1	Explicit electrification and lightning forecasts and cloud-scale lightning data
2	assimilation in the WRF-ARW model.
3	
4	Alexandre O. Fierro ^{1,2} , Edward R. Mansell ² , Conrad L. Ziegler ² and
5	Donald R. MacGorman ²
6	
7	¹ Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma
8	
9	² NOAA/OAR/National Severe Storms Laboratory, University of Oklahoma, Norman,
10	Oklahoma
11	
12	Abstract
13	
14	This talk will be divided into two distinct parts, labeled as "I" and "II":
15	I) Lightning threats in present-day numerical weather prediction models are currently
16	diagnosed from model variables such as graupel mixing ratio and ice water content that are
17	known to be well correlated with the occurrence of lightning. To provide a more physically

sound assessment of lightning threat, an explicit charging/discharge model (with explicit
elliptic solution of the 3D component of the ambient electric field) has been successfully
implemented into the NSSL two-moment microphysics scheme within the WRF-ARW model.
Results from convection-allowing (3-km) simulations of a major hurricane, a winter storm and
a severe continental mesoscale convective system will be presented.

23 II) To improve forecasts of convection, a new technique for assimilating total lightning 24 data into the WRF-ARW model at cloud-resolving scales has been developed. Assimilated 25 lightning data forces deep, moist precipitating convection to occur in the model using a 26 nudging function for the total lightning data, which locally increases the water vapor mixing 27 ratio and virtual buoyancy via a computationally inexpensive, smooth continuous function. The 28 assimilation of gridded pseudo-GOES-R resolution (9 km) flash rate via EarthNetworks® total 29 lightning data for only a few hours prior to the forecast initialization significantly improved the 30 representation of the convection at the initial analysis time and at the 1-hour forecast within the convection-permitting (≤ 5 km) and-resolving (≤ 2 km) grids. This simple, computationally 31 32 inexpensive assimilation technique has also been implemented into the real-time operational 4-33 km CONUS WRF/NSSL forecast testbed, promising results of which will be briefly reviewed. 34 Furthermore, recent evaluation of this lightning assimilation algorithm against standard 35 3DVAR techniques will be succinctly presented.