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ABSTRACT: Winter mixed-precipitation events are associated with multiple hazards and create forecast challenges that
are due to the difficulty in determining the timing and amount of each precipitation type. In New York State, complex ter-
rain enhances these forecast challenges. Machine learning is a relatively nascent tool that can help improve forecasting by
synthesizing large amounts of data and finding underlying relationships. This study uses a random forest machine learning
algorithm that generates probabilistic winter precipitation type forecasts. Random forest configuration, testing, and devel-
opment methods are presented to show how this tool can be applied to operational forecasting. Dataset generation and
variation are also explained because of their essential nature in the random forest. Last, the methodology of transitioning a
machine learning algorithm from research to operations is discussed.

SIGNIFICANCE STATEMENT: Examining the role that machine learning can play in winter precipitation type
forecasting is an area of research that has ample room for exploration, as much of the previous research has focused on
applying machine learning to warm-season precipitation and severe weather events. Establishing a framework and
methodology to successfully combine machine learning and weather research into effective operational tools is a valu-
able addition to the machine learning community. Because machine learning is increasingly being applied to meteorol-
ogy, this work can act as a road map to help develop other meteorological tools based in machine learning.

KEYWORDS: Winter/cool season; Freezing precipitation; Mixed precipitation; Classification; Decision trees;
Machine learning

1. Introduction

Winter weather hazards can hinder travel, utility operations,
and day-to-day activities for individuals and businesses. Forecast-
ing and communicating the impacts of winter storms, particularly
on the East Coast of the United States, can be challenging due
to complex terrain, continental–marine boundaries, and high-
density population centers, which make accurate forecasts for
these events essential (e.g., Ralph et al. 2005). Areas of mixed
precipitation, defined in this study as freezing rain or sleet, em-
bedded within larger storms or on their own, can enhance diffi-
culties in forecasting. Different precipitation types can cause a
wide range of hazards while potentially occurring in adjacent me-
teorological environments or similar meteorological environ-
ments where the meteorological conditions differ on very fine
scales. Differentiating between rain, freezing rain, sleet, and
snow is essential to forecasting because of the unique hazards
each one creates. In particular, freezing rain and heavy wet snow
events can result in power failures and significant travel issues,
which are not often associated with sleet or cold rain events.

In the United States between 1949 and 2000, catastrophic
ice storm events (events with losses totaling over $1 million)
generated $16.7 billion in losses; in particular, the Northeast
had the greatest number of these events with 39, causing over
$4 billion in damage (Changnon 2003). New York State alone

experienced 31 of the 39 (79%) events, with five–seven freez-
ing rain days per year (Changnon 2003). Along with ice
storms, the Northeast is susceptible to significant snowstorms.
Between 1980 and 2021, 19 billion-dollar winter storm disaster
events affected the Northeast climate region (Consumer Price
Index–adjusted); these events totaled $79.8 billion in esti-
mated costs (NOAA NCEI 2022).

Significant damage and economic losses occur during mixed-
precipitation type storms, and accurate forecasts of precipitation
types are essential for decision-making and planning for organiza-
tions including city leaders, transportation departments, schools
and universities, and many others. Accurate forecasts of precipi-
tation type and timing can assist with decisions such as whether
to pretreat roads and how to allocate snowplow and road salt op-
erations. Because these weather hazards are destructive and
costly and impact high-level decision-making (such as school clo-
sures), accurate mixed-precipitation forecasts are essential to pro-
tect lives and property.

Precipitation type forecasts are challenging because slight
variations in thermodynamic profiles and surface conditions
can result in significant changes to weather conditions and im-
pacts. The typical vertical temperature profiles for rain, snow,
freezing rain, and sleet (Fig. 1) illustrate how slight differences
in the vertical temperature profile can change the precipitation
type. For example, minor changes in the depth of a near-surface
freezing layer or an above freezing layer aloft can cause a
change in precipitation type, such as rain to freezing rain or
freezing rain to sleet. These changes in precipitation type haveCorresponding author: Brian Filipiak, bfilipiak@albany.edu
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implications on the potential impacts of a storm, which
highlights the importance of accurate vertical thermody-
namic profiles.

Over the years, many methods have been developed to iden-
tify precipitation type within a forecast, both through implicit and
postprocessing algorithms. Methods range from considering
the properties of the temperature and humidity profiles, to
the composition of the falling hydrometeors, to the use of
model microphysical parameterizations to explicitly forecast
precipitation type (Reeves 2016). Many of these methods are in
operational use in numerical models, local forecast office guid-
ance, and postprocessing of forecast information. For example,
the North American Mesoscale Forecast System (NAM) uses a
combination of methods (including some discussed in the next
paragraph) based on the vertical environmental temperature
profile to identify precipitation type (Manikin 2005). The High-
Resolution Rapid Refresh (HRRR) uses a different approach
where the determination of precipitation type comes from the
cloud microphysics parameterization and three-dimensional hy-
drometeor mixing ratios (Benjamin et al. 2016).

Previous analyses of precipitation type forecasting methods
resulted in important information about their accuracy and
biases (e.g., Bourgouin 2000; Reeves et al. 2014; Reeves 2016;
McCray et al. 2019; Ellis et al. 2022). Numerous methods for
identifying precipitation type are available in operations and
models, including the commonly used Ramer (Ramer 1993),
Baldwin (Baldwin et al. 1994), and Bourgouin (Bourgouin
2000) methods. Yet, even with all of the available forecasting
methods, it is still difficult to consistently produce accurate pre-
cipitation type predictions, especially when events include
mixed-phase precipitation like freezing rain and sleet (Manikin
2005; Wandishin et al. 2005; Reeves et al. 2014; Ikeda et al.
2017). Even precipitation type forecasting methods for ensem-
ble forecasting systems, like the Global Forecast System
(GFS) and Integrated Forecast System (IFS), have struggled
to forecast this differentiation (Scheuerer et al. 2017; Gascón
et al. 2018). In addition, some of these methods have biases

that impact their accuracy. For example, the Baldwin method
has a known bias toward ice pellets (equivalently referenced as
sleet in this study) and the Ramer method has a bias toward
predicting freezing rain (Reeves et al. 2014). Probability of de-
tection (POD) values for these methods can vary widely de-
pending on the precipitation type and algorithm. The methods
studied by Reeves et al. (2014) [e.g., Baldwin, Bourgouin,
Ramer, and NSSL (Schuur et al. 2012)] showed a high level of
accuracy when predicting rain or snow, with POD values rang-
ing from 96.1% to 99.6% for rain and 86.7% to 94.9% for snow.
For the mixed-precipitation categories, the POD values were
significantly lower. Values for predicting the combination of ice
pellets (sleet in this study) and freezing rain ranged from 34.7%
to 77% depending on the method. These values were even
lower in other studies, such as Gascón et al. (2018) who focused
on the IFS and found that the POD values were under 20% for
both freezing rain and sleet. The range in success of these meth-
ods indicates the lack of an effective method for operational
forecasters to rely on for predicting mixed precipitation.

An additional challenge when evaluating precipitation type
algorithms in numerical models is the fact that the algorithm
must be evaluated as well as the model accuracy of the local
meteorological conditions verified. Temperature biases in the
model can impact the forecast precipitation type (Ikeda et al.
2017). The fact that there is no consensus on which method is
the best presents an ongoing challenge as researchers and op-
erational meteorologists look for effective methods for accu-
rate precipitation type forecasting.

Machine learning (ML) tools are increasingly used in the
Earth sciences to examine complex problems. Atmospheric
science is no exception, and these tools are being used to solve
problems and process significant volumes of data that previously
were too large for analysis systems to process. ML has recently
been used in several critical atmospheric applications like quan-
titative precipitation forecasts and forecasting of flooding events
(Gagne et al. 2014; Herman and Schumacher 2018a,b; Erickson
et al. 2019), hail and severe weather prediction (Gagne et al. 2017;

FIG. 1. Vertical temperature profiles for (a) rain, (b) snow, (c) freezing rain, and (d) sleet. Red
and blue shaded areas respectively represent where the temperature is greater than and less than
08C. The dotted horizontal gray lines represent intersection points between the profile and the
(vertical dashed) 08C line.
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Hill et al. 2020), identification of large-scale weather features
including atmospheric rivers and tropical cyclones (Chapman
et al. 2019; Chen et al. 2020), prediction of visibility at airports
(Herman and Schumacher 2016), and detection of atmospheric
turbulence (McGovern et al. 2014; Williams 2014). Forecasting
for these types of hazards can be operationally challenging and
the use of ML algorithms by operational forecasters can aid in
making an accurate forecast.

Many of the ML applications described above used a random
forest (RF) technique (Breiman 2001) to successfully make strides
in forecasting these operationally challenging events. These suc-
cessful implementations of the RF indicate that it, along with
other ML algorithms, can be used to help with the challenges in
operational weather forecasting (McGovern et al. 2017, 2019). RF
was selected as the ML method in the current study because of its
ability to handle large datasets (McGovern et al. 2017), the popu-
larity of subjective (human derived) decision trees in weather fore-
casting (McGovern et al. 2017), and the ease of explanation to
end users, which is important when transitioning the algorithm to
operations. While ML is becoming a more common weather fore-
casting tool, one less studied application is highly impactful winter
weather events. Considering the difficulties associated with fore-
casting winter precipitation types, the prospect of combining ML
with the challenge of forecasting precipitation type represents an
exciting and potentially informative forecasting tool that could be
integrated into the operational forecasting process.

The goal of this paper is to detail the methodology of con-
figuring a RF for producing effective, reliable, probabilistic
products for operational winter precipitation type forecasting
in New York State. Section 2 describes the data and RF meth-
ods. Section 3 explains the validation process of the RF
through internal testing, which will be the basis for the opera-
tional RF forecast. Section 4 discusses challenges and hurdles
faced during the transition from a research RF to an opera-
tional RF and suggests a flowchart to streamline the process.
In addition, a framework for applying ML to operational fore-
casting that can be translated to other locations and weather
types will be detailed.

2. Data and RF methods

a. Data collection and processing

To successfully create an RF, the basis for the training dataset
first needs to be determined. While there is not a complete ar-
chive for winter mixed-precipitation events, there are several
options to use as ground truth observations in a training dataset.
One option is to use data from Automated Surface Observing
Stations (ASOS), which is logical because ASOS stations have
present weather sensors to detect precipitation types and some
stations are augmented by trained observers who can change
precipitation type reports as necessary (NOAA 1998). ASOS lo-
cations are primarily at airports, however, which means they are
not representative of complex terrain in a given region. This
lack of representativeness is an important consideration as com-
plex terrain, including mountains and valleys, can modify condi-
tions locally and alter precipitation type. In addition to terrain
challenges, prior research has indicated that nonaugmented

stations can have biases in identifying precipitation types like
sleet (Reeves 2016).

Another option for ground truth observations is the Meteoro-
logical Phenomena Identification Near the Ground (mPING;
Elmore et al. 2014) dataset. mPING reports are precipitation
type observations submitted by anyone with the mobile app on
their phone or tablet, so the reports can cover a much wider area
than ASOS stations. One downside to mPING is that reports are
reliant on people having and correctly using the application, so
reports may be more sporadic than desired. In addition, the ob-
server making the report may not have a background in meteoro-
logical observations and, while there are online resources to help
observers make decisions on precipitation type, there is no guar-
antee it will be reported accurately.

A third option for ground truth observations is the Commu-
nity Collaborative Rain, Hail and Snow Network (CoCoRaHS;
Cifelli et al. 2005), which is a volunteer network of trained ob-
servers who report daily precipitation accumulation (24-h pe-
riod) across the country. All volunteers are trained in how to
report and measure different precipitation types. While these
daily reports generally do not record the exact timing of precipi-
tation like mPING, the notes section of these reports is filled
with information about the time and precipitation type. How-
ever, since not all observer notes are the same, only certain re-
ports are useful to identify precipitation timing.

While there are many potentially useful options to develop a
training dataset, for this specific effort, CoCoRaHS daily reports
were chosen to identify cases for the training dataset because the
observers were both trained and consistent, have a large spatial
distribution, and collect reports of all precipitation types across a
variety of terrain. The training dataset development began
with daily CoCoRaHS reports dated between January 2017
and September 2020 for four precipitation types: rain, freezing
rain, sleet, and snow. Once all these reports were obtained, the
notes section of the reports was individually reviewed and subjec-
tively verified using New York State Mesonet (NYSM; Brotzge
et al. 2020) standard station weather data, NEXRAD radars, and
Weather Prediction Center surface analyses. The verification pro-
cess ensured the meteorological conditions around the report lo-
cation were commensurate with the reported observation.

Since CoCoRaHS daily reports do not have a specific pre-
cipitation type reporting section, the notes section of the re-
ports was used to identify and categorize cases into the four
target values (rain, freezing rain, sleet, or snow). Precipitation
type, timing, and uncertainty were recorded for each individ-
ual report. While these are daily reports, the reported time
for the precipitation observation was a singular time as de-
scribed in the report’s notes section. If a CoCoRaHS report
contained multiple precipitation types, the less-common phe-
nomena were selected first, assuming the atmospheric condi-
tions corroborated the precipitation type. This meant that the
order for classification of multiple precipitation types was
sleet, freezing rain, snow, and rain. One CoCoRaHS report
could generate multiple event labels if precipitation type
changed during the reporting period; however, if it was un-
clear when the transition occurred or if there were multiple
precipitation types occurring at the same time, those would
not have been included in the event labels. To classify the
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reports, a qualitative coding classification was performed us-
ing a scale from 1 to 4, with 1 being the most informative re-
ports and 4 being the least informative reports (see Table 1
for examples). Specific times were the most helpful for deter-
mining event timing, and most reports that had specific times
were classified as category-1 reports. Other reports used terms
and phrases that indicated timing with less certainty, including
phrases like “around 9 PM” or “in the early morning.” These
notes provided a moderate amount of confidence and were classi-
fied as category-2 or category-3 reports depending on the event
type and the meteorological information available. Reports that
gave no information regarding timing or contained irrelevant in-
formation were classified as category-4 reports. Because of the
significantly larger volume of CoCoRaHS reports for rain and
snow relative to freezing rain and sleet, only those cases classified
as category-1 reports were kept. For freezing rain and sleet,
category-1–3 reports were used because of the limited volume of
reports. After processing all of the CoCoRaHS reports, the final
set of reports included 2617 viable cases: 750 for rain, 750 for
snow, 619 for sleet, and 498 for freezing rain.

Once the cases were identified and verified, they were
matched with meteorological data that are often used to

forecast precipitation type. These meteorological variables
would become the feature inputs into the RF and be used to
make the predictions of the target values. This process is de-
scribed more in section 2b. The main data sources used to
match with the final CoCoRaHS reports were NYSM stan-
dard site data for surface observations, in situ radiosonde
data, and Buffalo Toolkit (BUFKIT; Mahoney and Niziol
1997) model profiles for vertical profiles. Surface observations
in this study came from the NYSM (Brotzge et al. 2020), a
high-quality network of weather stations installed in New
York State between 2015 and 2018. The network consists of
126 “standard” sites (used for this analysis) as well as a variety
of specialized subnetworks including profiler, flux, and snow net-
works. Standard sites are evenly distributed throughout the state
and measure temperature at two heights, relative humidity, re-
dundant wind speed and direction measurements, snow depth, ir-
radiance, precipitation, soil temperature and moisture at three
depths, and surface pressure. Each site is also equipped with a
camera. Data are collected, archived, and disseminated every five
minutes, and undergo a series of automatic and manual quality
control procedures. A dedicated team of field technicians per-
form regular maintenance on all sites to ensure data quality.

TABLE 1. Examples of CoCoRaHS reports and the qualitative scoring used to categorize their usefulness for this study. Category-1
reports included specific information about time of precipitation, whereas category-4 reports included no information about the time
of precipitation.

Classification category CoCoRaHS report notes

1 “10 min snow flurry 8:20 a.m. yesterday. Freezing rain began around 7 p.m. Dusting snow around 9:30 p.m.
Raining at obs. time}32 degrees. Ice on tree branches but no wind or storm damage. Hard to estimate
snow fall depth.”

“27F and sleet at obs time. Little hard pellets, accumulation recorded under new snowfall. It’s not clear
when this started - during the night.”

2 “Some sleet just before observation. Intermittent showers only.”
“20F at obs time. Precip started as freezing rain and sleet about 3 pm then changed to snow.”
“Light snow began at 2 pm and sleet began to mix in at 5 pm to all sleet by 6 pm to all rain by 7 pm.”

3 “Sleet on and off overnight but only a trace on the ground”
“Mixed-precipitation event, with snow mixing with sleet during the day. Temperatures rose in the evening,

with snow changing to rain for several hours.”

4 “A combination of sleet, freezing rain and rain. 47 degrees this morning!”
“Measured 1.48 in. of rain before the change over to snow. There was some sleet and freezing rain in my

collector, but could not get a proper measurement of that. Included in snow measurement.”
“Yesterday was a mostly grey day no precipitation. Temps were around the freezing point. Right now is

cloudy with very little wind and warmer temps . . . Have not seen the crows yet}they usually are flying
overhead by this time. I did see a rabbit this morning right before dawn and I heard a chickadee and
saw a squirrel in a tree at 8 am. Wind advisory for tonight}trash day is tomorrow :( ”

TABLE 2. Variables from each NYSM dataset used as features in the RF.

NYSM 5-min variables NYSM hourly variables

2-m temperature 2-m temperature (min, max, and avg)
2-m relative humidity Relative humidity (min, max, and avg)
Surface pressure Station pressure (min, max, and avg)
Solar irradiance Solar irradiance and total solar irradiance
Precipitation (5-min total, daily total, and intensity) Precipitation (hourly total, daily total, and intensity)
10-m-avg wind speed and direction from sonic anemometer 10-m-avg wind speed and direction from sonic anemometer
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Table 2 details the variables from the NYSM that are used as
features in the training dataset. The features that were ex-
tracted from the NYSM data were matched to the nearest
report time period (5-min or hourly for each CoCoRaHS
report).

Complete profiles of the lower and middle troposphere are
crucial for making precipitation type predictions, so in situ radio-
sonde data were used to complement the NYSM standard site
data. Radiosonde data were collected from four sites in or near
New York State at 0000 and 1200 UTC daily (Albany, Buffalo,
and Upton in New York, and Maniwaki, Quebec). Each
CoCoRaHS report was matched to the nearest and most
recent radiosonde launch (i.e., if a CoCoRaHS observer re-
ported snow at 0600 UTC, the snow report would be
matched to the data from the 0000 UTC launch).

As described in Mahoney and Niziol (1997), BUFKIT pro-
files were used to create a dataset of forecast vertical profiles.
The NAM nested domain (NAMNEST) was selected for these
profiles as it offered the highest resolution of the available mod-
els that have BUFKIT archives throughout the period of study.
The NAMNEST is a 3-km grid spacing (4 km prior to March
2017, representing up to two months of CoCoRaHS reports)
nested domain of the larger 12-km NAM. The model is initial-
ized every 6 h with hourly model output and 60 vertical levels,
with 27 levels in the lowest 3 km starting at 20 m. The BUFKIT
program generates vertical profiles from model forecast data in-
terpolated as a radiosonde observation at specific locations. The
BUFKIT generated NAMNEST profiles are available through
the Iowa State Mesonet archive (Mtarchive) and in real time
from the Pennsylvania State University (the data from these
profiles will be referred to as NAMNEST profile data or just
NAMNEST). The CoCoRaHS reports were matched to the
most recent NAMNEST profile, so a report at 1000 UTC would
be matched to forecast hour 4 from the 0600 UTC NAMNEST
simulation.

All three datasets, NYSM, upper-air radiosondes, and the
NAMNEST, used in the RF combined raw observed variables
with calculated variables based on the raw data available from ra-
diosonde data or model output. NYSM data were supplemented
with derived sea level pressure using existing NYSM data and
metadata. For radiosonde and NAMNEST profiles, numerous

variables were calculated to give additional information [Table 3,
columns 2 and 3 (C2 and C3)], including wet-bulb temperature,
precipitable water vapor, and calculations of raw variables be-
tween standard pressure levels. Since these additional variables
were not in the original profile datasets, they had to be calculated
after the original profile was processed. Many of the advanced
calculations (wet-bulb temperature, precipitable water vapor,
etc.) were completed via the MetPy python package (version 1.4;
May et al. 2022). The original calculated variables (Table 3, C2)
were calculated before the new calculated variables (Table 3,
C3), and they were both tested separately and together as fea-
tures that were included in attempts to train the RF. Since the ra-
diosondes and NAMNEST profiles have the same structure, one
table can be used to summarize the features that were used from
the profiles. Table 3 details all of the features used in the vertical
profile datasets (radiosondes and NAMNEST profiles).

b. RF methods

RFs are a type of supervised ML consisting of an ensemble of
individual decision trees trained on an example set of data.
Here, the RF is being used as a classification task where it is
given a separate, testing dataset and each tree votes for the most
popular class based on the input features in the training dataset
it was given (Breiman 2001; McGovern et al. 2017). The relative
frequencies of the votes in the ensemble of decision trees create
the probabilistic forecasts for each class being predicted by the
RF (Herman and Schumacher 2018a). A higher number of trees
in the RF increases the diversity of the decision trees because of
the different combinations of data used to train and make pre-
dictions (McGovern et al. 2017; Hill et al. 2020).

Looking at the internal process for one decision tree in the
RF, the trained decision tree is created by separating the
training dataset by making decisions at nodes (points at which
a value from a feature in the testing dataset is compared with
the RF-determined threshold value of that feature in training
dataset). Once split, the separated training dataset feeds into
different branches that go to other nodes. This process at each
node occurs continuously until the training dataset has been to-
tally separated into the individual target values (the types of
precipitation) or there are too few training dataset examples left
to split (Hill et al. 2020). This process can be controlled via a

TABLE 3. Variables used as features in the RF from the NAMNEST and radiosonde vertical profile datasets. Raw variables (C1)
are at standard pressure levels including the surface and 925, 850, 700, and 500 hPa. All calculated variables (C2 and C3) were found
between standard pressure levels unless otherwise noted.

Raw variables (C1) Original calculated variables (C2) New calculated variables (C3)

Temperature
Pressure
Dewpoint
Wind speed and direction
Geopotential height
Wet-bulb temperature
Relative humidity

Temperature difference between
standard pressure levels

Precipitable water vapor difference
between standard pressure levels

Wind speed and direction difference
between standard pressure levels

Critical thickness (sea level –850 hPa and
sea level–500 hPa)

Max wet-bulb temperature 925–700 hPa
Positive and negative areas and ratio of positive

to negative (Bourgouin 2000)
Critical thickness (850–700 hPa and 700–500 hPa)
Mean relative humidity sea level–500 hPa
Dewpoint depression
Mean temperature (sea level–850 hPa and sea

level–700 hPa)
Min temperature sea level–850 hPa
Max temperature 850–700 hPa
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tuning parameter of the RF and creates end points (also called
final nodes) where predictions of the target values can be made.
Once the RF is trained and the decision trees have been cre-
ated, real-time input features can be used to make predictions
by following the decisions made at each node of the decision
tree. At this point, a vote is made for the most popular class by
the tree. While each tree may have many final nodes, there is
only one prediction made from each tree for each set of features
being processed. In the case of the different winter precipitation
types, the target values for the RF are the four classes of precipi-
tation in the testing data.

Once all the observed and simulated data were collected,
processed, and matched with the CoCoRaHS reports, the re-
ports and associated feature variables were combined to cre-
ate different, unique data combinations with two distinct
types of datasets: NYSM and upper-air data and NAMNEST
profile data. This process was done by matching the timing of
the reported precipitation type to the nearest available mete-
orological observations or model data at the specific time of
the event (e.g., a report of freezing rain at 1145 UTC would
be matched with 5-min NYSM data at 1145 UTC, hourly
NYSM data covering 1100–1200 UTC, upper-air radiosonde
data from 0000 UTC, and NAMNEST data from the 0600 UTC
initialization at forecast hour 5). The input features from the dif-
ferent datasets are the unique combinations of features de-
scribed in section 2a because the different data sources (NYSM,
radiosondes, and NAMNEST) have different variables within
them to select as features. These combinations were tested in
the RF to determine which would be the final set of features
used as the training dataset for the operational RF. The goal of
testing the different data combinations was to address the im-
portant question: “What data sources and variables actually
contribute to making a good precipitation type forecast?” By
varying the data combinations and features in the different
training datasets, the answer to this question will be apparent
because the contributions of different data sources via their fea-
tures will be evident in the RF’s ability to predict the target pre-
cipitation type values.

To test how well the RF would work, a training dataset and
testing dataset needed to be identified. To do this, the full da-
taset (the full set of CoCoRaHS reports matched with fea-
tures from different datasets) was randomly split into subsets
creating a training dataset (75% of original training dataset)
and a testing dataset (25% of original training dataset). Since
the number of CoCoRaHS reports for each target value (pre-
cipitation type) were not equal, the training and testing

datasets were split such that the proportion of each of the tar-
get values (rain, freezing rain, sleet, and snow) was equal in
both datasets. The testing dataset was saved to evaluate the
RF, which will be discussed in section 3.

The RF was configured using a thorough hyperparameter
tuning process (the process of determining the optimal combi-
nation of parameters that control how the RF is structured
through grid searches of all possible hyperparameter combina-
tions), with cross validation to thoroughly test the setup. The
process of cross validation is important in order to make sure
the RF is not overfitting, especially with a smaller number of to-
tal (training and testing) cases. In addition, cross validation can
help with determining RF skill with new data. Initial experi-
ments used for evaluation of the RF (not shown) used 500 deci-
sions trees and kept the rest of the default RF options (Table 4)
from the python scikit-learn package (version 1.1.2; Pedregosa
et al. 2011). This testing was done for multiple combinations of
feature variables from different data sources. For example, one ex-
periment only included features from the radiosondes, whereas
the next one may include the same features from the radiosondes
plus features from the 5-min NYSM data. This was done to better
understand how the different combinations of data sources and
features would work together, as well as which may perform the
best. The hyperparameter tuning process began once the highest
performing datasets were selected from the initial testing process
(see Table 5 for list of datasets), which happened through examin-
ing which had the best internal statistics (accuracy and F1 scores).
The training dataset, described above as 75% of the original Co-
CoRaHS reports matched with input features from different
data sources, was used in multiple tests to determine the best set
of hyperparameters. Since several different feature combinations
would be tested later, the hyperparameter tuning was completed
on two training datasets: one contained all NYSM features from
both hourly and 5-min data sources with NWS upper-air radio-
sondes, while the other contained the NAMNEST features in
the training dataset. This was done to cover both types of train-
ing datasets to be examined later, while keeping the hyperpara-
meters the same. A random grid search with tenfold cross
validation was conducted with 150 iterations, which was done
across a wide range of values for all the parameters, with each it-
eration trying a different combination of parameters from the
possible options. The process was done five times to get multiple
grid outputs in order to narrow down the range of options for
each parameter. Since there was a range of results, a full grid
search with tenfold cross validation was completed over the nar-
rower range of options from the random search. The result from

TABLE 4. RF parameter default configuration from the python scikit-learn package and the configuration determined from the
hyperparameter tuning process.

Parameter Default value Value after tuning

No. of decision trees (N) 100 650
Min no. of samples to split at a node (min_samples_split) 2 10
Min no. of samples to be at a leaf node (min_samples_leaf) 1 1
No. of features to consider for best split (max_features) Sqrt Log2
Max depth of a decision tree (max_depth) None 25
Bootstrap samples (bootstrap) True True
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that search is the parameter configuration that was used in the
full RF, and thus concluded the hyperparameter tuning process
(Table 4).

After conducting the random grid and full grid searches, a
full internal testing of the RF was performed using the testing
dataset, the remaining 25% of original training dataset set
aside for this purpose, to evaluate the RF performance with
winter precipitation type classification of past events. This
evaluation of the RF was done by using four key metrics: ac-
curacy, precision, recall, and F1 score (Fig. 2). Accuracy indi-
cates the overall number of correct predictions out of the
total predictions of the RF; precision is the number of correct
predictions divided by the number of total predictions for that
precipitation type; recall is how often the correct prediction
occurs in the RF; and F1 score is the combination of precision
and recall, and represents how well the RF is predicting that
precipitation type. Section 3 focuses on accuracy and F1
scores because they represent the overall RF success and how
well the target values were predicted. These metrics were cal-
culated for each run of the RF, defined as where the RF is
trained with one training dataset with one set of features and
makes predictions on a testing dataset that contains the same
set of features. One independent RF run is defined as when
the RF is trained and validated against the testing dataset;

this will be referred to as a run throughout the rest of this
study. Multiple independent runs are done by running the RF
multiple times in a row with the same training and testing
datasets; the results from each run, the probabilities and fea-
ture importance, can then be averaged. The numbers de-
scribed later were averaged over 50 independent RF runs to
remove any potential outlier runs.

Confusion matrices were used to evaluate the outcomes from
the RF predictions (Figs. 2 and 4). The diagonal from the upper-
left to the bottom-right corner of a confusion matrix indicates the
correct predictions for each precipitation type (between 0 and 1,
with 1 equal to 100%). The off-diagonal values are important
when evaluating the RF as they can elucidate the scenarios when
the RF makes incorrect predictions, thereby allowing for correc-
tions and necessary changes to the RF.

Section 3 will highlight which features were most important
in the decision-making of the RF. To determine feature impor-
tance, the method of Gini impurity importance as described in
Breiman (2001) and McGovern et al. (2019) was used. Impor-
tance is determined using this method by how well a decision at
a node isolates the known training cases in the RF. In the exam-
ple of winter precipitation types, the more a decision at a node
splits one precipitation type out from the rest, the more impor-
tant the feature is. Impurity importance was selected since it can

TABLE 5. Description of RF training datasets and name abbreviations. Descriptions indicate dataset (NYSM and NAMNEST);
sounding location (original, updated, and NAMNEST); and type of sounding variables included as features [raw (C1) and calculated:
original (C2) and new (C3)]. Sounding features are described in Table 3, and NYSM features are described in Table 2.

Dataset description Abbreviations

NWS Buffalo, Albany, and Upton radiosondes Original soundings
NWS Buffalo, Albany, and Upton and Maniwaki, Quebec, radiosondes Updated soundings
NYSM hourly averaged surface variables with raw and original calculated variables from original

soundings (Table 3: C1 and C2)
HAVG_RCO

NYSM hourly averaged surface variables with raw from original soundings (Table 3: C1) HAVG_RO
NYSM hourly averaged surface variables with original calculated variables from original soundings

(Table 3: C2)
HAVG_CO

NYSM 5-min surface obs with raw and original calculated variables from original soundings (Table 3: C1
and C2)

OBS5_RCO

NYSM 5-min surface obs with raw variables from original soundings (Table 3: C1) OBS5_RO
NYSM 5-min surface obs with original calculated variables from original soundings (Table 3: C2) OBS5_CO
All NYSM surface data with raw and original calculated variables from original soundings (Table 3: C1

and C2)
ALL_RCO

All NYSM surface data with raw variables from original soundings (Table 3: C1) ALL_RO
All NYSM surface data with original calculated variables from original soundings (Table 3: C2) ALL_CO
NAMNEST soundings with raw and original calculated variables (Table 3: C1 and C2) NAM_RCO
NAMNEST soundings with raw variables (Table 3: C1) NAM_RO
NAMNEST soundings with original calculated variables (Table 3: C2) NAM_CO
NAMNEST soundings with raw and all calculated variables (Table 3: C1, C2, and C3) NAM_RCN
NAMNEST soundings with raw variables (Table 3: C1) NAM_RN
NAMNEST soundings with all calculated variables (Table 3: C2, C3) NAM_CN
All NYSM surface data with raw and all calculated variables from updated soundings (Table 3: C1, C2,

and C3)
ALL_RCN

All NYSM surface data with raw variables from updated soundings (Table 3: C1) ALL_RN
All NYSM surface data with all calculated variables from updated soundings (Table 3: C2 and C3) ALL_CN
All NYSM surface data with raw and all calculated variables from NAMNEST soundings (Table 3: C1,

C2, and C3)
ALL_NAM_RCN

All NYSM surface data with raw variables from NAMNEST soundings (Table 3: C1) ALL_NAM_RN
All NYSM surface data with all calculated variables from NAMNEST soundings (Table 3: C2 and C3) ALL_NAM_CN
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be done during the RF training process (McGovern et al. 2019);
however, there are some limitations of this method including fa-
voring features that appear early in the decision tree and not
properly expressing the correct importance of two correlated
features (either by ignoring one or splitting the importance be-
tween the two). While there are other methods of determining
feature importance, like permutation importance, impurity im-
portance was used in this study despite its limitations because
there were little to no differences in the most important features
between the impurity and permutation importance methods
(not shown).

3. Results: Internal algorithm testing

Internal testing of the RF is an integral step to evaluate the
impact of the different combinations of input features avail-
able to train the RF, which can be done by making predictions
based on the testing dataset, 25% of original training dataset
that was not included when training the RF. Starting with the
NYSM and upper-air data, all combinations of features were
considered to identify which would be most effective, includ-
ing testing different combinations of features such as only raw
data variables, taken directly from the observations or radio-
sondes, or only calculated variables, calculated from the raw
observations or radiosonde data (Table 3; Fig. 3). In evaluat-
ing training datasets, it was important to not only consider
overall accuracy (denoted by the black circles), but also the
individual F1 scores for different precipitation types because
high accuracies in certain categories can mask other low accu-
racies. Figure 3 shows that the overall accuracy and F1 scores
changed when considering different combinations of input
features, which points to the importance of the input dataset
in the RF algorithm. The most accurate combination of fea-
tures was the NYSM 5-min and hourly features combined with
observed sounding features (ALL_RO; Table 5 and Fig. 3).
This combination of features aligned with the highest F1 scores
for the mixed-precipitation categories of sleet and freezing
rain. While F1 scores around 55% and 65% are not ideal
(a higher F1 score indicates that the RF is identifying a higher
number of the training cases correctly), these values are, none-
theless, promising. It is important to note that it is unlikely the
RF would achieve F1 scores close to 100% due to the inherent

uncertainty in the observed precipitation type reports. The
F1 scores are especially encouraging considering the chal-
lenge of forecasting mixed precipitation as noted by the
range of POD values from Reeves et al. (2014), with the
caveat that these values represent different metrics for
evaluating the datasets.

Figure 4 shows the confusion matrix from a run of the RF
with the ALL_RO training and testing data (Table 5), one of
the highest performing RF runs using features from the
NYSM and upper-air datasets. The F1 scores from Fig. 3 are
very similar to the fraction of correct predictions for sleet
(0.55 correct) and freezing rain (0.65 correct) in Fig. 4. An in-
teresting result of these RF runs is that the algorithm’s values
of correct predictions for snow (0.92) and rain (0.87) events
are similar to the combined confusion matrix value when pre-
dicting a mixed-precipitation type (sleet or freezing rain) for a
true freezing rain or sleet event (0.87 for freezing rain and
0.78 for sleet, respectively). This result suggests the RF can
more easily recognize three major types of precipitation: rain,
mixed precipitation, and snow.

A similar method of evaluation can be followed for the
NAMNEST-based training datasets. The model-derived pre-
cipitation type prediction from the NAMNEST is not used as
a feature, so the RF creates a target value of precipitation
type from meteorological features only. Two combinations of
NAMNEST data were generated. The original datasets (end-
ing in O in Table 5) were the first attempt to combine model
features to predict the target values. The new datasets (ending
in N in Table 5) were an attempt to improve upon the original
datasets, which only contained the features in Table 3, column 1
(C1) and C2, by adding new calculated features, found in Table
3, C3, to the original dataset. The new datasets were a clear im-
provement over the original datasets, with a roughly 5% jump
in overall accuracy (Fig. 5). Additionally, the F1 scores for all
four target values increased for RF runs utilizing the new data-
sets. Several of the new calculated features appeared in the top
10 features from runs of the NAM_RCN dataset (Fig. 6): posi-
tive area (defined as the integrated area where environmental
temperature is greater than 08C in a vertical temperature pro-
file; Bourgouin 2000), maximum wet-bulb temperature be-
tween 925 and 700 hPa, minimum temperature between the

FIG. 2. (left) RF evaluation metrics and (right) a sample confusion matrix for sleet and freez-
ing rain with the prediction of sleet set as the true positive. Evaluation metrics can be calculated
from the case distribution in the confusion matrix, which shows the proportions of correct and in-
correct predictions.
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surface and 850 hPa, average temperature between the sur-
face and 850 hPa, and maximum temperature between 850
and 700 hPa. This result indicates that the new calculated
features (Table 3, C3) likely made the difference in the
higher scores.

From a meteorological perspective, these new calculated
features tended to better quantify how temperature varied

between mandatory pressure levels and more clearly captured
the vertical temperature profile in the lowest part of the atmo-
sphere. These features were selected specifically because they
have been identified in the literature (Ramer 1993; Baldwin
et al. 1994; Bourgouin 2000; Manikin 2005; Benjamin et al.
2016) as important in determining mixed-precipitation type,
and their usefulness is seen by an increase in F1 scores for
sleet and freezing rain (Fig. 5). While improvement was made
by incorporating features that gave a better sense of the entire
vertical temperature profile, there were challenges with using
different datasets for vertical temperature profiles. One chal-
lenge with radiosonde and NAMNEST profiles was that the
pressure levels were not consistent throughout due to no two
soundings ever being the same, which made it difficult to get
values at consistent locations aside from mandatory pressure
levels. This point is important because if they were more con-
sistent, additional features could be extracted at important
pressure levels in the lower levels of the atmosphere, which
could provide more features to improve the RF.

Since the new calculated features (Table 3, C3) were suc-
cessful in improving the NAMNEST RF, those same features
were added into original NYSM datasets to see if the same
improvement would occur. Figure 7 compares the best three
original NYSM runs (Fig. 7, to the left of the first vertical
dashed line) with NYSM runs with the new calculated fea-
tures added into the datasets (Fig. 7, between the vertical

FIG. 3. Accuracy and F1 scores for different combinations of NYSM and upper-air input fea-
tures. The training dataset abbreviations are in Table 5. Dashed lines represent divisions be-
tween different types of datasets. The left third represents the dataset built with features from
hourly NYSM and upper-air data. The center third represents the dataset built with features
from 5-min NYSM and upper-air data. The right third represents the dataset built with features
from hourly and 5-min NYSM along with upper-air data. The black circles represent the overall
accuracy of the RF. The colored shapes correspond to the F1 scores of the different target values
(purple hexagons for sleet, red diamonds for freezing rain, green squares for rain, and blue trian-
gles for snow).

FIG. 4. Confusion matrix of values averaged over 50 independent
RF runs for the ALL_RO NYSM and upper-air training dataset
(Table 5).
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dashed lines). In addition, combining the NYSM 5-min and
hourly features with the NAMNEST profiles features (to the
right of the second dashed vertical line) was tested to deter-
mine whether increasing the spatial density of vertical profiles
would improve the RF. The new calculated features added to
the NYSM and upper-air profiles caused a slight decrease in
overall accuracy. In particular, the sleet and freezing rain F1
scores decreased by 6%–8% and 3%–4%, respectively. This
decrease is likely associated with the new calculated features
adding noise to the decision-making process of the RF, which
is examined in the next paragraph.

When testing whether increased spatial resolution of the verti-
cal profiles would increase accuracy, one would expect the RF to
do better because more vertical sampling of the atmosphere
should create more representative input feature values. However,
this was not the case with the NYSM and NAMNEST datasets.
The decrease connected to these results is likely because there is
an overlap in the features in the combined datasets creating noise
in the RF. This was seen in Wang et al. (2022) where, if highly
correlated features were run through anML algorithm, those fea-
tures had little impact on the final predictions. Additionally, the
surface feature values can conflict or not be meteorologically con-
sistent with the NAMNEST feature values due to model initiali-
zation and data assimilation methods and/or the geographical
locations of the datapoints from which the values for the feature
were extracted. For example, pairing surface observing sites with
a location at significantly higher elevation than a NAMNEST
profile site can cause a discrepancy. A similar issue was pointed
out in Mital et al. (2020) and it is important to note that it may be

better to match stations at similar elevations. While these results
show a decrease in performance, it prompts a response to con-
duct future experimentation with different combinations of fea-
tures from the NYSM and NAMNEST profile datasets to find
the best possible combination. This point is a key takeaway from
the process of testing the RF and determining the best possible
dataset because each type and combination of features needs to
be treated differently. Throughout the extensive testing process,
the best training datasets for each combination of features were
ALL_RO for the NYSM and Upper-air and NAM_RN for the
NAMNEST because they had the best overall performance for
both accuracy as well as individual F1 scores. These combinations
of features form the final training datasets that were used in the
operational forecasts.

4. Research-to-operations methodology

Developing a functioning ML algorithm is an intensive pro-
cess and can be time consuming to properly configure and
test. Once configured and tested, it is straightforward to test
on combinations of features that already exist. The challenge
occurs when trying to apply the algorithm as a real-time tool
to make forecasts and nowcasts. Transitioning this algorithm
from research to operations, defined here as a forecast prod-
uct that is made with real-time data and produced at the Uni-
versity at Albany, was a multistep process with potential
issues associated with real-time processing of incoming data
from various sources, formatting the real-time dataset, and run-
time issues. Some previous work (Taillardat and Mestre 2020;

FIG. 5. Accuracy and F1 scores for different combinations of NAMNEST features. The data-
set abbreviations are in Table 5. Dashed lines represent divisions between different types of
datasets. The left half represents the dataset built from NAMNEST data with the raw and origi-
nal calculated features (Table 3; C1 and C2). The right half represents the dataset built from
NAMNEST data with the raw and original calculated features plus the new calculated features
(Table 3; C1, C2, and C3).
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Haupt et al. 2021; Vannitsem et al. 2021) has detailed parts of
the research to operation transition process for postprocessing
weather forecasts, but there is more work to be done to make
sure this process is clear, and the associated challenges known.

This section describes the transition of this research-oriented
ML algorithm to an operational forecasting setting.

The path for transitioning this RF from research to opera-
tions is represented in the flowchart in Fig. 8. Sections 2 and 3

FIG. 6. The top 10most important features fromRF runs of the newNAM_RCN dataset. The values
of importance have been averaged over 50 runs. The higher the value is, themore important are the fea-
tures. The full names of the features in order of importance are as follows: surface dewpoint, surface
temperature, positive area, maximum wet-bulb temperature from 925 to 700 hPa, surface wet-bulb tem-
perature, minimum temperature from the surface to 850 hPa, temperature at 850 hPa, average tempera-
ture from the surface to 850 hPa, maximum temperature from 850 to 700 hPa, and dewpoint at 925 hPa.

FIG. 7. Accuracy and F1 scores for different combinations of NYSM, NAMNEST, and upper-
air features. The dataset abbreviations are in Table 5. Dashed lines represent divisions between
different types of datasets. The left third represents the dataset built with features from hourly
and 5-min NYSM and upper-air data with raw and original calculated variables (Table 3; C1 and
C2). The center third represents the dataset built with features from hourly and 5-min NYSM
and upper-air data with raw and original calculated variables plus the new calculated variables
(Table 3; C1, C2, and C3). The right third represents the dataset built with features from hourly
and 5-min NYSM and NAMNEST data raw and original calculated variables plus the new calcu-
lated variables (Table 3; C1, C2, and C3).
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detailed the process of preparing and testing the training data-
set until the highest performing training datasets were deter-
mined (Fig. 8, steps 1–4). The next step in the transition to an
operational RF is creating the input dataset with features
from real-time data. To create the locations where predictions
will be made, a 20-km grid of New York State was generated
to create synthetic locations for which predictions of target
values can be generated. These points were matched with
features from NYSM, upper-air, and NAMNEST profile
locations using the same process as the CoCoRaHS reports
(Fig. 8, step 5; Fig. 9). The real-time datasets were accessed
via multiple tools. The NYSM data are accessed via a local
shared disk with the Department of Atmospheric and Environ-
mental Sciences at the University at Albany. The radiosonde
data are accessed via Siphon data request package (https://doi.
org/10.5065/D6CN72NW; May et al. 2017). The NAMNEST
profiles are accessed via a BUFKIT processing package made
by Carter Humphreys and is available on Github (bufkit-api;
https://github.com/HumphreysCarter/bufkit-api) with the actual
NAMNEST profile data coming from The Pennsylvania State
University.

Each time the RF is given a set of real-time data features to
make a prediction, the incoming features are compiled and
cleaned to make sure there are no missing features. The proc-
essing of the incoming features from real-time datasets is an
essential step because the RF will not be able to process the
features if the real-time data features do not match the train-
ing dataset features or there are missing feature values (Fig. 8,
step 6). Currently, if an RF prediction location has a missing
feature or a whole real-time dataset, no prediction is made at
that location. This is a simple solution to this issue; however,
there are ways to fill in missing values via imputation using
data from previous times at the same location, interpolating
from neighboring locations, or a combination of these meth-
ods with or without using ML techniques (Mital et al. 2020;
Dwivedi et al. 2022). If reliable data sources are not available,
it is difficult to produce consistent forecast guidance for end
users. For example, if radiosondes are not launched or if other
data sources are not uploaded with consistency, it can be

difficult to process and make a complete prediction in a spe-
cific window of time. This lack of data may occur from com-
puter/power outage issues or more significant issues like
helium shortages for radiosondes (e.g., NOAA NWS 2022).
Once the real-time features in the testing dataset match the
training dataset (Fig. 8, step 7), the RF can be run. For a fore-
cast 5 h in the future, this would be possible for only the
NAMNEST products since the other products rely on obser-
vation data. For NAMNEST, the latest model run would be
used and the data from forecast hour 5 would be selected as
feature inputs for the RF. For the observational data sources
used in the nowcast products, the latest data available would
be used. For example, a nowcast product using NYSM and
upper-air features at 0500 UTC would use features from
NYSM data from 0500 UTC and the NWS sounding at 0000
UTC to be used in making the nowcast from the RF. The
outputs of the RF are probabilistic predictions of each tar-
get value (precipitation type) at each location in the testing
dataset. This information can be processed to create maps,
graphics, or tables to be displayed in an operational setting
(Fig. 8, steps 8–9).

The probabilities from the RF runs are displayed on an opera-
tional website (http://www.atmos.albany.edu/student/filipiak/op/).
The website displayed multiple RF products made in real time
throughout the 2021/22 winter season. The latency on the NYSM
and upper-air data products is under 10 min, such that the
NYSM and upper-air product can be made at 30 min past each
hour. The latency for the NAMNEST product updated with each
new model run is about one hour for a 10-h forecast period in-
cluding forecast hour 0. The products are hourly forecasts and
display the probabilities of the different types of precipitation if
precipitation were to occur. Even when there is no precipi-
tation occurring, the RF products are being made and can
be used to understand the current atmospheric conditions.
The products include the hourly probabilities of the four
main precipitation types (rain in Fig. 10a; freezing rain in
Fig. 10b; sleet in Fig. 10c; snow in Fig. 10d), an all mixed
precipitation (addition of sleet and freezing rain probabili-
ties; Fig. 10e), and a dominant precipitation type (shows

FIG. 8. A flowchart of the methodological steps to create an operational RF for predicting win-
ter mixed-precipitation types. This flowchart can be generalized for other ML algorithms and
meteorological events.
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color-coded probabilities to display highest value at each lo-
cation; Fig. 11). This last plot type (Fig. 11) was made with
the assumption that the product will mostly be used during
periods of active weather. The variety of products available
allows for end users to have multiple views of which winter
weather hazards are present or being forecast. In addition,
the probabilistic nature of the RF allows for end users to
have a sense of confidence in forecast precipitation type.

5. Summary and future directions

Winter mixed-precipitation events can be difficult to fore-
cast because they present numerous challenges to forecasters,
ranging from areas of complex terrain to challenging winter
storms where precipitation types can transition across very
short distances. ML algorithms can help with these challenges
by combining multiple big datasets to account for local terrain
variation or the widespread area covered by a large winter
storm. An RF was trained to make easy to interpret

probabilistic predictions of precipitation type to help ease
the burden on forecasters who try to synthesize datasets
with a large number of variables in real time. To create this
RF, CoCoRaHS reports were collected for four categories
of precipitation: rain, freezing rain, sleet, and snow. These
reports were then matched with observational (NYSM and
upper air) and model (NAMNEST) datasets to create com-
binations of features in multiple training datasets to be
tested extensively for their accuracy in identifying winter
mixed-precipitation types, as well as for the best configura-
tion of the RF and features in the training datasets. Slight
changes in the composition of these datasets created differ-
ences between the RF runs. This work reinforces the idea
that the features and data combinations used to train an RF
can impact the ability of the RF to skillfully predict precipitation
types. Additionally, each data source and combination of fea-
tures must be treated differently because combinations of fea-
tures may not be transferrable. This effect was found after
seeing the same additional features improve the NAMNEST

FIG. 9. Map of New York displaying locations of NYSM (orange circles) and NAMNEST profile sites (blue triangles).
The gray squares denote 20-km grid spacing of the RF prediction locations.
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FIG. 10. Forecast probabilities (black text) of (a) rain, (b) freezing rain, (c) sleet, (d) snow, and (e) mixed-precipitation (freezing rain1 sleet)
from the 0000 UTC NAMNEST model run at forecast hour 4 on 4 Feb 2022 with NAMNEST composite reflectivity (dBZ; shaded).
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RF runs, while causing a decrease in the skill of the NYSM RF
runs.

After finalizing the training datasets and understanding
their strengths and weaknesses, a method was described that
focused on transferring the research RF into an operational
RF. This method described how real-time data were proc-
essed and matched with grid locations that produced real-
time datasets to be compatible with the RF. Data challenges
occurred during this transition process such as dealing with
missing datasets and real-time datasets not being complete
due to hardware or data transmission issues (both for obser-
vational devices and data disseminated online). Finally, exam-
ples of products available to end users were shown as they
allow for end users to have information on all possible precip-
itation types.

There is much work to be done now that the operational
RF is running consistently. The operational application of the
RF is being evaluated for the winter season of 2021/22; this
verification will be instrumental in making improvements to
the RF for end users. Case studies and verification metrics
such as skill scores will be conducted and calculated to under-
stand how the RF algorithm performed in real-time and oper-
ational situations, which will be reported upon in a follow-up
paper. This understanding will improve the RF and will help
explain to potential users the limitations and successes of
these products. In addition, an increased number of data

sources will be added into the RF to continue to expand the
number of possible features that can be synthesized. Along
with increasing the data sources, the model data resolution will
be examined as a method to generate improvements in the
RF, because increasing the number of atmospheric sounding
points should increase the accuracy of the RF. With the in-
crease in data sources, new products can be developed. This
development will be done in consultation with end users to en-
sure that the products will be valuable to them. This step is im-
portant because making sure the information conveys what a
forecaster needs is key to incorporating ML algorithms into
operations.

RFs, and other ML algorithms, can provide improve-
ments in forecasting difficult weather events. While devel-
oping these algorithms is one part of the process, effectively
discussing and learning what needs to be done to transition
these algorithms into operations is an equally important
part of the process. Working with end users to create mean-
ingful products and training tools will help increase under-
standing and improve product utility particularly for winter
mixed-precipitation events.
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www.cocorahs.org). New York State Mesonet data can be re-
quested through their website (http://www.nysmesonet.org/
data/requestdata). Radiosonde data were used from the
University of Wyoming’s archive (http://weather.uwyo.edu/
upperair/sounding.html) and accessed via Siphon data re-
quest package (https://doi.org/10.5065/D6CN72NW; May
et al. 2017). BUFKIT data were used from both the Iowa
State Mtarchive (https://mtarchive.geol.iastate.edu/) and the
Pennsylvania State University BUFKIT Data Distribution
System (http://www.meteo.psu.edu/bufkit/CONUS_NAMNEST_
12.html). These data were accessed via a BUFKIT processing
package made by Carter Humphreys that is available on Github
(bufkit-api; https://github.com/HumphreysCarter/bufkit-api).
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