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Preface

South America is a unique place where a number of past climate archives are avail-
able from tropical to high latitude regions. It thus offers a unique opportunity to
explore past climate variability along a latitudinal transect from the Equator to Polar
regions and to study climate teleconnections. Most climate records from tropical and
subtropical South America for the past 20,000 years have been interpreted as local
responses to shift in the mean position and intensity of the InterTropical Conver-
gence Zone due to tropical and extratropical forcings or to changes in the South
American Summer Monsoon. Further South, the role of the Southern Hemisphere
westerly winds on global climate has been highly investigated with both paleodata
and coupled climate models. However the regional response over South America
during the last 20,000 years is much more variable from place to place than previ-
ously thought. The factors that govern the spatial patterns of variability on millennial
scale resolution are still to be understood.

The question of past natural rates and ranges of climate conditions over South
America is therefore of special relevance in this context since today millions of
people live under climates where any changes in monsoon rainfall can lead to
catastrophic consequences.

We thus propose contributions that deal with tropical, temperate and high lat-
itudes climate variability in South America with different type of archives and
proxies on various timescales from the Last Glacial Maximum to the last thou-
sand years. South America also offers a unique opportunity to examine climate
fluctuations at various altitudes. The originality of this work is that it offers both
observations and modelling works: we present contributions that aim at document-
ing paleoclimate histories and modelling studies are also included to help shed light
on the relevant processes.

This book stems out from a 2006 Fall meeting American Geophysical Union
(San Francisco, USA) session dealing with both overview and original researches
on Past climate variability from the last glacial maximum to the Holocene in South
America and surrounding regions. The 16 chapters in this volume are organized
into three major parts. Part I, including 6 chapters, attempts at drawing a consistent
picture for the Last Glacial Maximum in South America. Part II contains 4 chapters
dealing with modern and past tropical and extra-tropical teleconnections with South
America relying on both models and low to high latitudes ice core data comparison.
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viii Preface

The third part of this book, containing the last 6 chapters, describes some aspects
of the Holocene climate variability and specifically the southernmost part of South
America which has been the subject of a growing attention during the recent years.
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Chapter 2
Orbital and Millennial-Scale Precipitation
Changes in Brazil from Speleothem Records

Francisco W. Cruz, Xianfeng Wang, Augusto Auler, Mathias Vuille,
Stephen J. Burns, Lawrence R. Edwards, Ivo Karmann, and Hai Cheng

Abstract Paleorainfall variability on orbital and millennial time scales is discussed
for the last glacial period and the Holocene, based on a multi-proxy study of
speleothem records from Brazil. Oxygen isotope (δ18O) records from Botuverá
and Santana caves, precisely dated by U-series methods, indicate stronger summer
monsoon circulation in subtropical Brazil during periods of high summer insola-
tion in the southern hemisphere. In addition, variations in Mg/Ca and Sr/Ca ratios
from speleothems confirm that this monsoon intensification led to an increase in the
long-term mean rainfall during insolation maxima. However, they also suggest that
glacial boundary conditions, especially ice volume buildup in the northern hemi-
sphere, promoted an additional displacement of the monsoon system to the south,
which produced rather wet conditions during the period from approximately 70 to
17 ka B.P., in particular at the height of the Last Glacial Maximum (LGM).

These δ18O records, together with speleothem growth intervals from northeastern
Brazil, have also revealed new insights into the influence of the northern hemi-
sphere millennial-scale events on the tropical hydrological cycle in South America.
This teleconnection pattern is expressed by an out-of-phase relationship between
precipitation changes inferred from speleothem records in Brazil and China, partic-
ularly during Heinrich events and the Younger Dryas. We argue that the pronounced
hemispheric asymmetry of moisture is a reflection of the impact of meridional
overturning circulation conditions on the position and intensity of the intertropical
convergence zone (ITCZ).

Keywords Speleothems · Brazil · Stable isotopes · Trace elements · South
American monsoon · Insolation
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2.1 Introduction

Speleothems, secondary carbonate cave formations, have become key geological
records for the reconstruction of regional to large-scale atmospheric circulation pat-
terns associated with changes in precipitation regimes during the late Pleistocene
and Holocene. Relatively long, high-resolution and well-dated oxygen isotope
records from speleothems have provided important clues regarding the relationship
between the hydrologic cycle of the (sub)tropical climate system and atmo-
spheric/oceanic temperature variations recorded in northern hemisphere ice/marine
cores during Dansgaard/Oeschger (D/O) and Heinrich (H) events (Dansgaard et al.
1993; Grootes and Stuiver 1997; NGRIP members 2004). These millennial-scale
events occur as abrupt rainfall-related δ18O changes, which interrupt the generally
precession-driven tendency, as seen for example in speleothem records from China
(Wang et al. 2001; Yuan et al. 2004). The same events are also responsible for
most of the rainfall variability seen at full glacial times in the Indian/East African
monsoon or in Eastern Mediterranean regions (Burns et al. 2003; Bar-Matthews
et al. 2003).

Despite the increased knowledge about climate variations on millennial and
orbital time-scales, the impacts of D/O, H-events and summer insolation on
regional- and large-scale tropical atmospheric circulation patterns are not yet fully
understood. Ti-Fe records off the coast of Venezuela (Peterson et al. 2000; Haug
et al. 2001) and Brazil (Arz et al. 1998; Jennerjahn et al. 2004) provide some of the
best evidence of how changes in sea surface temperature during D/O and H-events
affected the tropical hydrological cycle in South America. For instance, an out
of phase relationship, characterized by positive fluctuations in the tropical hydro-
logical cycle of northern (southern) parts of South America, are observed in the
former (latter) events, respectively. These observations have motivated paleoclimate
simulations employing both coupled and atmospheric general circulation models
(GCMs) (Chiang et al. 2003; Claussen et al. 2003; Chiang and Bitz 2005). Results
from these experiments suggest that the expansion or contraction of land- and sea-
ice during the Last Glacial Maximum (LGM) or during millennial events can lead
to a displacement of the intertropical convergence zone (ITCZ) and produce precip-
itation asymmetries over tropical South America. However, Clement et al. (2004)
argue that precessional forcing induces a stronger tropical hydrologic response than
glacial boundary conditions.

Speleothems, together with other well-dated high-resolution paleoclimate
records from low latitudes, especially from continental regions, can serve as a
crucial test for these model experiments. In particular, models can help us under-
stand how climate signals from high-latitude, millennial-scale events are transmitted
through the tropical Atlantic to continental South America, ultimately affecting
summer monsoon rainfall. Furthermore the high–low latitude phase-relationship
and the exact timing of abrupt climate events in the southern hemisphere need to
be assessed. Finally, it is also essential to document the relative geographic impor-
tance of the various forcings, as both summer insolation and millennial-scale events
are thought to impact moisture transport and precipitation over the Amazon Basin



2 Long-Term Changes in Precipitation in Brazil from Speleothem Records 31

and the tropical Andes (Seltzer et al. 2000; Baker et al. 2001a). Monsoon precip-
itation is antiphased between the two hemispheres on seasonal timescales, due to
the seasonality of solar heating and related changes in the strength of the hemi-
spheric Hadley cells (Dima and Wallace 2003; Biasutti et al. 2003). However, there
is a need for further paleoclimate studies to reconstruct the precipitation patterns in
South America and their related forcings.

Speleothem-based paleoclimate studies are a relatively late addition to the rapidly
growing body of literature concerning past climates in South America. Carbonate
(limestone, dolomite) areas – and thus caves suitable for speleothem growth – occur
throughout South America, from ∼10◦ latitude north to ∼36◦ latitude south (Auler
2004), encompassing a wide range of climatic zones and all major biomes such as
equatorial Amazon rainforest, semi-arid caatinga, central Brazilian savannas, Chaco
swamplands, Atlantic rainforest, Andean grasslands and montane forests, and Patag-
onian pampas. South American speleothems have allowed new insights on regional
precipitation and atmospheric circulation changes. They provide us with important
archives for addressing paleoclimatic issues, such as the relative roles played by
summer insolation and the glacial boundary conditions in shaping precipitation pat-
terns (Fig. 2.1) within areas affected by the South American Summer Monsoon or
the ITCZ (Wang et al. 2004, 2006, 2007a, b; Cruz et al. 2005a, 2006, 2007).

This chapter presents robust climate correlations of speleothem records in Brazil
with contemporaneous records in South America and in the northern latitudes. The
comparisons are based on independent chronologies as opposed to simply “wiggle
matching”. This study is organized as follows: Section 2.2 reviews the spatiotempo-
ral variability of stable isotopes in precipitation over South America and describes
the results of modern calibration studies based on δ18O and elemental ratios of cave
drip waters. Section 2.3 presents Brazilian speleothem records and evaluates the
most likely climate factors affecting their past δ18O, Mg/Ca and Sr/Ca variations.
Section 2.4 discusses precipitation variability in Brazil on millennial and longer
time-scales from the last glacial period through the Holocene, summarizes possible
climate forcings and shows how speleothem records reflect changes in regional to
large-scale atmospheric circulation.

2.2 Climate Signals Recorded in Brazilian Speleothems

2.2.1 Climate Variability in South America
Based on δ18O in Precipitation

The stable isotopic composition of precipitation (δ18O and δD) and its spatiotempo-
ral variability over the South American continent have been the subject of a large
number of observational, modeling and paleoclimatic studies. Early work focused
on data made available through the network maintained by the International Atomic
Energy Agency – Global Network of Isotopes in Precipitation (IAEA-GNIP). This
database allowed for preliminary analyses of questions related to water recycling
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and the evapotranspiration flux over the Amazon basin. It was observed that the iso-
topic depletion along an east–west trajectory was much lower than what one would
expect based on a Rayleigh type law, despite intense rainout along the trajectory
(Salati et al. 1979; Gat and Matsui 1991). This phenomenon can be explained by the
intense water recycling taking place over the basin, largely accomplished through
transpiration, which is a non-fractionating process, constantly recharging the atmo-
sphere with relatively enriched water vapor. Only about 40% of the moisture flux
returning to the atmosphere is isotopically light due to direct evaporation from lakes,
rivers and forest canopy (Gat and Matsui 1991; Victoria et al. 1991). As a result
the inland gradient of δ18O in meteoric waters across the Amazon basin from the
Atlantic coast to the Andes is much smaller than on other continents. Nonetheless,
the long-range transport of moisture from the tropical Atlantic across the Amazon
basin toward distant places such as the tropical Andes or subtropical South America
leads to a clear depletion in heavy isotopes that can be traced to the degree of rainout
upstream (Garcia et al. 1998; Vimeux et al. 2005; Vuille and Werner 2005). Once
air masses reach the Andes, a much stronger depletion takes place with increasing
altitude (“altitude effect”), due to progressive adiabatic cooling and condensation
of atmospheric vapor as air masses are lifted along the Andean slopes (Gonfiantini
et al. 2001).

The increasing number of stable isotopic paleorecords (ice cores, speleothems,
records from lake and tree ring cellulose, etc.) emerging from South America have
fueled the debate over the climatic controls on stable isotopes on interannual and
longer time scales. Initially much of the attention was focused on ice core records
from the tropical Andes, where the ancient composition of meteoric waters is
directly preserved. Grootes et al. (1989) developed a simple transport model, try-
ing to explain the inverse temperature-δ18O seasonality observed on Quelccaya
ice cap, Peru. Subsequent studies, however, showed that the more depleted δ18O
values during the austral summer are caused by an intensified hydrological cycle,
where small-scale deep convection leads to the preferential removal of isotopically
enriched molecules, thereby leaving the remaining water vapor increasingly lighter
(Vuille et al. 2003a). The more intense the convective nature of an event, the higher
the rainfall amount and the more depleted its isotopic composition. This process also
leaves a significant imprint on interannual time scales, with a more enriched stable
isotopic composition during dry years, and more depleted values when strong con-
vective activity accompanies the monsoon season (Matsuyama et al. 2005; Vimeux
et al. 2005). On average the interannual temporal slope of the δ18O- precipitation
relationship ranges between –0.4 and –0.8‰/100 mm (Vuille et al. 2003a). Much
of the spatial variability of this slope can be attributed to the different geographic
locations, with high-elevation inland locations having much steeper slopes, while
slopes at coastal lowland stations are weak.

This dependence of δ18O on the precipitation amount has been exploited to use
δ18O from meteoric waters to study interannual climate variability over the South
American domain, including the influence of El Niño-Southern Oscillation (ENSO)
and the South American Summer Monsoon (SASM). Vuille et al. (2003a) per-
formed a comprehensive study on the interannual variability of stable isotopes in
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precipitation over South America and its climatic controls, employing both General
Circulation Models (GCMs) fitted with stable isotopic tracers as well as observa-
tional data from IAEA-GNIP. According to their results, later confirmed by similar
studies (Vimeux et al. 2005; Sturm et al. 2007) stable isotopes record interannual
variations of the hydrologic cycle, with a strong dependence on the precipitation
amount (“amount effect”) but are rather insensitive to temperature variability, at
least north of ∼30◦S. In many regions where ENSO significantly influences the pre-
cipitation seasonal cycle, the stable isotopic variability therefore also shows a clear
ENSO dependence. In most of tropical South America El Niño events are associated
with below average precipitation, while precipitation is abundant during La Niña
phases. Therefore El Niño years tend to be characterized by more enriched δ18O
values while they are more negative during La Niña (Vuille et al. 2003a). This is
the case, for example, over the Amazon basin or at many Andean ice core locations
(Henderson et al. 1999; Bradley et al. 2003; Hardy et al. 2003; Hoffmann et al. 2003;
Vuille et al. 2003b). Similarly summers with an intense SASM season tend to show
a more negative isotopic composition of monsoon precipitation than years where
the SASM is weak. However, as shown by Vuille and Werner (2005), ENSO and
the SASM are not independent of one another and, depending on the location, tend
to either counterbalance or reinforce one another on interannual time scales. There-
fore many regions of South America show a weakened relationship between δ18O of
precipitation and monsoon strength, once the SASM signal is decomposed into its
ENSO- and non-ENSO-related variance. Southern Brazil is a notable exception to
this rule as its isotopic variability appears to be little affected by ENSO and it there-
fore offers a great potential to study actual monsoon variability (Vuille and Werner
2005). These studies are fundamental for understanding short-term climate variabil-
ity in high-resolution δ18O speleothem records. Preliminary results from studies on
speleothem layer counting revealed strong near-decadal variability that is correlated
to the North Atlantic oscillation index, which imply in a possible oceanic forcing of
monsoon rainfall (Soubies et al. 2005).

Southern Brazil is also an instructive example to demonstrate that the isotopic
composition at subtropical regions can be significantly affected by atmospheric
processes taking place in far away location upstream, within the tropics. Despite
almost steady precipitation throughout the year, the isotopic composition of precip-
itation in southeastern Brazil is significantly more depleted during austral summer,
when moisture is transported southward from tropical to subtropical latitudes by
the Andean low-level jet (Fig. 2.1). This depletion is caused by the distant moisture
source (recycled moisture from the Amazon basin and the tropical North Atlantic)
of summer monsoon precipitation, when compared to the close proximity of the
oceanic moisture source responsible for winter precipitation (Cruz et al. 2005b). In
fact the tail end of depleted summer rainfall at ∼30◦S, where a sudden change to
more depleted winter precipitation takes place, is a faithful recorder of the southern-
most extent of the South American monsoon system (Rozanski and Araguás 1995).
As suggested by Vuille et al. (2003a) and later confirmed by Cruz et al. (2005a)
proxy records along this border are ideally located to investigate past variations
in monsoon extent and intensity. The example from southern Brazil serves as an
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important reminder that caution should be exercised when interpreting the climatic
controls on isotopic variability and that a simple conversion of isotopic values into
“precipitation amount” may be misleading when upstream processes associated with
deep convection and rainout or the varying influence of different moisture sources
are ignored.

2.2.2 Factors Affecting the Isotopic Composition
of Dripwaters and Modern Speleothems

Interpreting δ18O of speleothems in terms of changes in isotopic composition of
rainfall requires a good understanding of the hydrologic and geologic features that
influence the response of δ18O in the cave seepage waters to the rainfall recharge
events.

This is particularly indispensable for relatively deep caves such as Santana and
Botuverá (depth > 100 m), in southern/southeastern Brazil, because in this case the
short-term δ18O responses of dripwater feeding speleothems might be attenuated or
even totally buffered due to the greater storage capacity and the resulting larger pro-
portion of older reservoir water in the unsaturated karst aquifer right above the cave.
Furthermore, speleothems with distinct δ18O variations might be formed at different
levels along the caves or at sites fed by drips with contrasting hydrologic character-
istics, which might be produced by different rates of mixing between old and newly
infiltrated waters. On the other hand, this problem is minimized in shallow caves in
central Brazil, because of a smaller water reservoir in the aquifer above the cave and
fast responses of drip waters discharge to rainfall events (Sondag et al. 2003).

A two-year monitoring program performed on soil and cave seepage waters from
sampling sites with contrasting discharge values and located at 100 and 300 m below
the surface in the Santana Cave System (Fig. 2.2) revealed important information on
the temporal variation of the cave water δ18O (Cruz et al. 2005b). First, a strong
evaporative effect on the isotopic composition of soil and epikarstic waters can
be ruled out because all the water infiltrating down to the cave conducts falls on
the local meteoric water line. In addition, non-evaporative conditions can also be
assumed for the cave environment given the approximate similarity of the observed
mean cave temperatures of about 19◦C in both Botuverá and Santana caves with the
predicted values of temperatures obtained through the equation: TP = 16.9 – 4.2
(δ18Ocalcite – δ18Owater) + 0.13(δ18Ocalcite – δ18Owater)2(Craig 1965).

This suggests favorable conditions for deposition of speleothems close to iso-
topic equilibrium with their parental water; otherwise an evaporative enrichment of
δ18O in pool waters should be expected. Thus the oxygen isotopic composition of
cave water can be primarily related to the rainfall, as evidenced by the similarity
between the mean cave water δ18O (5.34‰) and the annual weighted mean δ18O of
precipitation observed at IAEA stations along the Southern Atlantic coast (Vuille
et al. 2003a).

Second, variations in groundwater δ18O indicate that the climatic signal of recent
rainfall events is rapidly transmitted through the relatively deep karst aquifer to
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the cave drip waters, regardless of cave location (Fig. 2.3). This is indicated by
significant perturbations in the dripwater composition that occur approximately one
month after periods of heavy rainfall at the Santana cave site (Cruz et al. 2005b).
These δ18O variations are possibly linked to more enriched rain waters from winter
and early spring that are stored in soils and epikarst and later washed down at the
peak of the summer rainy season. The lack of δ18O variations seen in the second year
of monitoring is associated with negative anomalies in winter precipitation (Cruz
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Fig. 2.3 Top: Daily and Monthly rainfall amount. Bottom: Time series of δ18O for soil and drip
waters at 300 m depth (EE1, EE2, and FR sites) and at 100 m depth (ESF and EIF sites) in Santana
cave system

et al. 2005b). In addition, the simultaneous variations in δ18O among sampling sites
also suggest that effective mixing does not significantly influence the response of
the drip-water composition to rainfall infiltration; otherwise different responses of
infiltrated waters due to variations in aquifer thickness and time of residence should
be expected between slow and fast drip flows, as reported in other studies (Ayalon
et al. 1998).
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These findings indicate that the isotopic composition of drip water is to a large
extent influenced by the hydrological regime in which seepage flow occurs dur-
ing periods of more effective recharge, when the storage capacity in the soil and
epikarst zone is exceeded and the water accumulated in the upper parts reaches the
whole karst profile in a short time interval. It also implies that CO2 degassing in
stalactite drips is unlikely to be a major factor affecting the isotopic composition
of drip waters and consequently the calcite in Santana Cave stalagmites. Otherwise,
different responses of infiltrated waters due to variations in time of residence and
rate of degassing should be expected between slow and fast dripping speleothems.
For example, a relative enrichment in both 18O and 13C caused by a rapid loss of
CO2 from solution has been observed in fast drip stalactites (Johnson et al. 2006;
Wiedner et al. 2008).

Calibration studies in caves also provide important information on the rela-
tionship between regional climate and the δ18O of waters forming speleothems.
Comparison of cave waters and modern speleothems collected in Santana (24◦31′S)
and Botuverá (27◦13′S) caves reveal a significant meridional gradient in the oxy-
gen stable isotopic composition (Fig. 2.1). The δ18O of both water and speleothems
from Botuverá are more enriched than those from Santana cave by approximately
1‰. The mean δ18O values in the latter cave are −5.34±0.40‰ (SMOW) and
−5.72±0.31‰ (PDB), while in the former cave they are −4.28±0.28‰ (SMOW)
and −4.49±0.42‰ (PDB), for drip water and modern speleothems, respectively.
These differences in δ18O have been attributed to changes in the regional rainfall
composition as both caves present very close internal temperatures (≈ 19◦C) and
there is no significant difference in the altitude of the rainfall recharge area. Results
suggest that the more enriched values at Botuverá are due to a larger relative contri-
bution of Atlantic moisture and less Amazonian moisture than at Santana. Botuverá
has ∼20% more precipitation during winter to early spring (July–September, δ18O
mean ≈ –3‰) and ∼27% less during summer than Santana (December–February,
δ18O mean ≈ –7‰).

2.2.3 The Influence of Rainfall Amount on Mg/Ca and Sr/Ca
Ratios in Speleothems

Present-day relationships between the Mg/Ca and Sr/Ca ratios of speleothems and
climate were studied through a four-year monitoring program of water geochem-
istry and hydrology performed in the Pérolas-Santana cave system (Karmann et al.
2007). This study evaluated the significance of the commonly reported dissolution
and precipitation processes and their possible relationships with changes in rain-
fall recharge by analysing hydrochemistry and hydrological parameters in different
compartments of the cave system such as soil cover, cave drips and rimstone pools
and rivers.

It was shown that the ratios of drip water above actively growing speleothems
decrease at the height of the wet season, which is driven by the South American
Summer Monsoon in the area (from November to February), while it was increasing
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during the dry season (from May to August). This relationship was found at
drip water sites located in different depths of the cave and with contrasting drip
discharges (Fig. 2.4). The most likely process controlling the Ca, Sr and Mg vari-
ability in drip waters is the prior calcite precipitation (PCP), which occurs in the
unsaturated zone right above the cave (Fairchild et al. 2000; McDonald et al. 2004).

This process is more effective during the dry season when air circulation is
enhanced in the upper portions of the karst system due to the low level of the aquifer,
which favors the calcite precipitation. PCP increases the Mg/Ca and Sr/Ca ratios
because Ca is preferentially incorporated in calcite crystals relative to Mg and Sr
as the partitioning coefficients for both Sr (DSr = (Sr/Ca)calcite/(Sr/Ca)solution) and
Mg (DMg = (Mg/Ca)calcite/(Mg/Ca)solution) are less than 1 in the low-ionic strength
waters (Huang and Fairchild 2001). It affects all the waters in the cave system except
the soil and runoff samples because dissolution processes prevail in the epikarstic
or surface zone.

Other processes such as groundwater residence time and CO2 degassing in drip
solution are considered less important for the geochemical variations in Santana
Cave. The latter has been reported as being an important mechanism, which
increases the Mg/Ca and Sr/Ca ratios of the host stalagmite due to progressive
removal of C and Ca from a saturated solution during carbonate precipitation in
stalactite tips (Johnson et al. 2006). However, the epikarstic waters are always under-
saturated with respect to calcite and their variations in Mg/Ca and Sr/Ca ratios differ
substantially from those in dripwaters. In addition, simultaneous and relatively rapid
variations in the Mg/Ca and Sr/Ca of stalactite drips (Karmann et al. 2007), also
observed in δ18O of water (Cruz et al. 2005b), rule out a major control on trace ele-
ment ratios by CO2 degassing (Fig. 2.4). Otherwise a different response of infiltrated
water due to variations in time of residence and rate of degassing would be expected
between slow and fast drip flow speleothems. Indeed, the elemental ratios are more
consistent with variations in rainfall amount than drip discharge and, therefore, can
be utilized as a proxy for the past variations of the South American Summer Mon-
soon. High Mg/Ca and Sr/Ca values are spatially associated with the secondary
calcite precipitated in the vadose zone above the cave, which occurs during dry
periods, characterized by aquifer low stands.

2.3 Paleoclimatic Changes from Speleothem Records

2.3.1 U/Th Chronology of Speleothems

A major strength of speleothem records is the potential for precise and accurate age
control. Carbonate speleothems from tens of years to ∼600,000 years are potentially
datable by the 238U-234U-230Th disequilibrium techniques (Richards and Dorale
2003). Because solubility of U in groundwater is extremely different from that of Th,
a growing speleothem includes U into its crystal lattice but incorporates negligible
230Th (Gascoyne 1992). If the crystal lattice remains a closed system with respect
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to the loss or gain of U and Th, the age of a speleothem can be calculated through
measurement of radioactive production and decay of their isotopes in the system
(Edwards et al. 1987).

Mass spectrometry has largely replaced traditional alpha counting methods for
measuring U and Th isotopes on speleothem samples (Edwards et al. 1987; Li
et al. 1989). Recently, technical improvements have resulted in a further shift
from thermal ionisation mass spectrometry (TIMS) to inductively coupled plasma
mass spectrometry (ICP-MS) (Shen et al. 2002; Goldstein and Stirling 2003). The
ICP-MS method is preferred due to its distinct advantages, such as higher ion-
ization efficiency and faster sample throughput. ICP-MS has particular interest to
speleothem work, which benefits from analyzing small samples (e.g. ∼100 mg if
samples contain ∼1.0 ppm U, Richards and Dorale 2003).

Speleothem samples are cut along the growth axis and sub-samples for dating can
then be extracted by milling from flat, polished surfaces using a hand-held dental
drill. Chemical separation of U and Th is done in a chemical clean room, following
the basic procedure described in Edwards et al. (1987). Samples are totally dissolved
with concentrated HNO3 and then equilibrated with a mixed 229Th-233U-236U spike
of known concentration and isotopic composition. U and Th are co-precipitated
with Fe and separated by an anion exchange column. Concentrated HClO4 is rec-
ommended to use to destroy organics. Finally, the samples are either loaded onto
rhenium filaments for TIMS or dissolved in weak nitric acid solution for ICP-MS
analysis.

U-Th age errors are dominated by the precision of the analytical measure-
ments and basically follow counting statistics. For typical speleothem samples
with uranium concentrations of hundreds ppb to a few ppm, high-resolution dat-
ing can provide approximately calculated ages of 500±6 year, 10,000±40 year,
50,000±180 year, 120,000±500 year and 500,000±15,000 year (2σ analytical
errors, Richards and Dorale 2003). Age accuracy is determined by the initial con-
centrations of 230Th, which can be constrained by monitoring 232Th and employing
isochron techniques (Richards and Dorale 2003). However, initial 230Th may vary
in magnitudes even within the same sample (Shen et al. 2008). As a rule of a thumb,
it is crucial to select high quality speleothem samples, i.e. high U content and low
detrital contamination, for precise age control.

The uranium concentrations of Brazilian speleothem samples vary from tens of
ppb to several ppm (Wang et al. 2004, 2006, 2007a; Cruz et al. 2005a, 2006). Most
speleothem ages have 2σ analytical errors that correspond to 0.5–1% of the age. The
U-Th ages are in correct stratigraphic order within quoted uncertainties and correc-
tions for initial 230Th are generally negligible. The samples’ chronologies are further
confirmed by the overall replication between the individual stable isotope profiles
either in the same cave (Botuverá cave) or from different regions (i.e. Botuverá and
Santana caves, Fig. 2.5). The BT2 age model was refined after Cruz et al. (2005a)
by incorporating seven ages between 22,000 and 12,000 years ago and six ages
between 42,000 and 62,000 years. With multiple samples, the Brazilian speleothem
record now continuously covers the last 130,000 years, with a few episodic growths
up to 210,000 years ago.
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Fig. 2.5 Comparison between (a) February insolation at 30ºS (the insolation axis is reversed)
and the oxygen isotope ratios of stalagmites; (b) BTV4C record from Butuverá cave (Wang et al.
2006); (c) Hulu and Dongee records from eastern China (the δ18O axis is reversed, Wang et al.
2001; Yuan et al. 2004); (d) BT3A record from Botuverá cave (Wang et al. 2007a); (e) BT2 record
and St8 records from Botuverá and Santana caves, respectively (Cruz et al. 2005a, 2006)

2.3.2 Stable Isotope Records

The speleothem isotope records in this study are from stalagmites collected in
the Botuverá cave (Bt2, 27◦13′24′′S; 49◦09′20′′W) and in the Santana cave (St8,
24◦31′51′′S; 48◦43′36′′W), located 300 km apart in southeastern and southern
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Brazil, respectively (Fig. 2.1). This set of records, consisting of five stalagmites
from Botuverá cave and one from Santana cave, describes changes in the regional
precipitation regime in subtropical Brazil over approximately the last 130,000 years
(Fig. 2.5). The δ18O in these records shows an amplitude of more than 4‰, with
a mean resolution of 40–60 years for stalagmites Bt4a, Bt4c, Bt21a (Wang et al.
2006), ∼150 years for Bt2 and St8 (Cruz et al. 2005a, 2006) and ∼370 years for
Bt3a (Wang et al. 2007a, b).

All the stalagmites appear to have been deposited in approximate isotopic equi-
librium with cave drip water as indicated by the absence of significant correlations
between δ18O and δ13C along their long axis according to the Hendy test (Mickler
et al. 2006. Besides, the relatively large range of variation in δ18O exclude a signifi-
cant control by temperature, since the temperature-dependent fractionation between
calcite and water is relatively small, –0.24‰/◦C (Friedman and O’Neil 1977). The
δ18O variations are also inconsistent with the reported cooler and warmer periods
during the last glacial and Holocene, respectively. Therefore, δ18O variations of
these speleothems are primarily related to changes in δ18O of regional precipitation.

Figure 2.5 presents a comparison of the speleothem δ18O time series with Febru-
ary insolation at 30◦S (the scale for insolation is reversed). The calcite δ18O shows a
striking match with insolation throughout the last glacial period and is characterized
by lower δ18O values coinciding with maxima in insolation for each precessional
cycle (periodicity of ∼20 ka). However, this cyclicity is not as well defined in St8 as
in Botuverá, in particular during the positive phases of summer insolation between
70 and 20 ka. Superimposed on the insolation-driven tendency are abrupt millennial-
scale events, recognizable in all stalagmites as secondary fluctuations of 1.5–2‰.
They are nearly coincident with one another and with variations seen in North-
ern Hemisphere paleoclimate records on the same timescale, especially during the
so-called Heinrich events (NGRIP 2004). Despite the similarity of the records, the
region presents a strong isotopic gradient, characterized by mean values, which are
consistently about 2‰ higher at Bt2, when compared with St8.

Past changes in the oxygen isotope ratios are interpreted in terms of shifts in
the seasonal balance of precipitation between winter-extratropical versus summer-
monsoonal rainfall. This interpretation is supported by observations of the modern
isotope climatology, as discussed above. Hence the δ18O of Brazilian subtropical
speleothems is thought to be primarily a function of the rainfall moisture source
during the late Pleistocene, which in turn, is connected to the regional atmospheric
circulation patterns (Cruz et al. 2005a). Lower values of δ18O therefore reflect
a greater proportion of more depleted SASM rainfall compared to the enriched
extratropical rainfall and vice-versa.

2.3.3 Speleothem Growth Intervals

Speleothems can only grow if there is enough seepage water reaching the cave.
These conditions are commonly not found in glaciated regions or in arid/semi-arid
zones, such as northeastern Brazil (Site 3 in the Fig. 2.1). In these conditions,
absence or occurrence of speleothems can be a reliable indicator of past climatic
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conditions. In semi-arid northeastern Brazil, home of South America’s most exten-
sive cave systems, profuse speleothem deposition occurred in the past. The present
semi-arid climate, in which evapotranspiration (∼1,400 mm/year) largely exceeds
rainfall (∼490 mm), does not allow for significant water infiltration and, con-
sequently, speleothem generation. Thus, speleothem growth phases are a clear
indicator of wetter conditions than at present at this site.

In addition to speleothems, abundant travertine deposits occur in the area.
Travertines are also relict features in the present climate. Since they were gener-
ated by bicarbonate-rich shallow spring waters, which only flow when a net regional
recharge to groundwater exists, they are also good indicators of past pluvial phases.
It should be noted, however, that travertines tend to be a more sensitive paleopluvial
feature than speleothems, since they were deposited in streams directly affected by
rainfall events. In contrast, an infiltration threshold needs to be overcome in order to
activate percolation routes responsible for drip waters forming speleothems. For this
reason, travertines might be formed in periods that are not wet enough to promote
speleothem growth.

The combined speleothem/travertine record shows a series of short-lived growth
intervals (Fig. 2.6). The large majority of speleothems grew very quickly, during
highly episodic wet phases as short as several hundred years, with some lasting up
to a few thousand years. Last glacial pluvial phases, centered at around ∼15.5 ka,
39 ka, 48 ka and additional growth phases between 60 and 74 ka correlate precisely
with Heinrich Events recorded in the Northern Hemisphere as well as to high δ18O
recording low monsoon activity in Chinese speleothems (Wang et al. 2004) and to
peaks of low δ18O depicted in southeastern Brazil speleothems (Wang et al. 2006,
2007a) (Fig. 2.6). Pluvial periods in now semi-arid northeastern Brazil are associ-
ated with the displacement of the ITCZ, probably representing times when the ITCZ
was located south of its present mean position.

2.3.4 Mg/Ca and Sr/Ca Ratios

Mg/Ca and Sr/Ca ratios measured in the Bt2 stalagmite record, presented here as
anomalies (departure from total mean), are positively correlated with one another
(r2= 0.55) and show a pattern that is coherent with southern hemisphere summer
insolation and stable oxygen isotope ratios during the last 116 ka (Cruz et al. 2005a,
Wang et al. 2007a). This pattern is characterized by a general increase in trace ele-
ment ratios and δ18O values during low insolation phases and vice-versa. However,
there are some significant differences in the long-term variability of trace element
ratios throughout the last glaciation (Fig. 2.7). For instance, the positive relationship
between Mg/Ca, Sr/Ca and insolation is less clear during periods of lower ampli-
tude insolation changes, such as from 70 to 17 ka or during the Marine Isotope
Stages 4 to 2 (Abreu et al. 2003), similar to the δ18O variations of St8 record (Cruz
et al. 2006a).

Elemental ratios of Bt2 have been interpreted as a proxy for local hydrologi-
cal changes based on evidence for a primary control of Mg/Ca and Sr/Ca ratios
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by prior calcite precipitation from the modern calibration study in Santana cave.
These trace element ratios also show a coherent positive covariation during the last
116 ka and a consistent relationship with the δ18O of the same stalagmite (Cruz
et al. 2007). Furthermore, comparing these ratios with the Bt2 growth rates and
δ13C variations suggest that both growth rates and CO2 degassing mechanisms are
not a major control of the incorporation of Sr and Mg in the calcite (Huang and
Fairchild 2001; Treble et al. 2003; Johnson et al. 2006). Thus, the regional climate
variability inferred from these elemental ratios can be used as a proxy for mean
rainfall amount, which in turn complements the reconstruction of the past activity
of South American summer monsoon (SASM) and extratropical rainfall in subtrop-
ical Brazil, anchored in the speleothem δ18O records (Cruz et al. 2005a; Wang et al.
2006; Cruz et al. 2006a; Wang et al. 2007a).

2.4 Discussion

Combined oxygen isotope and trace element records suggest that the past changes
in southern Brazil rainfall were mostly led by the convective activity associated
with the South American summer monsoon (Cruz et al. 2007; Fig. 2.7). Since the
δ18O of speleothems is directly affected by the isotopic composition of summer
rainfall, it can be used to infer the mean location and intensity of the SASM and
the South Atlantic convergence zone (SACZ). These features are closely linked
to the intensity and location of convective precipitation over the Amazon basin
and surrounding regions, because they influence the strengthening or weakening of
moisture transport by the Andean low-level jet (ALLJ) from the southern Amazon
to the subtropical Atlantic coast (Gan et al. 2004). On the other hand, the speleothem
growth phases in northeastern Brazil suggest a direct coupling of regional climate
to the mean latitudinal position of the ITCZ (Wang et al. 2004; Fig. 2.6).

To date, the Brazilian speleothem records suggest that past changes in tropical
rainfall are associated with climate forcing mechanisms acting on both orbital and
millennial time-scales, such as insolation precession and land- and sea-ice coverage
in the northern hemisphere (Chiang et al. 2003; Claussen et al. 2003). These mech-
anisms impact the tropical rainfall distribution by influencing the moisture transport
from the tropical Atlantic to the continent, thereby changing low-level moisture
convergence and convective activity throughout much of tropical South America.

2.4.1 Long-Term Paleoclimatic Changes

Speleothem δ18O records have revealed that the variations in the convective intensity
within the area affected by SASM/SACZ are dominated by changes in precession-
driven solar insolation (Cruz et al. 2005a; Wang et al. 2006, 2007a; Cruz 2006).
Insolation determines the north-south displacement of continental convection over
South America by favoring moisture convergence over the continent during periods
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of increased land-sea temperature contrasts at the solstices (Biasutti et al. 2003). In
the past, periods of increased monsoon precipitation in subtropical Brazil occurred
in response to enhanced summer solar radiation following the Milankovich ∼23 ka
precession cycle (Fig. 2.5). Similarly, the speleothem δ18O records from Hulu and
Dongee caves in eastern China (Fig. 2.5) also exhibit an insolation-driven control,
which is out of phase with the Brazilian records (Wang et al. 2004; Yuan et al. 2004).

The SASM is reinforced at its southeastern border as the southern hemisphere
Hadley cell is strengthened and displaced southward during high insolation phases,
thereby increasing the relative contribution of summer monsoonal rainfall to the
region. Further evidence for such a monsoon intensification comes from lake records
in the Bolivian Altiplano, where similar wet conditions were observed during the
last glacial period (Baker et al. 2001a). The comparison between SE Brazil and
the Altiplano also holds during the Holocene, when the speleothem isotope records
become progressively more negative after 4 ky, concurrent with an increase in sum-
mer rainfall on the Altiplano (Seltzer et al. 2000; Baker et al. 2001b; Moreno et al.
2007). At the same time a southward expansion of the Amazon rainforest is observed
along its southwestern border (Mayle et al. 2000).

Although the insolation-driven paleo-rainfall, inferred from the Botuverá and
Santana speleothem records, appears to be consistent with other available records
from the region, it is still necessary to reconstruct each step of the monsoon evo-
lution during the past, in order to elucidate the causal mechanism interconnecting
the climate in southern Brazil with the center of deep convection over the Amazon
region. To do this, some aspects of the moisture advection from the tropical Atlantic
to the Amazon Basin need to be addressed in more detail for the last glacial period.

Unlike the present-day situation, it is difficult to link past low-frequency rain-
fall oscillations in South America with meridional sea surface temperature (SST)
gradients in the tropical Atlantic or SST anomalies in the equatorial Pacific. It is rea-
sonable to assume that the SASM may be intensified because of a more southerly
position of the Atlantic Intertropical Convergence Zone (ITCZ) during periods of
increased southern hemisphere insolation. However, except for the Holocene part of
the Ti-Fe record from the Cariaco Basin (Haug et al. 2001), there is no clear match
between summer insolation and hydrological (Arz et al. 1998; Peterson et al. 2000;
Jennerjahn et al. 2004) or SST records (Arz et al. 1999, Lea et al. 2003; Weldeab
et al. 2006) off the Venezuelan and Brazilian coast. Instead, both hydrological and
SST variations in these records are dominated by millennial-scale events, such as
Dansgaard-Oeschger- and Heinrich-events (see the discussion in the section below).
Thus, it appears that the southeastward displacement of deep continental convection
from the Amazon Basin to southeastern and southern Brazil is, at least partially,
decoupled from oceanic conditions in the tropical Atlantic on orbital time-scales.
Instead it appears as if changes in South American monsoon circulation during the
last glacial and the Holocene were dominated by changes in sensible and latent
heat transfer over land due to orbitally driven changes in solar radiation, rather than
by changes in moisture influx from the Atlantic Ocean, associated with a southward
displaced ITCZ (Haug et al. 2001). Indeed recent studies have shown that latent heat
release over the Amazon basin is paramount for the development of the upper-level



2 Long-Term Changes in Precipitation in Brazil from Speleothem Records 49

monsoon circulation, including the Bolivian High (Lenters and Cook 1997), which
is associated with the southeastward extension of the SASM into the SACZ region
(Zhou and Lau 1998; Gan et al. 2004).

One question, which cannot be answered by looking solely at speleothem δ18O
records, is to what extent an intensification of the SASM increases the long-term
mean rainfall amount in southern Brazil. Since δ18O variations in stalagmites from
the Brazilian subtropics record not just monsoonal (60% of annual accumulation
today), but also extratropical rainfall (40% of annual accumulation today), they can-
not be used to directly infer mean rainfall variations. For example, an increase in the
more isotopically depleted monsoon rainfall (today ∼ –7‰) might be compensated
by a decrease in more enriched extratropical rainfall (∼ –3‰) and thus create a
more negative average δ18O without any change in the total rainfall amount.

Instead changes in rainfall amount can be inferred by the use of Mg/Ca and Sr/Ca
ratios, as reported by Cruz et al. (2007) for the last 116 ka based on the Bt2 stalag-
mite. The comparison with the δ18O record suggests that increased local rainfall
recharge occurred during periods of enhanced monsoon rainfall in the region coin-
cident with high summer insolation phases, as manifested by lower values of both
δ18O and trace element ratios in Bt2 (Fig. 2.7). Conversely, relatively dry condi-
tions, as indicated by higher trace element ratios during low insolation phases, must
have been caused by a reduction in summer monsoon rainfall, since a decrease in the
isotopically-enriched extratropical winter rainfall would have resulted in more neg-
ative δ18O values in the Bt2 stalagmite. Therefore, this multi-proxy study confirms
that the contribution of SASM precipitation is the dominant factor explaining pre-
cipitation variations in subtropical Brazil during the last glacial-deglacial period.
In addition, the steep north–south gradient in δ18O of speleothems throughout
the region, characterized by more negative values of ST8 (–2‰) as compared to
Bt2, indicate a higher relative contribution of SASM precipitation to the north at
Santana cave. This gradient is also observed today in cave drip waters and modern
speleothems (Cruz et al. 2005b).

There are, however, some significant fluctuations in the long-term variability of
trace element ratios from 70 to 17 ka that cannot be explained by summer insolation
forcing alone. These departures are characterized by a predominance of negative
trace element anomalies despite low-insolation phases, which suggests that rather
wet conditions persisted throughout most of the last glacial period due to longer
and more intense summertime rainfall. This notion is supported by synchronous
negative anomalies in both trace element ratios and δ18O in Bt2 and St8 (Fig. 2.7).
Hence, the weaker correspondence between trace element variations and insolation
suggests that other factors must have contributed to the excess of monsoon rainfall
during this time period.

Teleconnections from the high northern latitudes under glacial boundary condi-
tions, dominated by extensive land- and sea-ice volume buildup, are a likely factor
influencing the monsoon intensification observed in the region between 70 to 17 ka.
According to simulations by Chiang et al. (2003) high-latitude glacial conditions are
transmitted to the tropics through strengthened northeasterly trades over the North
Atlantic, which increase the latent heat flux, in turn causing a progressive cooling
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of SSTs from the subtropical (Moreno et al. 2002; Abreu et al. 2003) to the trop-
ical North Atlantic (Lea et al. 2003). As a consequence, this mechanism results in
tropical Atlantic meridional SST gradients that favor a southerly displacement of
the ITCZ. A more southerly position of the ITCZ, in turn will enhance the moisture
flux into the Amazon Basin, ultimately triggering an intensification of the SASM in
southern Brazil. This hypothesis is broadly supported by the coincidence of lower
trace element ratios in Bt2 with lower SSTs in the subtropical North Atlantic (Abreu
et al. 2003), as indicated by heavier δ18O in planktonic foraminifera during Marine
Isotope Stages 4 to 2 (Fig. 2.7). This interpretation is also in agreement with the
wettest conditions recorded during the same period in Salar de Uyuni, an area in
the Bolivian Altiplano where precipitation equally depends on SASM activity (Fritz
et al. 2004).

2.4.2 Millennial-Scale Abrupt Changes in Climate

During the last glacial period, Greenland experienced millennial-scale abrupt cli-
mate changes (Dansgaard et al. 1993; Grootes et al. 1993; NGRIP members 2004).
As observed in the polar ice cores, temperature could change 7–12

◦
C in decades

or less over Greenland, accompanied by dramatic fluctuations of atmospheric
methane, sea-salt and dust concentrations (Mayewski et al. 1997; Severinghaus and
Brook 1999; Blunier and Brook 2001). Since this discovery, similar events have
been identified at many locations around the world (Voelker et al. 2002). Mech-
anisms of these abrupt climate events, however, are not yet resolved (Broecker
2003). A full understanding of the causes of these climate events requires our
knowledge of the spatial and phase relationships between different paleoclimate
records.

Recently, there is steadily increasing interest in obtaining records of millennial-
scale climate events in speleothems from low-to-mid latitudes (Wang et al. 2001;
Spötl and Mangini 2002; Bar-Matthews et al. 2003; Burns et al. 2003; Genty
et al. 2003; Drysdale et al. 2007). With high-precision absolute-dated chronol-
ogy, such studies on speleothems can not only test whether the abrupt climate
events were a global phenomenon, but also help to reveal the mechanisms that
were responsible for the events. Abrupt climate events have also been identified
in different speleothem proxy records from tropical and subtropical Brazil. Indi-
cated by speleothem short growth phases, current semi-arid northeastern Brazil has
endured millennial-scale episodic wet periods in the past (Wang et al. 2004). In
southeastern and southern Brazil, the speleothem δ18O records also successfully
capture millennial-scale events that are superimposed on the orbital-scale variations
during the last glacial period (Cruz et al. 2005a, 2006; Wang et al. 2006, 2007a). The
abrupt drop in δ18O associated with these events is large, with up to 2‰ amplitude.
Together with speleothem Mg/Ca and Sr/Ca ratios (Cruz et al. 2007), these suggest
that SASM intensity and monsoonal rainfall has undergone abrupt changes in the
region during the last glacial period.
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Using their individual chronologies, the Brazilian speleothem records can be
compared with the contemporaneous records from the northern hemisphere. Wet
periods in northeastern Brazil are synchronous with periods of weak East Asian
summer monsoons (Wang et al. 2001), cold periods in Greenland (Grootes and
Stuiver 1997) and Europe (Genty et al. 2003); Heinrich events in the North Atlantic
(Bond et al. 1993) and periods of decreased river runoff to the Cariaco basin
(Peterson et al. 2000). The comparison between the Botuverá δ18O records and the
eastern China δ18O profile also show, within their dating errors (a typical relative 2σ

error in age of about 0.5–1%), a remarkable anti-correlation on both orbital and mil-
lennial timescales (Fig. 2.8). Throughout the whole profile, the lower Botuverá δ18O
coincides precisely with the higher δ18O in the eastern China speleothems. However,
the opposite is not so evident because no clear increase in the δ18O of Brazilian
speleothems is observed during the warm periods in the northern hemisphere that
are coincident with the Daansgard-Oeschger events.

During the last glacial period, an abrupt reduction in the Atlantic overturn-
ing induces sea ice expansion in the North Atlantic and a subsequent southward
displacement of the intertropical convergence zone (ITCZ) (Chiang et al. 2003;
Chiang and Bitz 2005). This may cause an abrupt shift in the tropical hydrologic
cycle, as seen in the Cariaco Basin (Peterson et al. 2000) and northeastern Brazil
(Wang et al. 2004). Modeling efforts also indicate that weak ocean circulation
may result in a positive SST anomaly in the South Atlantic and a weaker pole-
to-Equator temperature gradient in the south (Crowley 1992) and the predictions
are confirmed by studies of ocean sediment cores (Arz et al. 1998; Rühlemann
et al. 1999). As observed today (Robertson and Mechoso 2000; Doyle and Bar-
ros 2002; Liebmann et al. 2004), a warm SST anomaly in the western subtropical
South Atlantic (WSSA) may stimulate a persistent intense South American Sum-
mer Monsoon (SASM) and strong low-level jet (LLJ), which consequently supplies
plenty of isotopically depleted precipitation into southern Brazil (Vuille and Werner
2005).

Moreover, analogous to modern seasonal observations in boreal winter (Lindzen
and Hou 1988), southward ITCZ migration during millennial-scale stadial events
may have caused a meridional asymmetry in the Hadley circulation. A southward
shift of the zonal-mean Hadley cell would change meridional moisture transport
through intense ascending air masses in the southern low latitudes and increased
subsidence in the northern tropics and subtropics. Broadly, the northern low latitudes
would be drier and the southern low latitudes wetter, which has been confirmed by
recent model results (Clement et al. 2004; Chiang and Bitz 2005). The opposite
scenario would have been true during glacial interstadial periods.

We can therefore define an index (speleothem �δ18O) to monitor the displace-
ment history of the mean ITCZ position and the associated strength of the past
Hadley circulation. This index is given by the difference of calcite δ18O values
between samples from southern Brazil and eastern China (Table 2.1). As discussed
above, low (high) calcite δ18O values in southern Brazil correspond to high (low)
calcite δ18O values in eastern China. Thus, small (large) speleothem �δ18O values
are linked to North Atlantic cold (warm) temperature, reduced (enhanced) ocean
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Table 2.1 Speleothem �δ18O index between Southern Brazil and Eastern China

Time window

Eastern China
speleothem δ18O
(‰, VPDB)

Southern Brazil
speleothem δ18O
(‰,VPDB)

�δ18O index
(‰,VPDB)

Heinrich event 1 ∼ – 4.9 ∼ – 4.7 ∼ 0.2
Early Holocene ∼ – 9.3 ∼ – 1.8 ∼ 7.5
Today ∼ – 7.3 ∼ – 3.3 ∼ 4.0

circulation, and a southward (northward) shift of the ITCZ mean position. The
North Atlantic circulation is nearly shut down during Heinrich Event 1 (H1) and
is substantially strengthened during the early Holocene (McManus et al. 2004).
Therefore, we select calcite �δ18O index values during H1 and the early Holocene
as two end members that represent two extreme mean positions of the ITCZ
and asymmetries of the Hadley circulation. Today’s index value is around 4.0‰,
which is close to the average between H1 and early Holocene values of about
0.2 and 7.5‰, respectively. This approach suggests an intermediate state of the
mean ITCZ position and weak asymmetry of the Hadley circulation in the modern
world.

It is still under extensive debate whether meridional overturning circulation
(MOC) changes or tropical air-sea interactions, such as persistent El Niño-Southern
Oscillation events (Super-ENSO), have triggered the millennial-scale climate events
(Broecker 2003). Phase relationships of these events in Brazilian speleothem records
may have implications on their mechanisms. The modern climate in both northeast-
ern and southern Brazil is sensitive to the ENSO phenomenon. For example, modern
El Niño events induce drought in northeastern Brazil and high precipitation in south-
ern Brazil (Lau and Zhou 2003). If the modern ENSO behavior does not change
substantially with time, the Super-ENSO scenarios may result in opposite rainfall
patterns between the two regions. On the other hand, changes in the MOC would
cause a latitudinal ITCZ migration and associated changes in the Hadley circulation
(Chiang and Bitz 2005). This may cause in-phase precipitation changes in northeast-
ern and southern Brazil on millennial timescales. With their robust chronologies, the
Botuverá speleothem δ18O record can be compared to the record of speleothem
growth periods from northeastern Brazil (Wang et al. 2007b). Although the lat-
ter may not be a complete data set, a striking positive phase relationship stands
out between the two records. For instance, northeastern Brazil speleothem resumes

�

Fig. 2.8 (continued) (a) February insolation at 30◦S (the insolation axis is reversed); (b) δ18O
anomalies for Bt2 (Cruz et al. 2005a) and St8 (Cruz et al. 2006) stalagmites; (c) Mg/Ca and Sr/Ca
anomalies for Bt2 stalagmite; (d) δ18O of planktonic foraminifera in the core MD95-2040 from
Iberian Margin in North Atlantic (Abreu et al. 2003). Note the predominance of low trace element
and more positive values of δ18O of planktonic foraminifera during the MIS4 to MIS2 (marked
with rectangles)
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growth around 87 ka, 72 ka, 66 ka, 60 ka, 48 ka, 39 ka, 16 ka and 12 ka, when δ18O
values are relatively low in the southern Brazil sample. As both proxies represent
regional rainfall changes, this correlation suggests that on millennial timescales,
rainfall changes in the two regions are in phase. This relationship is consistent
with shifts in the mean ITCZ position, linked to MOC changes, but not with the
Super-ENSO mechanism.

2.4.3 Broader Significance of Precipitation
Changes Based on Speleothem Records

The speleothem records suggest a new scenario for the paleoclimate in south-
ern Brazil, featuring a predominantly wet last glacial period. These findings have
important implications for the inferred paleoenvironmental changes from the pollen
records and consequently for the “refugia” hypothesis (Haffer 1997). This is still a
highly controversial matter because a considerable number of pollen records point
to a complete dominance of grasslands over forests during the last glaciation in
subtropical Brazil due to colder and drier conditions (Behling 2002), while other
records suggest that an expansion of humid forests occurred during significant parts
of this period in agreement with the precipitation changes inferred from speleothems
(Ledru et al. 2005). Therefore, the existence of forests “refugia” as a consequence
of a large-scale drying during the glacial period needs to be revised, once robust
indications of wetter conditions have been found in several areas in South America.
An alternative explanation for the changes in tropical biodiversity is the periodic
exchange between distinct forests biomes during wet events, such as indicated by
the study of paleobotanical remains preserved in travertines, which revealed a rapid
expansion of humid forests over caatinga vegetation (dry savanna) in northeastern
Brazil during the period coincident with H-events (Wang et al. 2004).

Substantial intensification of the tropical circulation system in subtropical South
America at high insolation phases in the southern hemisphere and during cold peri-
ods in the Northern Hemisphere (H-events, MIS-4 to MIS-2) recorded in Brazilian
speleothems is also important in an attempt to interpret the isotope records from
Andean ice-cores and the events of moraine deposition in terms of temperature or
precipitation changes (Ramirez et al. 2003; Zech et al. 2007), because an enhance-
ment in the moisture flux and moisture convergence in southern Brazil is likely to
affect precipitation in Andes in the same way during the South American summer
monsoon season.

2.5 Conclusions

Combined time-series of δ18O and elemental ratios of speleothems suggest that
the long-term variations in mean precipitation in subtropical Brazil during the last
glacial period and Holocene are in general modulated by changes in the southern
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hemisphere summer insolation. The South American monsoon is intensified at high
insolation phases when the transport of low-level tropical moisture from the Ama-
zon Basin to southeastern Brazil is enhanced; most likely due to a more favorable
upper-level circulation, established by enhanced latent heat release over the tropics.
However, the northern Hemisphere glacial boundary conditions probably played an
important role by modulating moisture flux and convergence into the southern hemi-
sphere tropics during austral summer. This impact is documented by the rainfall
excess in the region from 70 to 17 ka and especially at the last glacial maximum,
as indicated by rather negative anomalies of δ18O, Mg/Ca and Sr/Ca during this
period.

Speleothem growth intervals and variations of δ18O on millennial time-scales
indicate significant increases in precipitation both in northeastern and southern
Brazil, coincident with Heinrich events in the northern hemisphere. These changes
are likely controlled by latitudinal ITCZ displacements, resulting in a hemispheric
asymmetry of low-latitude precipitation, as exemplified by the anti-phased relation-
ship between Brazilian and Chinese speleothem records. Furthermore, the similar
precipitation response between NE and SE Brazil on millennial timescales implies
that abrupt changes in precipitation within tropical South America are linked to
climatic conditions in the North Atlantic, through changes in the AMOC and
subsequent tropical air-sea feedbacks.
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