, decision makers are 
interested in the 10–30-yr 
time horizon (e.g., Pulwarty 

2003), a time period that is characterized by a forced 
climate change signal that is often weaker than or 
comparable to the magnitude of internally generated 
climate variations. If skillful decadal climate predic-
tions are to be realized, the time scale for which initial 
conditions are shown to impact the predictions will 
need to be extended by roughly an order of magnitude 
beyond today’s El Niño forecasts. That is, decadal 
prediction involves having some predictable signal in 
the initial state that has been ignored in traditional 
dec–cen climate change simulations.

In the decadal time range, at the confluence be-
tween dec–cen and SI, there may be a “sweet spot” for 
an enhanced signal-to-noise ratio of climate change 
information. The relative uncertainty in global-mean, 
decadal-mean surface air temperature predictions 
initially decreases with lead time as the predictions 
transition from initial state dependence to the forced 
response out to about 40 yr (Fig. 3). At longer lead 
times the emissions scenario uncertainty generally 
becomes dominant (Hawkins and Sutton 2009a).

Even if uncertainty is low in the decadal range 
relative to other periods, there remains the question of 
the signal-to-noise ratio, namely, the extent to which 
predictable regional variations could rise above noise 
from uncertainties in the forced response, and also 
from unpredictable aspects of internal variability, on 
those time and space scales (Barnett et al. 2008). On 
continental scales, the observed response to external 

FIG. 2. Schematic illustrating progression from initial value problems with daily 
weather forecasts at one end, and multidecadal to century projections as a 
forced boundary condition problem at the other, with seasonal and decadal 
prediction in between.

FIG. 3. The relative importance of different sources of 
uncertainty in IPCC GCM projections of decadal-mean 
global-mean surface air temperature in the twenty-
first century is shown by the fractional uncertainty 
(i.e., the prediction uncertainy divided by the expected 
mean change, relative to the 1971–2000 mean). Model 
uncertainty is the dominant source of uncertainty for 
lead times up to 50 yr, with internal variability being 
important for the first decade or so. Scenario uncer-
tainty becomes important at multidecadal lead times 
(from Hawkins and Sutton 2009a).

1470 OCTOBER 2009|

Meehl	  et	  al.,	  BAMS,	  2009	  



Decadal	  Predictability	  

days, seasons, or years. In contrast, daily weather 
forecasts and shorter-term SI climate predictions [e.g., 
El Niño–Southern Oscillation (ENSO) forecasts] can 
be thought of as “initial value problems,” for which 
detailed knowledge of the observed current condi-
tions are crucially needed to define the starting point 
(the initial conditions). Lorenz (1963) demonstrated 
how, even if one possessed a hypothetically perfect 
numerical model representing all of the physical 
processes completely and without error, unavoidable 
uncertainties in the initial conditions will invariably 
grow and contaminate the numerical simulation of 
transient weather systems. This sensitivity to initial 
conditions (sometimes referred to as the “butterfly 
effect”) limits to about 2 weeks the time period 
over which even a perfect model could yield skillful 
weather forecasts. When considering El Niño, a quasi-
oscillatory phenomenon that evolves more slowly than 
synoptic weather systems, skillful numerical forecasts 
of monthly mean or seasonal mean conditions (Shukla 
1984) can be made with a lead time of 6–12 months 
(Kirtman et al. 2002). For example, at 8 months 
multimodel correlation coefficients for Niño-3.4 are 

approximately 0.75, and 
then they drop to 0.6 at 10 
months, and then 0.5 at 12 
months. However, predict-
ability varies on decadal 
time scales (e.g., Tang et al. 
2008), and the ultimate pre-
dictability limits are not 
well established.

For many climate vari-
ables, decision makers are 
interested in the 10–30-yr 
time horizon (e.g., Pulwarty 

2003), a time period that is characterized by a forced 
climate change signal that is often weaker than or 
comparable to the magnitude of internally generated 
climate variations. If skillful decadal climate predic-
tions are to be realized, the time scale for which initial 
conditions are shown to impact the predictions will 
need to be extended by roughly an order of magnitude 
beyond today’s El Niño forecasts. That is, decadal 
prediction involves having some predictable signal in 
the initial state that has been ignored in traditional 
dec–cen climate change simulations.

In the decadal time range, at the confluence be-
tween dec–cen and SI, there may be a “sweet spot” for 
an enhanced signal-to-noise ratio of climate change 
information. The relative uncertainty in global-mean, 
decadal-mean surface air temperature predictions 
initially decreases with lead time as the predictions 
transition from initial state dependence to the forced 
response out to about 40 yr (Fig. 3). At longer lead 
times the emissions scenario uncertainty generally 
becomes dominant (Hawkins and Sutton 2009a).

Even if uncertainty is low in the decadal range 
relative to other periods, there remains the question of 
the signal-to-noise ratio, namely, the extent to which 
predictable regional variations could rise above noise 
from uncertainties in the forced response, and also 
from unpredictable aspects of internal variability, on 
those time and space scales (Barnett et al. 2008). On 
continental scales, the observed response to external 

FIG. 2. Schematic illustrating progression from initial value problems with daily 
weather forecasts at one end, and multidecadal to century projections as a 
forced boundary condition problem at the other, with seasonal and decadal 
prediction in between.

FIG. 3. The relative importance of different sources of 
uncertainty in IPCC GCM projections of decadal-mean 
global-mean surface air temperature in the twenty-
first century is shown by the fractional uncertainty 
(i.e., the prediction uncertainy divided by the expected 
mean change, relative to the 1971–2000 mean). Model 
uncertainty is the dominant source of uncertainty for 
lead times up to 50 yr, with internal variability being 
important for the first decade or so. Scenario uncer-
tainty becomes important at multidecadal lead times 
(from Hawkins and Sutton 2009a).
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Predictability	  of	  the	  1st	  kind	   Predictability	  of	  the	  2nd	  kind	  

Predictability	  of	  the	  ??	  kind	  

Meehl	  et	  al.,	  BAMS,	  2009	  



Decadal	  Predictability	  
ORANGE	  
Internal	  Variability:	  Natural	  
fluctua2ons	  in	  the	  climate	  
system.	  AMO,	  PDO,	  ENSO	  etc.	  
	  
BLUE	  
Model	  Uncertainty:	  Different	  
models	  respond	  differently	  to	  
the	  same	  forcing	  
	  
GREEN	  
Scenario	  Uncertainty:	  Changes	  
in	  future	  greenhouse	  gas	  
emission	  

At	  decadal	  scales:	  
Internal	  variability	  and	  model	  
uncertainty	  have	  more	  
importance	  than	  scenario	  

At	  centennial	  scales:	  
Scenario	  uncertainty	  is	  dominant	  

Hawkins	  and	  Su@on,	  BAMS,	  2009	  



Decadal	  Hindcast	  Example	  ! " # $%# $&!%$%" '()*

+
Kirtman,	  2011	  



Decadal	  Hindcast	  Example	  AMOC hindcasts 

•  Only one member 
of the nudged 
ensemble (planned 
to apply to each) 

•  3-members 
ensemble of free 
run 

•  90’s max. missed 
(effect of persistent NAO?) 

!"#$%&'()%

Hindcast:	  run	  a	  model	  to	  assess	  how	  well	  it	  predicts	  what	  has	  already	  
happened.	  Compare	  results	  to	  the	  real	  world	  

10	  year	  hindcasts	  of	  the	  
Atlan2c	  meridional	  
circula2on:	  
	  
Some	  are	  be@er	  than	  others!	  
	  
Are	  some	  periods	  more	  
predictable	  than	  others?	  
	  

Mignot	  et	  al.,	  2011	  



Decadal	  Predic2on	  and	  the	  IPCC	  
(Intergovernmental	  Panel	  on	  Climate	  Change)	  

of experiments, in each case the complete set of core 
simulations is expected to be completed. The intent is 
to generate a sufficiently large set of runs to enable a 
systematic model intercomparison within each type of 
experiment and thereby produce a credible multimodel 
dataset for analysis. The core experiments (located in 
the innermost circle and shaded pink in Figs. 2 and 3) 
are critical for evaluating the models, and they provide 
high-interest information about future climate change 
as well as help identify reasons for differences in the 
projections. The tier 1 integrations (surrounding the 
core and shaded yellow) examine specific aspects 
of climate model forcing, response, and processes, 
and tier 2 integrations (shaded green) go deeper into 
those aspects. Thus, proceeding from core to tier 1 to 
tier 2 can be seen as a progression from basic to more 
specialized simulations, exploring multiple aspects of 
climate system projections and responses. For each 
suite of experiments, the modeling groups will per-
form the core integrations first, followed by a selection 
of the tier 1 and tier 2 integrations, depending on their 
interests and available resources.

For detailed specifications of all the experiments, 
the reader is referred to the experiment design 

document (Taylor et al. 2009), which can be obtained 
from the CMIP5 website (http://cmip-pcmdi.llnl.gov 
/cmip5).

Long-term experiments. The core simulations within 
the suite of CMIP5 long-term experiments (Fig. 2) 
include an AMIP run, a coupled control run, and 
a “historical” run forced by observed atmospheric 
composition changes (reflecting both anthropogenic 
and natural sources) and, for the first time, including 
time-evolving land cover. The historical runs cover 
much of the industrial period (from the midnineteenth 
century to near present) and are sometimes referred to 
as “twentieth century” simulations. Within the core set 
of runs, there are also two future projection simula-
tions forced with specified concentrations [referred to 
as “representative concentration pathways” (RCPs)], 
consistent with a high emissions scenario (RCP8.5) and 
a midrange mitigation emissions scenario (RCP4.5). 
For AOGCMs and EMICs that have been coupled to 
a carbon cycle model (i.e., for ESMs), there are control 
and historical simulations, and the high emissions 
scenario (RCP8.5). For this set of ESM runs, the time-
evolving atmospheric concentration of CO2, rather 
than being specified, is calculated by the model.

The CMIP5 projections of climate change are 
driven by concentration or emission scenarios con-
sistent with the RCPs described in Moss et al. (2010). 
In contrast to the scenarios described in the IPCC 
“Special Report on Emissions Scenarios” (SRES) used 
for CMIP3, which did not include policy intervention, 

FIG. 2. Schematic summary of CMIP5 long-term experi-
ments with tier 1 and tier 2 experiments organized 
around a central core. Green font indicates simulations 
to be performed only by models with carbon cycle 
representations. Experiments in the upper hemisphere 
are suitable either for comparison with observations 
or provide projections, whereas those in the lower 
hemisphere are either idealized or diagnostic in nature 
and aim to provide better understanding of the climate 
system and model behavior.

FIG. 3. Schematic summary of CMIP5 decadal predic-
tion integrations.
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They	  have	  begun	  exploring	  decadal	  predic2ons	  with	  lots	  of	  new	  model	  
experiments	  in	  the	  newest	  climate	  change	  models	  (CMIP5).	  However…	  

“Users	  of	  CMIP5	  model	  output	  
should	  take	  note	  that	  decadal	  
predic+ons	  with	  climate	  models	  
are	  in	  an	  exploratory	  stage….	  
The	  experiments	  aim	  to	  advance	  
understanding	  of	  predictability”	  

Taylor	  et	  al.,	  BAMS,	  2012	  



Decadal	  Predic2on	  Challenges	  
1)  Ini&alizing:	  we	  need	  to	  know	  the	  current	  condi2ons	  of	  the	  

atmosphere	  and	  ocean	  

2)  Improved	  climate	  models:	  Need	  climate	  models	  to	  be	  more	  
accurate,	  especially	  in	  regions	  with	  high	  decadal	  variability	  

3)  Ensembles	  and	  Uncertainty:	  How	  to	  represent	  errors	  in	  the	  ini2al	  
condi2ons	  

4)  Hindcasts	  and	  Evalua&on:	  How	  to	  measure	  how	  good	  or	  bad	  a	  
predic2on	  is	  

5)  Providing	  regional	  informa&on	  to	  users:	  Even	  if	  we	  can	  make	  a	  
perfect	  predic2on,	  how	  do	  we	  tell	  the	  people	  who	  need	  to	  know	  
(governments,	  water	  managers,	  businesses	  etc.)	  

Murphy	  et	  al.,	  2012	  



“An	  improved	  understanding	  of	  decadal	  
climate	  variability	  is	  very	  important	  because	  
stakeholders	  and	  policymakers	  want	  to	  know	  
the	  likely	  climate	  trajectory	  for	  the	  coming	  
decades	  for	  applica+ons	  to	  water	  resources,	  
agriculture,	  energy,	  and	  infrastructure	  
development.”	  
	  
Mehta	  et	  al.,	  BAMS,	  2011	  


