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[1] We quantify the effect of spatial patterns in climatological rainfall on shallow
landslide susceptibility by forcing a physically based model of slope stability
(SHALSTAB) with the rainfall pattern produced by a high-resolution atmospheric model
(MM5) over the western Olympic Mountains of Washington State. Our results suggest
that for two small basins in the Olympics, 10 km–scale variations in rainfall have a
nontrivial effect on landslide susceptibility. Assuming uniform rainfall equal to the
average rainfall over the basins results in a moderate underestimate of landslide
susceptibility. Using climatological data from a lowland station to characterize the
rainfall over the basins results in a substantial underestimate of susceptibility. The effect of
spatial variability in rainfall on variations in stability is comparable to the effect of
moderate-to-large variability in soil parameters (such as ±30% variations in soil
thickness). At a practical level, these results imply that accounting for persistent patterns
of rainfall may aid in discerning regions within the same watershed where similar
land use practices will lead to differing landslide risk.
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1. Introduction and Background

[2] One of the primary triggers for shallow landslides
on soil mantled landscapes is high-intensity and/or long-
duration rainfall [e.g., Caine, 1980; Guzzetti et al., 2008].
Over mountainous regions, where slides tend to occur,
atmospheric circulations forced by the topography lead to
distinct rainfall patterns that may include greater than
twofold differences in accumulation over horizontal distan-
ces of a few kilometers [e.g., Bergeron, 1968; Smith et al.,
2003; Roe, 2005; Kirshbaum and Durran, 2005]. However,
it is not generally known how strongly such spatial varia-
tions of rainfall control slope stability. If the influence is
sizable, and the rainfall patterns are predictable, then
climatologies and/or forecasts of kilometer-scale rainfall
patterns may prove valuable for landslide hazard assessment
and forecasting.
[3] In this paper we will distinguish between different

time scales on which rainfall characteristics affect the
spatially variable likelihood of landslide occurrence over a
region. Landslide probability on storm time scales will refer
to the likelihood of slope failure during a single storm or
series of storms that may last from hours to weeks. This
may be strongly influenced by the detailed features of a
given storm such as its intensity, duration, track, structure,
and interaction with the topography. This contrasts with
landslide susceptibility on climatological time scales, which

will refer to the spatially variable likelihood of failure given
the distribution of storms that occur in a region over the
course of years to millennia. This depends on the statistical
properties of the climatological distribution of storms,
including the average, variability, and extremes of storm
intensity, duration, etc.
[4] Previous work on rainfall patterns and slope stability

is limited and almost exclusively has focused on the storm
time scale. Some of these studies have used slope aspect and
wind direction in an attempt to empirically relate the pattern
of wind driven rainfall to the locations of slope failures
[e.g., Pike and Sobieszczyk, 2008], but these studies typi-
cally neglect horizontal variations in rainfall rate (the
vertical flux of rain), variations which, as mentioned above,
can be quite large. Recently researchers have begun to use
small-scale rainfall patterns in modeling slides triggered by
individual storms. In New Zealand a landslide forecasting
system is being developed using physically based models
of hydrology and slope stability forced by rainfall from a
numerical weather prediction model on a 12 km horizontal
grid [Schmidt et al., 2008]. However, while small-scale
rainfall forecasts have been used in this modeling efforts,
the authors stopped short of quantifying the effect of the
spatial rainfall variations or the value added to their pre-
dictions by considering them.
[5] Other studies have used ground- and space-based

radar measurements to estimate the rainfall distribution
and relate it to slide locations [Campbell, 1975; Wieczorek
et al., 2001; MacLeod, 2006; Chang et al., 2008]. Uncer-
tainties with estimating surface rainfall from radar can limit
the effectiveness of such methods [e.g., Wieczorek et al.,
2001;MacLeod, 2006], however a combination of radar and
gauge observations can be use to make a more confident
analysis of the rainfall pattern [e.g., Chang et al., 2008].
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Using NEXRAD radar Wieczorek et al. [2001] found that
a localized (�5 km radius) region of particularly heavy
rainfall was collocated with many of the slope failures
occurring during an extreme convective storm on 27 June
1995 in the Blue Ridge Mountains of Madison County,
Virginia. Using a physically based transient model of slope
stability forced by radar-derived rainfall from this event,
Morrissey et al. [2004, p. 294] found significant ‘‘spatial
and temporal variations of the factor of safety’’ (a measure
of slope instability) correlated with the movement of indi-
vidual convective storm cells, just a few kilometers in width,
across the landscape. Results from this event suggest an
important role for small-scale rainfall features in determining
where slide are triggered on the storm time scale. Yet, if the
rainfall from such convective cells is distributed randomly
across a region from storm to storm they will have no net
influence on the pattern of susceptibility over climatological
time scales. For spatial variations in mountain rainfall to
influence the climatological pattern of landslide susceptibility
they must be both large and persistent enough. Whether this
is the case on small (10 km or less) scales remains an open
question.
[6] In mapping landslide susceptibility over climatological

time scales, spatial distributions of various parameters (e.g.,
slope, drainage area, vegetation, bedrock geology) are often
used. Quantitative hazard assessment is typically accom-
plished either through the use of empirical models [e.g.,
Gupta and Joshi, 1990; Baeza and Corominas, 2001; Lee et
al., 2003; Saha et al., 2005], or spatially distributed physi-
cally based models of slope stability and hydrology [e.g.,
Montgomery and Dietrich, 1994; Wu and Sidle, 1995;
Casadel et al., 2003; Morrissey et al., 2004]. Information
on 10 km–scale spatial variability of rainfall is very seldom
considered in long-term susceptibility analysis, in part be-
cause mountain rainfall patterns have not been well observed
or understood on those scales. However, in recent years it
has become clear that large variations in precipitation occur-
ring on spatial scales of 10 km or less are a persistent and
predictable feature of mountain climates in a variety of
regions [James and Houze, 2005; Anders et al., 2006,
2007; Minder et al., 2008]. A better understanding of the
impact of these variations may have important applications.
For instance, researchers have been developing techniques
to use intensity-duration thresholds for slope failure, and
satellite-borne radar estimates of precipitation at 0.25� �
0.25� horizontal resolution to issue near real-time assessment
of landslide hazard [Hong et al., 2006]. However, the effects
of subgrid-scale variations in rainfall on such a system have
not been determined. Furthermore, observations of precipi-
tation in mountainous regions are usually sparse. As a result,
studies of landslides often are forced to rely upon gauge
observations from a single point to characterize the rainfall
over an entire study region (e.g., Casadel et al. [2003] and
Gorsevski et al. [2006] provide recent examples). Available
gauges tend to be sited in accessible lowlands and valleys
[Groisman and Legates, 1994], locations that may poorly
represent conditions at the locations where slides occur. Yet
the errors in hazard assessments due to the distance between
gauge observations and landslide locations have not been
well quantified.
[7] We aim to better characterize the influence of small-

scale rainfall patterns on climatological shallow landslide

susceptibility. To do so we consider two adjacent water-
sheds in the Olympic Mountains of Washington State and
use a modeled rainfall climatology (supported by observa-
tions) to force a simple model of slope stability in order to
address the following: What effect on landslide susceptibility
may be expected from rainfall variations occurring over
spatial scales of 10 km? How large of a bias in hazard
assessment may occur if a lowland station is used to charac-
terize precipitation across a mountainous catchment? How
does spatial variability of precipitation compare to spatial
variability of soil properties for determining variations in
slope stability?

2. Rainfall and Landslides Over the Western
Olympic Mountains

[8] The Olympic Mountains of Washington State receive
copious amounts of precipitation over their western (wind-
ward) slopes. Most of this rainfall occurs during midlatitude
cyclones as stably stratified moist air from over the Pacific
is forced over the topography by southwesterly winds.
Precipitation at locations in the Olympics can amount to
over 5 m in the annual total. A small-scale precipitation
climatology was developed over the Olympics by Anders et
al. [2007] using 6 years of forecasts from the MM5, a high-
resolution (4 km in the horizontal) weather model used
for operational forecasts in the Pacific Northwest (http://
www.atmos.washington.edu/mm5rt/mm5info.html) [Mass
et al., 2003]. This climatology suggests that substantial
enhancement of storm total and annual mean precipitation
occurs over 10–20 km–scale ridges relative to the adjacent
valleys [Anders et al., 2007; Minder et al., 2008]. The most
pronounced enhancement in the model occurs over a 15 km
wide, 1 km high topographic ridge separating the Queets
and Quinault basins (Figure 1 shows the topography of
these basins).
[9] Four years of observations from a high-density net-

work of precipitation gauges in the region support the
model climatology, with MM5 and gauges both showing
60–80% more rainy season (October–May) precipitation
atop the ridge than in the valleys that flank it. Figure 2
shows a comparison of annual total precipitation from the
MM5 and observations at gauge locations in a transect
across the ridge for most of one rainy season (locations of
the gauges are shown in Figure 3). The model captures well
both the amount and spatial distribution of precipitation
across the gauge network, with the model’s normalized route
mean squared error in rainy season total precipitation at the
gauge sites ranging from 10–22% [Minder et al., 2008].
Favorable performance of the MM5 is found despite the
coarseness of its 4 km mesh relative to the ridge valley
topography, and MM5 case studies with higher (1.33 km)
resolution produce similar rainfall [Minder et al., 2008]. The
pattern of ridge top enhancement is a particularly robust
feature of heavy rainfall events [Minder et al., 2008], during
which the ridge can receive over three times the rainfall of
adjacent valleys [Anders et al., 2007]. While individual
major storms are frequently misforecast by the model, on
average the precipitation modeled for major storms is quite
realistic [Anders et al., 2007; Minder et al., 2008].
[10] Shallow landslides are a pervasive feature in the

western Olympic Mountains. Mapped shallow and deep-
seated landslides in the Queets and Quinault basins are
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shown in Figure 1. These were primarily surveyed by
Lingley [1999] using aerial photography and made available
as a digital coverage by the Washington State Department
of Natural Resources Landslide Hazard Zonation Project
(http://www.dnr.wa.gov/forestpractices/lhzproject/). This re-
gion has a variety of land cover, with vegetation ranging
from mature forest (> 50 years old) to clear cuts. The surface
geology is also variable, including Quaternary alpine glacial
deposits as well as Tertiary marine sedimentary and volcano-
clastic rocks (broken by a number of faults, shearing, and
bedding structures) [Lingley, 1999].

3. Methods

[11] We wish to quantify the effect that spatial variations
in climatological precipitation may have on shallow land-
slide susceptibility. To this end we will use the rainfall
pattern from the MM5 as a best estimate of the rainfall
distribution over the region, and the SHALSTAB model of
slope stability [Montgomery and Dietrich, 1994] as a
representation of the fundamental physics governing land-
slide triggering by rainfall. Our aim is to determine, in a
semi-idealized context, if climatological rainfall patterns
similar to those found in the Olympic mountains represent
a large enough physical signal to play an important role in
determining landslide susceptibility. It is not our intent to
directly test whether considering rainfall patterns improves
prediction of landslide locations, as uncertainties in our data
sets (e.g., rainfall climatology, landslide mapping, and soil
properties) make such a task intractable.
[12] The SHALSTAB model [Montgomery and Dietrich,

1994], utilizes GIS software to couple an ‘‘infinite slope’’
stability model with a steady state model of rainfall infil-
tration and topographic-driven flow of water within the
soil. The only detailed spatial information required by the
model is a high-resolution digital elevation model (DEM)

of the topography. By assigning spatially uniform mean
values to other, often poorly mapped, parameters the model
can be used to indicate where topographic factors make
slopes prone to failure, with steep, convergent slopes iden-
tified as the most unstable [Montgomery and Dietrich, 1994].
Since root strength offers significant reinforcement in forested
regions, we consider a formulation of SHALSTAB
that includes the effective soil cohesion due to vegetation
[Montgomery et al., 2000]. However to avoid making as-
sumptions about landslide size we consider only basal

Figure 1. Topography and mapped slides for the Queets and Quinault basins (location of the basins
within Washington State is shown in inset map). Elevation is shaded in gray scale and ranges from 0 to
2.2 km. Shallow slides are shown in red, and deep-seated slides are green. Mapped slides include scar and
runout, and complete mapping has only been done for the Quinault basin. The white line indicates the
divide between the two basins. The blue box indicates the location of Figure 6.

Figure 2. Total modeled and observed precipitation at
locations along the transect of gauges shown in Figure 3 for
November–April 2004–2005. Elevations of gauge sites are
shown by the shaded terrain profile (the model elevations
interpolated to the gauge sites are shown with the dashed
line). Gauge observation are shown in black, and model
climatology interpolated to gauge locations is shown in gray
(adapted from Minder et al. [2008] and reproduced with
permission of Wiley-Blackwell).
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cohesion and not cohesion around the perimeter of the slide.
SHALSTAB may be applied by solving, at each DEM grid
cell, for the critical value of a chosen parameter at which
failure should occur. In principle any parameter may be used.
We choose to solve for critical soil cohesion (Ccrit) as our
measure of slope instability:

Ccrit ¼ zrwg cos
2 qð Þ tan fð Þ

� a

b

q

T

1

sin qð Þ �
rs
rw

1� tan qð Þ
tan fð Þ

� �� �
; ð1Þ

where q is a steady state precipitation flux, g the is ac-
celeration due to gravity, T is the saturated soil transmissivity,
a/b is the contributing drainage area per grid cell length
(calculated as done by Montgomery et al. [2000]), rs is the
wet bulk density of the soil, rw is the density of water, q is
the angle of the topographic slope, f is the angle of internal
friction, and z is the soil depth. Actual soil cohesion likely
varies greatly across our study area because of variations in
vegetation and land use, however solving for Ccrit means we
need not make assumptions about the actual cohesion. Note
that in the model slopes that become saturated have their
critical cohesion set to the value occurring at saturation, as
excess water is assumed to run off as overland flow. For
given topography and soil parameters, locations predicted to
remain stable under saturated conditions, even without soil
cohesion, are termed ‘‘unconditionally stable.’’
[13] In our SHALSTAB simulations we use a 10 m

DEM grid, the highest resolution available for our study
area. To isolate the effects of spatial variability in rainfall we
assume uniform values for soil depth and material properties
(Table 1). These values were mostly taken from previous
studies in the Oregon Coast Range (e.g., Montgomery et al.,
2000), and are only meant to represent reasonable mean
values for illustration.

[14] SHALSTAB models the response of soil pore pres-
sures to steady rainfall of infinite duration. This is an
approximation to the pseudo steady state response of actual
soils to prolonged rainfall, which occurs on a time scale of
about 1 day for small slides in diffusive soils [Iverson,
2000]. Many slides are actually triggered by the transient
response of pore pressures to bursts of intense rainfall,
which occurs on a time scale of tens of minutes for shallow
slides in diffusive soils [Iverson, 2000]. However, we focus
on the pseudo steady response since it is less dependent upon
high-frequency variations in rain rate (which are poorly
characterized), and since regions of increased saturation
due to this slow response will be more prone to failure due
to transient forcing.
[15] We first run SHALSTAB to calculate the critical

cohesion using equation (1), including the spatially varying
pattern of rainfall (q(x, y)) predicted by MM5. For this we
use the 7 year maximum 24 h average rainfall rate at each
MM5 grid point (Figure 3). The 7 year maximum rainfall
rate is used to determine the most hazardous conditions at
each location that would be expected over a climatological
time scale. Ideally a period longer than 7 years would be
used to develop a proper rainfall climatology, but we are
limited by the extent of the MM5 data set and the semi-

Figure 3. Maximum 24 h averaged rainfall rate from 7 years of MM5 high-resolution atmospheric
model iterations (reinterpolated from the 4 km MM5 grid to 1 km). The location of the Black Knob
weather station (BKBW) is indicated with a star, and the location of the gauge network of Anders et al.
[2007] and Minder et al. [2008] is shown with circles.

Table 1. Uniform Values for Soil Parameters Used in SHALSTAB

Modeling

Parametera Value

rw/rs 2
z 1 m
f 33�
T 65 m2/d

aParameters are defined in text.
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idealized nature of our study only requires a plausible
climatology. Furthermore, on the basis of the storm-to-storm
robustness of the rainfall pattern we expect a longer clima-
tology would look similar, except perhaps with larger
extreme rainfall rates. A 24 h averaging period is used since
this is the time scale over which pseudo steady state adjust-
ment of groundwater flow occurs [Iverson, 2000]. To calcu-
late the 24 h rain rates we first construct a time series of
0000–1200UTC and 1200–2400UTC forecast rainfall from
forecast hours 24–36 of the MM5 runs (initialized twice
daily at 0000 and 1200 UTC). For practical reasons the
24 h averages are obtained by using a 24 h running mean
window that shifts forward in time by 12 h increments
rather than by 1 h increments, thus the actual maximum rate
is potentially underestimated. Before feeding the rainfall
pattern into SHALSTAB we linearly reinterpolate it to a
1 km grid to smooth out some of the sharpest gradients
introduced by the coarseness of the MM5 mesh.
[16] The pattern of 24 h maximum rainfall rate shown in

Figure 3 exhibits both a steady increase in rainfall toward
the interior of the Olympic mountains, as well as varia-
tions in rainfall associated with the major ridges and valleys.
This pattern is somewhat different than the pattern of rainy
season total precipitation (shown with the transect in Figure 2
and that of Anders et al. [2007] and Minder et al. [2008]).
While both the season total and extreme rainfall patterns
exhibit large variations associated with the ridge valley relief,
for the extreme rainfall the maximum appears to be shifted
away from the ridge crest toward the southeastern slopes of
the ridge. Case studies analyzed by Minder et al. [2008]
suggest that such a shift in the rainfall pattern is reasonable.
[17] We consider the results from our first SHALSTAB

simulation, using the MM5 rainfall pattern, as our best es-
timate of the true slope stability. We then rerun SHALSTAB
twice, both times with uniform rainfall forcing. For the first

of these runs we choose an uniform rain rate representative
of the spatially averaged maximum 24 h rain rate over the
basins: 256 mm/d. Comparison of the output from this run
with the original patterned rainfall run is used to determine
how much the rainfall pattern affects landslide susceptibil-
ity. For the second run we use the MM5 rainfall to choose a
uniform rain rate representative of the maximum 24 h value
that would be measured at the location of the Black Knob
(BKBW, shown in Figure 3), the nearest weather station
with precipitation data for multiple years that would be
readily available for hazard assessment: 141 mm/d. Compar-
ison of the output from this run with the patterned rainfall
run is used to determine the biases that may occur if lowland
observations are used to characterize the rainfall and land-
slide susceptibility across a mountainous catchment.

4. Results

[18] Figure 4 shows Ccrit calculated across the basin using
the MM5 precipitation pattern. The highest values of critical
cohesion are greater than 6 kPa, suggesting that those slopes
would fail under the most extreme 7 year rainfall unless
they had significant stabilization associated with vegetation
and root strength. Many of the mapped slides initiate in
steep topographic hollows, and SHALSTAB does qualita-
tively well at identifying these locations as regions of high
Ccrit (e.g., Figure 5). We make a cursory check on the ability
of SHALSTAB to identify the locations prone to failure
using methods analogous to Montgomery et al. [1998].
More specifically, for each of the shallow landslides
mapped in Figure 1 we associate the slide with the location
within the mapped slide polygon where the critical cohesion
is a maximum (this is done to better associate the mapped
slide, which include both scar and runout, with the location
of failure). We bin the frequency of slide occurrence by the

Figure 4. Critical cohesion as predicted by SHALSTAB (equation (1)) using the MM5 rainfall
climatology shown in Figure 3. Gray areas represent locations classified as unconditionally stable or with
Ccrit = 0.
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slide’s maximum critical cohesion, and then normalize each
bin by the total area in the study region with that value of
critical cohesion. The results from this, plotted in Figure 6,
show a clear tendency for slides to occur much more
frequently with high values of Ccrit, as should be expected
if the model is skillful at identifying the locations where
failures tend to occur. While this analysis does not defini-
tively demonstrate SHALSTAB’s skill, the combination of
these results with more rigorous evaluations of the model in
settings similar to our study region [e.g., Montgomery et al.,
1998] give us confidence in its appropriateness for this study.

[19] Figure 7 shows the difference in Ccrit that occurs
when patterned rainfall is used relative to when uniform
rainfall equal to the region average is used. As should be
expected, it shows that neglecting the rainfall pattern causes
an overestimate (underestimate) of slope stability in regions
that receive more (less) than the area average rainfall. The
change in Ccrit is modest over most of the study region
(< 0.5 kPa), but can be more substantial near the locations
of the minima and maxima in the precipitation pattern
(> 1 kPa). A larger fraction of the study region experiences
an overestimate than an underestimate of the stability when
the pattern is neglected since the most gentle slopes, which
are unconditionally stable, tend to reside in the lowlands
and valleys where rainfall rates tend to be more modest.
[20] Figure 8 shows the difference in Ccrit that occurs

when patterned rainfall is used relative to when uniform
rainfall from the lowland station BKBW is used (patterned
lowland). Since nearly all locations where slides may occur
(locations that are not unconditionally stable) receive more
rainfall than the BKBW’s lowland location, Ccrit is found to
increase, and the stability is overestimated, almost every-
where when the rainfall pattern is considered, and by upward
of 3 kPa in the center of the ridge’s rainfall maximum. In
other words, considering the rainfall pattern instead of just
the lowland precipitation reveals a larger number of slopes
that require significant reinforcement from root strength to
resist failure.
[21] We further analyze the results of these experiments by

considering bulk statistics from the runs. Figure 9a shows a
frequency distribution of Ccrit values for the patterned and
uniform rainfall cases. When the rainfall pattern is neglected
in favor of the average rainfall, the distribution of Ccrit

is shifted toward somewhat lower (more stable) values,
corresponding to an overall modest overestimate of the

Figure 5. Number of mapped landslides per square
kilometer in each Ccrit category (calculated as described in
text) for slides mapped in the Queets and Quinault basins
and SHALSTAB-calculated values of Ccrit.

Figure 6. Mapped slides and SHALSTAB modeled Ccrit for the individual hillside indicated by the blue
box in Figure 1. Elevation is shown with gray-scale shading (shading interval of 100 m). Regions of high
Ccrit are color shaded according to the inset key. The perimeters of several mapped slides are delineated in
cyan.
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stability of slopes in the study region. When the rainfall
pattern is neglected in favor of the lowland rainfall a much
more substantial shift in the distribution and overestimate of
the stability occurs.

[22] Figure 9b shows the frequency distribution of the
changes in critical cohesion experienced between the uni-
form and patterned case. Figure 9b again shows that using
the rainfall pattern instead of the uniform average precipi-
tation increases Ccrit for some slopes and decreases it for

Figure 7. Change in SHALSTAB critical cohesion (Ccrit) when using the MM5 rainfall pattern relative
to uniform average precipitation. This is calculated by subtracting the Ccrit attained from the simulation
with uniform precipitation equal to the region average MM5 precipitation from the Ccrit attained when
using the MM5 rainfall pattern.

Figure 8. Change is SHALSTAB critical cohesion (Ccrit) when using the MM5 rainfall pattern relative
to uniform lowland precipitation. This is calculated by subtracting the Ccrit attained from the simulation
with uniform precipitation equal to the MM5 precipitation at the site of the lowland BKBW station from
the Ccrit attained when using the MM5 rainfall pattern.
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others, indicating that neglecting rainfall patterns under or
over estimates the stability depending upon location. In
contrast, using the rainfall pattern instead of the uniform
lowland precipitation increases Ccrit nearly everywhere,
indicating that uniform lowland rainfall results in a very
widespread overprediction of slope stability.
[23] The scale of the differences in Ccrit can be used to

place the impact of spatial rainfall variations in context. For
instance, direct measurements of cohesive reinforcement
by roots in Pacific Northwest forests (collected from the
Oregon Coast Range) reveal that typical cohesion from
roots ranges from 6.8 to 23.2 kPa for industrial forests,
and from 1.5 to 6.7 kPa for clear cuts <11 years old
[Schmidt et al., 2001]. Therefore, particularly for heavily
logged basins, the maximum biases in the estimate of Ccrit

due to use of uniform lowland rainfall (�3 kPa) are equiv-

alent to a substantial portion of the net reinforcement pro-
vided by tree roots, suggesting that such biases are indeed
relevant. Even the seemingly modest changes in the estimate
of Ccrit introduced by using uniform averaged precipitation
(as much as 1 kPa) may appear nontrivial in this context.
[24] Figure 9c shows the fractional area of the landscape

exceeding various values of Ccrit. This can be used to
determine the fraction of the landscape that would be con-
sidered unstable if a given value of cohesion were present
everywhere. For instance, if all soils on the landscape had
a cohesion of 6 kPa, the model would predict that about
7% of our study region would fail. Figure 9d shows the
fractional change in the curves of Figure 9c that occurs
when the precipitation pattern is neglected. For example, if
a critical cohesion threshold of 6 kPa is used, 15% fewer
slopes would be identified as unstable when the uniform

Figure 9. (a) Frequency distribution of Ccrit for SHALSTAB runs with MM5 patterned rainfall (dashed
black line), uniform region average rainfall (solid gray line), and lowland rainfall (solid black line). The
distributions have been normalized by the total area of the basins, and cells with Ccrit = 0 are omitted.
(b) Frequency distribution of changes in Ccrit between the run with patterned and the runs with uniform
rainfall (gray line for uniform average rainfall, black line for uniform lowland rainfall). Distributions have
been normalized as in Figure 9a, and cells with change in Ccrit = 0 are omitted. (c) Fractional area of the
region exceeding various values of Ccrit for patterned and uniform rainfall runs (line styles as in Figure 9a).
(d) Fractional change in area exceeding various values ofCcrit between SHALSTAB runswith patterned and
uniform rainfall (line styles as in Figure 9b).

8 of 11

W04419 MINDER ET AL.: RAINFALL PATTERNS AND LANDSLIDES W04419



average rainfall is used instead of the rainfall pattern,
indicating a significant underestimate of the area in danger
of failure. When the uniform lowland rainfall is used instead
of the rainfall pattern 55% fewer slopes would be identified
as unstable, indicating a very substantial underestimate of
the area in danger of failure. A higher (lower) percentage
increases in the number of unstable slopes is found if a
higher (lower) Ccrit threshold is used, and the underestimate
reaches 64% for the use of lowland rainfall when a 7 kPa is
used. We thus conclude that in regions with large spatial
variability in rainfall (such as the Olympic Mountains) the
spatial pattern of rainfall acts to moderately increase the area
prone to shallow landsliding by focusing rainfall on the
mountain ridges where slopes are steep relative to the low-
lands and valleys. Additionally, the use of lowland rainfall
data alone to estimate hazard throughout even a relatively
small mountainous catchment, may result in a substantial
underestimate of the landslide susceptibility.

5. Sensitivity Analysis

[25] Certainly, hillslope properties that we have considered
to be uniform in our analysis so far actually vary significantly
on real landscapes. Even if there is a sizable effect on slope
stability associated with rainfall variations, it may be largely
overwhelmed by the effect of variations in other factors. We

investigate the relative importance of spatial variability in
different factors by first quantifying the sensitivity of slope
stability to characteristic small-scale rainfall variations, and
then comparing this to the sensitivity to variations in soil
properties.
[26] Figure 10 shows contours of Ccrit predicted by

SHALSTAB as a function of q and a/b for the parameters
listed in Table 1 and uniform rainfall of 260 mm/d (roughly
the mean value from the MM5 rainfall pattern). The stability
of any site on the landscape may be determined by locating
the point on such a plot. Note that steeper slopes lead to
increased Ccrit, as does greater topographic convergence
(a/b). However, increases in a/b only increase Ccrit until the
soil reaches saturation (this occurs along the arching bold line
in Figure 10), at which point overland flow is assumed to
occur and pore pressures do not increase further. The most
unstable point (as predicted by value of Ccrit) within each
mapped shallow landslide polygon is shown as a dot in
Figure 10. As already shown in Figure 6, the distribution of
points illustrates that while slides occur in many settings on
the landscape, they are concentrated in the regions of high
q and a/b that SHALSTAB identifies as particularly unstable.
[27] Increasing or decreasing the value of q in equation (1)

by an amount characteristic of the maximum basin-scale
rainfall variations (±160 mm/d, the difference between the
maximum and minimum MM5 rainfall values) changes the

Figure 10. Critical cohesion (contoured and labeled every 1 kPa) as a function of tan(q) and a/b using
the parameters in Table 1 and uniform rainfall of 260 mm/d. The most unstable DEM grid cell in each
mapped shallow slide (i.e., those shown in Figure 1) is plotted as a point on the basis of its tan(q) and a/b
values. Regions above the arching bold line are predicted to become saturated in the model. Locations to
the left of the vertical bold line are unconditionally stable. Note that limitations of our DEM data set cause
underestimation of steep slopes; thus, the slopes for points to the right of the plot are best considered as
representing minimum values.
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value of critical cohesion at each point on the landscape by
the amount shown in Figures 11a and 11b. As found for our
case study, changes in Ccrit reach over 2.5 kPa. Additionally,
this analysis illustrates that the sensitivity to rainfall variability
is felt on a specific part of the landscape, namely near-
saturated, relatively modest slopes with convergent topogra-
phy, as this is where groundwater transport is focused and
soils are poorly drained.
[28] Figures 11c–11h shows the analogous results for

changes in three of the soil properties included in SHALSTAB
(z, tanf, rs). For comparison we choose the magnitude of
changes in the soil properties so that they result in stability
changes of roughly the same scale as those arising from
precipitation variations in Figures 11a and 11b. Because of
the form of equation (1) the sensitivity of Ccrit to changes in
both soil properties and rainfall is linear, meaning a change in
any of the parameters will lead to a linearly proportional
change in stability (except in regions that reach saturation or
unconditional stability). Note that different regions of the
landscape show sensitivity depending on which parameter is
varied. For each of the soil parameters, variations of signif-
icant amplitude are required to match the effect of precipita-
tion variations, showing that climatological patterns in
extreme precipitation on the basin scale can be of comparable
importance with variations in soil properties for determining
the pattern of landslide hazard. The position of mapped slides
on Figure 10 reveals that a significant number of slides occur
in the region of large precipitation sensitivity as predicted
from Figures 11a and 11b, however it is the scale of variations
in precipitation relative to variations in soil properties that
determines their importance in shaping the spatial distribu-
tion of hazard. For instance, Figures 10 and 11g–11h suggest
that if ±30% variations in soil thickness were to occur, they

would have more impact than the observed precipitation
variability in the locations where most slides are found.

6. Conclusions

[29] We have analyzed the relationship between spatial
patterns of rainfall and patterns of landslide susceptibility
using high-resolution atmospheric model output (supported
by gauge observations) and a physically basedmodel of slope
stability. We find that the climatological spatial variations in
intense rainfall for a pair of basins in the Olympic Mountains
are large enough to cause nontrivial variations in slope
stability. For our study area we find that the use of area-
averaged precipitation to estimate landslide susceptibility at a
mountain site results in an underestimate of the area prone
to failure from intense rainfall events that can exceed 20%,
whereas use of lowland precipitation data can result in an
underestimate of as much as 64% (Figure 9d).
[30] The destabilizing effects of the increase in precipi-

tation from its lowland minimum to its mountain maximum
may be expressed in terms of soil cohesion. In this frame-
work we find that the enhancement of hazard at chronically
rainy locations is equivalent to a substantial fraction of the
actual soil cohesion supplied by vegetation in industrial and
recently logged forests. This implies that the same land use
produces a different level of risk in the wetter uplands than
one would assume from considering lowland rainfall data
and assuming spatially uniform rainfall. In particular, for-
estry practices that reduce root strength can carry a greater
danger of slope failure in forested upland areas than in the
surrounding lowlands, even for the same local slope gra-
dients and soil properties. Furthermore, the impact of the
spatial variations of rainfall observed in locations such as

Figure 11. Sensitivity of Ccrit to variations in different parameters. (a, b) Sensitivity to modeled spatial
variations in rainfall (±160 mm/d). (c–h) Sensitivity to variations in soil parameters (z, tanf, rs). The
magnitudes of variations in soil parameters (given above the plots) are chosen to give changes in Ccrit

comparable to those due to precipitation variations shown in Figures 11a and 11b. Bold lines are
thresholds as in Figure 10, and dashed lines are used to show where the thresholds move.
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the Olympic Mountains may be comparable to the effect of
significant variations in soil parameters (e.g., ±30% varia-
tions in soil depth).
[31] We expect our results should generalize to a variety

of regions. Similar patterns of precipitation are expected to
be a common feature for midlatitude mountain ranges that
receive their heaviest rainfall under convectively stable
conditions. Less is known about the climatology of moun-
tain precipitation on small scales produced by convective
storms. In part because of the stochastic nature of convec-
tion, it is possible that the extreme rainfall patterns and their
importance for landslide susceptibility are very different in
regions that receive their heavy rainfall from such storms.
As shown in Figure 11 unsaturated, relatively modest slopes
with convergent topography are most sensitive to variations
in rainfall, so our results are particularly pertinent for loca-
tions where many slides occur on such slopes. However, if
large variations in soil properties exist, the effects of rainfall
variability may be masked. Taken together, our results
suggest that, for many regions, persistent spatial patterns in
precipitation should be one of the factors considered in
analyses of mass wasting by shallow landslides and in hazard
assessments. High-resolution and high-quality data sets for
mountain precipitation can be hard to come by, but strategi-
cally placed gauge networks and high-resolution atmospheric
model output may prove valuable resources for the study of
slope stability.
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