On the Interpretation of the ENSO Signal Embedded in the Stable Isotopic Composition of Quelccaya Ice Cap, Peru

J. V. Hurley1,2, Mathias Vuille3, and Douglas R. Hardy3

1College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA, 2Department of Atmospheric and Environmental Sciences, University at Albany, Albany, NY, USA, 3Department of Geosciences, University of Massachusetts, Amherst, MA, USA

Abstract The δ18O signal in ice cores from the Quelccaya Ice Cap (QIC), Peru, corresponds with and has been used to reconstruct Niño region sea surface temperatures (SSTs), but the physical mechanisms that tie El Niño–Southern Oscillation (ENSO)-related equatorial Pacific SSTs to snow δ18O at 5,680 m in the Andes have not been fully established. We use a proxy system model to simulate how QIC snow δ18O varies by ENSO phase. The model accurately simulates higher and lower δ18O values during El Niño and La Niña, respectively. We then explore the relative roles of ENSO forcing on different components of the forward model: (i) the seasonality and amount of snow gain and loss at the QIC, (ii) the initial water vapor δ18O values, and (iii) regional temperature. Most (more than two thirds) of the ENSO-related variability in the QIC δ18O can be accounted for by ENSO’s influence on South American summer monsoon (SASM) activity and the resulting change in the initial water vapor isotopic composition. The initial water vapor δ18O values are affected by the strength of upstream convection associated with the SASM. Since convection over the Amazon is enhanced during La Niña, the water vapor over the western Amazon Basin—which serves as moisture source for snowfall on QIC—is characterized by more negative δ18O values. In the forward model, higher initial water vapor δ-values during El Niño yield higher snow δ18O at the QIC. Our results clarify that the ENSO-related isotope signal on Quelccaya should not be interpreted as a simple temperature response.

Plain Language Summary The Quelccaya Ice Cap in the Andes Mountains of Peru is retreating because of global warming, and ice cores from Quelccaya are some of the best records that we have for climate from the last 2,000 years. Quelccaya is the world’s largest tropical ice cap, and as such it is an important regional water resource. The climate record from Quelccaya’s ice core chemistry has long been tied to El Niño activity. However, it is not obvious how ocean water temperature in the equatorial Pacific alters the chemistry of snow that falls at 5,680 m above sea level in the Andes Mountains. We used 15 years of weather station data from the summit of Quelccaya, along with a climate model, to show that it is the intensity of rainfall over the Amazon rainforest that changes the chemistry of snow at Quelccaya. For example, the rainfall over the Amazon is more intense during La Niña, causing the water vapor over the western Amazon to be lighter. This lighter version of water vapor is then transported up to the height of Quelccaya and makes snow with a lower chemical signature.

1. Introduction The 2015–2016 El Niño ranks as one the highest-amplitude El Niño–Southern Oscillation (ENSO) events observed since 1950 (L’Heureux et al., 2017). Equatorial Pacific sea surface temperature (SST) anomalies for 2015–2016 were at least as large as they were during the historically important 1972–1973, 1982–1983, and 1997–1998 events. December-January-February (DJF) Niño SST regions 3.4 and 4 SST anomalies were at record values: Niño region 4 SST DJF anomalies were nearly 1.5°C, compared with 0.5°–0.7°C for the three above mentioned extreme historic events. This was the first extreme El Niño event of the 21st century, and a consequence of both prevailing 2014 warmth and long-term global warming (Santoso et al., 2017).

The 2015–2016 El Niño had profound impacts around the globe. For instance, the boreal winter was one of the most intense coastal erosion seasons recorded in the western United States over the past 145 years.
A record-breaking cholera epidemic occurred in East Africa, the worst such event since the last major El Niño in 1997–1998. Closer to the tropical Pacific, record-breaking warmth and persistent drought conditions were recorded in parts of the Amazon rainforest during the 2015–2016 El Niño (Jiménez-Muñoz et al., 2016). In the tropical Andes, glaciers have historically also been affected by strong ENSO events, with large negative mass balance and ice wastage during El Niño events (Francou et al., 2003; Rabatel et al., 2013; Vuille et al., 2008).

We have been continuously monitoring temperature, snow height change, and other meteorological variables for the past 14 years at the summit of the Quelccaya Ice Cap (QIC) in Peru with an Automated Weather Station (AWS, 13.93°S, 70.82°W). Temperature at Quelccaya is commonly higher during El Niño, and monthly temperature anomalies at Quelccaya during the 2015–2016 El Niño were as much as 2 standard deviations (σ) above average (Figure 1a). For the first time since monitoring began in 2003, there was an annual net decrease in Quelccaya surface snow height (−0.04 m) for the hydrologic year of June 2015 through May 2016 (Figures 1b–1c). This contrasts with the mean annual net snow height gain of about 1.8–2.0 m.

As with snow height, water stable isotope ratios (oxygen-18O and 18O; hydrogen 2H, or deuterium [D], and 1H) recorded in snow and ice at Quelccaya are also sensitive to ENSO forcing (Thompson et al., 2013, 2017). Interannual variability of stable isotope ratios from Quelccaya snow and ice has been linked to tropical Pacific SSTs and ENSO. However, the physical processes that account for this relationship have not been fully explained.

To do this, we identify and test the sensitivity of stable isotope concentrations to physical mechanisms that are tied to or forced by ENSO. By understanding these linkages, we can inform our interpretation of climate change (Bradley et al., 2003, 2004, 2009) at Quelccaya and across the broader tropical Andean region. ENSO variability of stable isotope ratios, congruent with those from Quelccaya, have been observed at other Andean and Amazon locations (Vuille et al., 2003b; Vimeux et al., 2009). These include ice core locations at Huascaran in Peru and Sajama in Bolivia, as well as Global Network for Isotopes in Precipitation sites throughout the region (Vuille & Werner, 2005). Evidence has long pointed toward a relationship between ENSO, Amazon convection and the hydrologic stable isotope values (Vuille et al., 2003a). We expect that our results presented here are relevant for deciphering stable isotope records that are sensitive to upstream convection, which is in turn driven by higher-order forcings such as tropical SSTs or the large-scale circulation.

In addition to the AWS monitoring at Quelccaya, snow layer δ18O has been measured in samples collected from annual snow pits completed at the summit of the ice cap (Figure 1d). When we sort the snow δ18O values by ENSO phase based on the Oceanic Niño Index (ONI; Climate Prediction Center, 2018; Figure 2), The δ18O is significantly higher during El Niño (about −17‰) compared with La Niña (about −22‰), in ways that are consistent with Thompson et al.’s (2013) linear model for tropical Pacific SST reconstruction based on Quelccaya δ18O. For reference, the average δ18O from the 2015–2016 snow pit was about −15‰.

There is a close positive association between temperature on Quelccaya and tropical Pacific SST (Figure 1a). The warmer the Pacific, the more positive the temperature anomalies at QIC, indicated by the gradual transition from cold (blue) to warm (red) SST anomalies’ in Figure 1a showing temperature anomalies at QIC increasing from left to right. The 2015–2016 El Niño stands out as an extreme anomaly, with 8 out of the 10 anomalously warmest months at QIC occurring during this event. The exceptional nature of this event is also highlighted by temperature at QIC exceeding +1.5σ for a period of 6 months; the probability of an event exceeding +1.5 sigma in a normally distributed data set corresponds to p < 0.07. There is a similar, albeit weaker, control of tropical Pacific SST on accumulation rates at QIC (Figure 1b), with colder and warmer SSTs corresponding, respectively, with generally higher and lower snowfall totals.

For reference and context we compare the in situ observations from the summit of Quelccaya (Figure 1) with ENSO influence on regional climate variability (Figure 3). The hydrologic cycle is more active with enhanced austral summer precipitation during La Niña over the Amazon Basin (Figures 3a and 3b), particularly over the central Amazon Basin. Patterns for ENSO variability over the tropical Andes are characterized by discrete areas with enhanced precipitation during El Niño, including over Quelccaya. This contrasts the reverse pattern that we observe from AWS measurements (Figures 1c and 1d) and highlights the usefulness of the continuous AWS measurements in this remote Alpine environment. South of the Amazon Basin, precipitation is greater during El Niño over much of southeastern South America. Temperatures over tropical...
and subtropical South America are warmer during El Niño (Figures 3c and 3d), consistent with AWS observations from Quelccaya (Figure 1a). ENSO variability of lower troposphere (850 hPa) circulation patterns is characterized by enhanced easterly flow over the Amazon Basin during El Niño, and during La Niña there is statistically significant reduction in the strength of the northerly low-level jet (Figure 3d). Though the statistical significance of these differences are limited by the short time period considered (2003–2017), the broad climate patterns in Figure 3 are consistent with previous investigation of ENSO variability of South American climate (Krishnamurthy & Misra, 2010; Vuille & Werner, 2005).

To explore the physical processes that connect tropical Pacific SSTs to Quelccaya δ¹⁸O on interannual time scales, we here use a proxy system model (PSM) that we recently developed for simulating stable oxygen and hydrogen isotope ratios in tropical Andean ice cores (Hurley et al., 2016). We complete a series of simulations...
that probe the sensitivity of the isotopic composition in Andean snowfall in response to warm and cold ENSO phases. We quantify the role played by ENSO in changing the isotopic composition of Andean snowfall by modulating (i) the local snow gain/loss at Quelccaya, (ii) regional air temperature (and its influence on humidity) around Quelccaya, and (iii) water vapor isotope ratios over the western Amazon Basin, one factor at a time. This approach is designed to answer the question whether ENSO influences the stable isotopic composition of snowfall on Quelccaya δ¹⁸O principally by means of the local snow gain/loss, air temperature, or the large-scale circulation upstream over the South American summer monsoon (SASM) domain.

Our results show that Quelccaya δ¹⁸O interannual variability is most sensitive to the lower troposphere water vapor δ¹⁸O composition over the
The local snow gain/loss, taken as the AWS measurements of snow height change (Δh_s), determines model daily changes in thickness of the snow profile. When the daily snow accumulation is positive, a fresh snow layer is added to the profile with a $\delta^{18}O$ value modeled as a product of Rayleigh fractionation during transport from the lower troposphere (850 hPa) over the western Amazon Basin, up to an altitude above the Quelccaya summit (400 hPa). We define here the western Amazon Basin for temperature and isotope ratio composite calculations as the area from 67°W–73°W and 7°S–13°S. Lower troposphere water vapor isotope ratios from grid cells in this area share a common variability (Figure 4), which supports the definition and selection of this area. On days of negative snow height change, the snow profile is reduced, by removing snow from the surface, and the $\delta^{18}O$ of the new snow surface is modeled, with isotopic enrichment occurring as a function of the sublimation rate (Hurley et al., 2016).

Air temperature (T) impacts the model scheme as vertical profiles from the lower to the upper troposphere are used to characterize the Rayleigh fractionation models. Fractionation factors and humidity, q, are temperature dependent, and therefore, the seasonality of isotopic fractionation partly reflects the seasonal cycle of temperature.

The isotope ratio of the initial water vapor ($\delta_{v, i}$) also serves as input for the Rayleigh fractionation model. Here we use the water vapor isotopic composition of the lower troposphere over the western Amazon Basin. The seasonal and interanual changes of this water vapor δ value reflect the degree of rainout occurring as a result of upstream convection over the Amazon Basin.

2.2. Data

Monthly temperature data and daily snow height change data from the AWS on the summit of QIC were used in this study (see supporting information, SI). The sensitivity of monthly temperature anomalies to ENSO conditions in the tropical Pacific is illustrated in Figure 1. Daily snow height change is used as a proxy for snowfall and sublimation. Snow $\delta^{18}O$ data from snow pit sampling over the past decade are also summarized in Figure 1 (provided in the SI) to illustrate the ENSO impact on the snow isotopic composition.
at Quelccaya. A more detailed explanation of the AWS, data collection, and snow sampling was presented in Hurley et al. (2015).

Rayleigh fractionation models were calculated on a daily time step using western Amazon Basin information on water vapor and temperature from the reanalysis data, and water vapor isotopologue satellite observations, all averaged over the western Amazon Basin to the east of QIC (67°W–73°W, 7°S–13°S). For reanalysis, we use 6-hourly pressure level output from the European Centre for Medium-Range Weather Forecasts ERA-Interim product (Dee et al., 2011). For satellite information on water vapor isotopologue concentrations, we use observations from the National Aeronautics and Space Administration (NASA) Troposphere Emission Spectrometer (TES). We use the bias-corrected level 2 version 6 Lite Product with the averaging kernels for HDO and H₂O products (L2v005litev08; National Aeronautics and Space Administration, 2015; Worden et al., 2011, 2012). The mean seasonal cycle of water vapor isotope ratios was calculated from TES observations. Because the remotely sensed TES observations are spatially and temporally discontinuous, the ENSO-phase variability was calculated separately from the historical period using the isotope reanalysis product, IsoGSM (Yoshimura et al., 2008), for the lower troposphere (850 hPa). Oxygen isotope ratios are not measured by TES, therefore Rayleigh model initial vapor oxygen isotope ratios were approximated from hydrogen isotope ratios using the linear empirical relationship of the Global Meteoric Water Line (Craig, 1961).

Warm and cold ENSO-phase episodes are considered based on the ONI, version 5 (Figure 2), which is a 3-month running average of ERSST.v4 SST anomalies in the Niño 3.4 region (5°S–5°N, 120°W–170°W) (Huang et al., 2015). Warm and cold ENSO-phase months (El Niño and La Niña, respectively) are defined by the ONI as those where the 3-month running mean SST anomaly for that month exceeds 0.5°C for a minimum of five overlapping 3-month-average seasons (Climate Prediction Center, 2018).

To complement the results of our simulations, we computed field correlation and regression coefficients between observed and simulated Quelccaya δ¹⁸O and both SSTs and outgoing longwave radiation (OLR). These analyses are intended to test the sensitivity of Quelccaya δ¹⁸O to spatial patterns of both ENSO (SSTs) and the SASM-related convection (OLR). For SSTs we use the Extended Reconstructed Sea Surface Temperature Version 5 (ERSSTv5; Huang et al., 2017). For OLR we use the 1° by 1° daily Interpolated OLR product from the National Oceanic and Atmospheric Administration (Lee, 2014).

2.3. Approach: ENSO-Phase Composites

2.3.1. Control Simulations

We first present our three control (CTRL) simulations; the mean Quelccaya CTRL simulation (Q-CTRL), an El Niño CTRL simulation (El-CTRL), and a La Niña CTRL simulation (La-CTRL). The mean control simulation, Q-CTRL, is a PSM simulation using the full record of snow height change from Quelccaya and ERA-Interim air temperature profiles for that same period (2003–2017). At the time this manuscript was prepared, snow height change data from Quelccaya were available through May 2017. The configuration of the Q-CTRL simulation is the same as the CTRL simulation presented in Hurley et al. (2016), wherein it was demonstrated that the model is capable of simulating the observed mean and seasonal cycle of Quelccaya δ¹⁸O. For the ENSO-phase CTRL simulations (El-CTRL and La-CTRL), we subsample the record of AWS snow height, reanalysis temperature, and both TES and IsoGSM initial vapor δ-values to only include periods that are characterized by ENSO conditions. ENSO-phase composites of Quelccaya AWS snow height, ERA-Interim temperature, and initial water vapor δ values are calculated as anomalies from the climatology. Rayleigh model initial vapor conditions for humidity, temperature, and isotope ratio for the control simulations are reported in Table 1. The distribution of Quelccaya snow δ¹⁸O values from the control simulations (Q-CTRL, El-CTRL, and La-CTRL; Figure 5) resemble the observed distribution of values (Figure 1d). The

<table>
<thead>
<tr>
<th>Table 1: Model Parameter 850 hPa Initial Values for the Control Simulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>qi (kg/kg)</td>
</tr>
<tr>
<td>δD₁ (‰)</td>
</tr>
<tr>
<td>Ti (°C)</td>
</tr>
</tbody>
</table>

Note. Example values listed here for reference are for 1 January.
mean conditions are appropriately simulated, but the observed variability is underestimated. The El-CTRL and La-CTRL PSM simulations, which are driven by the observed composite ENSO variability, are capable of reproducing the observed ENSO variability of Quelccaya snow $\delta^{18}O$. As with the Q-CTRL simulation, the distribution of simulated values for each ENSO phase underestimates the observed variability. This is likely due to the absence of synoptic-scale temperature variability in these simulations. In a previous study (Hurley et al., 2016), we accounted for synoptic-scale variability via incorporation of South American cold air incursions in the PSM and found this necessary to account for the observed intraseasonal variability. Here in this study, we focus on the ENSO variability of Quelccaya $\delta^{18}O$ and so we use the simple control configuration of the PSM without synoptic-scale variability. We next explore the influence of the three primary model components (local snow gain/loss, Δh_s, temperature, T, and initial water vapor δ value, δ_{iv}), their ENSO-related variability, and their relative roles in forcing Quelccaya $\delta^{18}O$.

2.3.2. ENSO-Phase Simulations

For each of the three climate variables (model components) considered in this study, both a warm (El Niño) and a cold (La Niña) phase simulation were completed. Therefore, beyond the three control simulations, we completed six additional ENSO-phase simulations. The ENSO-phase simulations have the same configuration as Q-CTRL, except one parameter was varied at a time, consistent with the observed ENSO-phase composite time evolution of that parameter. The ENSO-phase simulations are summarized as follows: (1) an El Niño local snow gain/loss simulation based on the Q-CTRL configuration with only the local snow gain/loss (Δh_s) allowed to vary, (2) a La Niña local snow gain/loss simulation (Δh_s), (3) an El Niño temperature simulation (El-T), (4) a La Niña temperature simulation (La-T), (5) an El Niño initial water vapor δ-value simulation (El-δ_{iv}), and finally (6) a La Niña initial water vapor δ value simulation (La-δ_{iv}). These ENSO-phase simulations were forced based on observed ENSO-phase composites of the local snow gain/loss, temperature, and initial water vapor isotope ratios. We note here that the El-T and La-T simulations were forced with ENSO-phase temperature variability and as a consequence of temperature the water vapor concentration also varies as a response of the model in these simulations.

2.3.3. Local Snow Gain/Loss

Information on the local snow gain/loss cycle is from AWS observations at the summit of Quelccaya. What we describe here as the local snow gain/loss refers to the precipitation and sublimation of snow at the summit of Quelccaya (Figure 6). The seasonality of these processes are sensitive to ENSO phase, which yields snow height gain/loss for El Niño and La Niña that are quite different. Snow accumulation tends to start earlier during El Niño periods but results in less overall net accumulation, while during La Niña episodes there is a later onset of the wet season but greater overall snow accumulation. This climate response was particularly pronounced during the 2015–2016 El Niño, when net snow height change decreased. These ENSO variable snow gain/loss observations from the Quelccaya AWS are consistent with previous observations that La Niña corresponds with wetter SASM seasons compared with those of El Niño (Garreaud et al., 2003; Paege & Mo, 2002). This has been generally attributed to modulation of the tropical zonal overturning Walker Circulation (Grimm, 2003, 2004).

2.3.4. Temperature

Average global surface temperatures are warmer during El Niño (Halpert & Ropelewski, 1992). Over tropical South America, ENSO variability is also characterized by warmer temperatures during El Niño (Figures 3c and 7). The response of surface temperature to tropical SSTs is more pronounced over the northeastern Amazon Basin, compared with that over the western Atlantic Ocean or the western Amazon Basin. During El Niño, austral summers and winters over the western Amazon and Quelccaya are warmer and colder, respectively (Figure 8a). Over the western Amazon Basin and the vicinity of Quelccaya, temperature seasonality is amplified during El Niño and reduced during La Niña (Figure 8b). The enhanced temperature seasonality during El Niño is particularly pronounced in late summer (March–April) and winter (August–September) when both snowfall amount and variability is relatively low. The impact that ENSO temperature variability has on the Rayleigh fractionation models is shown in Figures 8c and 8d and the zoom inset plot. Figure 8c is
Figure 6. (a) Observed Quelccaya daily snow height change for the hydrologic year (June-May). Solid curves and shading are the mean and the mean ±1 standard deviation for all data (black, no shading), red = El Niño, and blue = La Niña. (b) Observed Quelccaya cumulative snow height change for the hydrologic year (June-May). Cumulative values are referenced to the yearly minimum cumulative snow height (y axis). Black = 2003–2017 long-term mean, red = El Niño, and blue = La Niña. X axis is day of the hydrologic year or days since 31 May; 1 June = day 1.

Figure 7. Linear regression coefficient between the Oceanic Niño Index (ONI, monthly SST anomalies) and surface temperature (ERA-Interim, 2003–2017). Green lines encompass areas where the correlation between ONI and surface temperature is significant at the 95% confidence level.

2.3.5. Initial Vapor Isotope Ratios
As a consequence of ENSO affecting upstream convection in the SASM domain (Vuille & Werner, 2005), initial vapor isotope ratios vary according to ENSO phase. The SASM is more active during La Niña, which yields lower water vapor δ values downstream in the lower troposphere over the western Amazon Basin (Figure 9).

In practice, and in the Rayleigh models used for the PSM, the isotope ratio of the initial water vapor is taken as the δ value from the lower troposphere over the western Amazon Basin, as this is the air that feeds into convection up to an altitude above Quelccaya. The isotope ratio of this lower troposphere western Amazon Basin water vapor is effectively a product of upstream convection. Moisture is transported by low-level easterlies from the tropical Atlantic across the Amazon Basin. There is a higher amplitude seasonality of lower troposphere water vapor isotope ratios over the western Amazon Basin, compared with the tropical Atlantic (Hurley et al., 2016). This is due to intense convective activity...
Figure 8. Western Amazon Basin and Quelccaya temperature seasonality. (a) Seasonality of the vertical temperature structure. El Niño minus La Niña temperature over the western Amazon Basin (color shading) with the climatological mean as gray contours. The western Amazon Basin is defined as 67°W–73°W, 7°S to 13°S. (b) Seasonality of 400-hPa temperature over Quelccaya; black = mean, red = El Niño, and blue = La Niña. Solid curves are mean values and shading is mean ±1 standard deviation. (c) Example Rayleigh model curves for 1 January of water concentration, q, versus δD for the Q-CTRL (black), El-ΔT (red), and La-ΔT (blue) simulations. Water vapor initial conditions for q and δD are indicated by open circles, and values are listed in color-coded boxes. (d) Example T versus δD curves from 1 January Rayleigh models used in the Q-CTRL (black), El-ΔT (red), and La-ΔT (blue) simulations. The inset highlights the El Niño–Southern Oscillation variability in temperature conditions over Quelccaya (400 hPa, beige-shaded box).

along the air mass trajectory over the Amazon Basin during austral summer, effectively depleting the remaining water vapor in heavy isotopes once it reaches the westernmost part of the basin.

3. Results

Comparing the results of the ENSO-phase sensitivity simulations with both the observations and the control simulations (Figure 10a) shows that the ENSO-induced variability in δ18O is best accounted for by changes to the initial water vapor delta value, δv,i. The response of the PSM to ENSO-related changes in both local snow gain/loss, Δh,s, and temperature, ΔT, are much smaller in amplitude. The ENSO-related temperature effect by itself yields a response that is opposite in sign from the observed ENSO variability.

The simulated responses of Quelccaya δ18O to ENSO-induced changes in the local snow gain/loss are of the same sign as the observations, but the amplitude of the observed change is underestimated by the simulations (Figure 10a, Δh,s). By altering the timing of snowfall events throughout the hydrologic year, local snow gain/loss does impact the archive of δ18O at Quelccaya. An early demise of the summer monsoon with reduced snowfall in the second half of the wet season (February-April, El Niño red curve in Figure 6a) appears to contribute to the observed signal by reducing snow accumulation during the latter parts of the summer when isotope ratios are the most negative.

When we isolate the influence of ENSO-related air temperature changes, and consequent changes in q, on Quelccaya δ18O, the sign of the simulated response is opposite that of the observations and smaller in amplitude (Figure 10a, ΔT). This is a direct result of warmer Rayleigh fractionation during El Niño
Figure 9. (a) ENSO-phase anomalies of western Amazon Basin water vapor δD (IsoGSM) in the lower troposphere. The western Amazon Basin is defined as 67°W–73°W, 7°S to 13°S. Solid curves and shading are mean and mean ±1 standard deviation for El Niño (red) and La Niña (blue). (b) Seasonality of western Amazon Basin water vapor δD for the lower troposphere, black solid curve and shading are TES mean seasonal cycle and red and blue are TES mean plus the IsoGSM El Niño and La Niña seasonal cycle anomalies, respectively. These values constrain the Rayleigh curve initial vapor δ values.

(red versus blue curve in Figures 8c and 8d). This is distinct from a colder final fractionation temperature along a common Rayleigh curve, which will yield a lower isotope ratio.

When the PSM is forced by ENSO-induced changes to the lower tropospheric water vapor δ values over the western Amazon Basin, the simulated ENSO response of Quelccaya $\delta^{18}O$ matches the observations in both sign and amplitude (Figure 10a, $\Delta \delta_{v,i}$). This result reaffirms the importance of the properties of the initial water vapor in constraining the precipitation isotope ratio and ties the Quelccaya ice core isotopic record to the strength of the hydrologic cycle upstream and to the large-scale atmospheric dynamics of the SASM region.

In Figure 10b we recast the results shown in Figure 10a as departures from the Q-CTRL simulation to focus exclusively on the model response. The ENSO responses of the model simulated by El-CTRL and La-CTRL are dominated by the initial vapor δ value forcing. The impact that Δh_s and T have on the simulated $\delta^{18}O$ is less than half that of $\delta_{v,i}$. On interannual time scales $\delta_{v,i}$ varies primarily in response to SASM activity. The results of the ENSO-phase sensitivity simulations suggest that ENSO variability of Quelccaya $\delta^{18}O$ is primarily a response, for example, during La Niña, of enhanced rainout over the Amazon Basin, consequent lowering of water vapor δ values over the western Amazon Basin, and Rayleigh fractionation of vapor with lower $\delta_{v,i}$. This physically ties interannual variability of tropical Pacific SSTs to isotope ratios in tropical Andean snow and ice in ways that are not strictly temperature related.
Isotope ratios are generally and inherently a function of temperature owing to the temperature dependence of the fractionation factor. For instance, the “temperature effect” describes observed patterns of lower water vapor isotope ratios at higher latitudes, in concert with temperature (Dansgaard, 1964). Water vapor stable isotope ratios are however also a consequence of the conditions (temperature and pressure) at which the air had last encountered saturation and condensation (Galewsky & Hurley, 2010). The dependence of lower troposphere water vapor isotope ratios over the western Amazon Basin on both (i) upstream precipitation and (ii) subsequent transport, helps to tie Quelccaya snow isotope ratios to the hydrologic cycle and the large-scale circulation.

4. Discussion and Conclusions

During El Niño, there is less snow accumulation at Quelccaya; austral summer precipitation has an earlier onset than it does during La Niña, and there is less middle to late summer snowfall. There is an amplification of the Quelccaya and western Amazon Basin seasonal temperature cycle during El Niño: higher temperature during austral summer and lower temperature during austral winter. There is a weakening of the SASM over the Amazon Basin during El Niño in a manner consistent with weakened upper troposphere tropical easterlies. The weakened hydrologic cycle during austral summer reduces rainout upstream over the central Amazon, thereby resulting in higher overall $\delta^{18}O$ at Quelccaya. This is not unlike the explanation for seasonality of $\delta^{18}O$ put forth by Grootes et al. (1989) and more recently described in our development of a tropical Andean ice core PSM (Hurley et al., 2016). Here we used the PSM developed in that study for completing a series of ENSO-phase sensitivity simulations to distinguish the relative roles of the local snow gain/loss, temperature, and the water vapor initial isotope ratio ($\Delta \delta_{v,i}$).

We find that most of the ENSO variability in Quelccaya $\delta^{18}O$ can be explained by changes in SASM activity and its influence on downstream water vapor δ values that feed into Rayleigh fractionation, from the lower troposphere over the western Amazon Basin up to the altitude of snow formation over the ice cap. The large-scale circulation also plays a key role in the transport of vapor to the western Amazon Basin.

There are also changes to the low-level circulation in response to ENSO (Figure 3d). The northerly low-level jet that exports tropical heat and energy to higher latitudes is weaker during La Niña. Most of this poleward heat transport east of the Andes is associated with cold air incursion activity (Garreaud, 2001). Cold air incursions begin as extratropical high-pressure systems. As they advance northward, convection occurs along their equatorward fronts (Garreaud, 1999, 2000). They traverse from southern South America into the western Amazon Basin, and we have previously identified them as responsible for most of the snowfall at Quelccaya (Hurley et al., 2015). ENSO variability of cold air incursions is not well characterized, particularly as it pertains to hydroclimate of the western Amazon Basin or the tropical Andes. Perhaps northerly low-level jet ENSO variability is a consequence of cold air incursion activity; that is, more active cold air incursions during La Niña would weaken the northerly low-level jet and account for changes in the water vapor isotope ratios over the western Amazon Basin. Here we attribute the ENSO variability in western Amazon Basin lower troposphere water vapor isotope ratios to upstream precipitation associated with the SASM (which does include western Amazon Basin cold air incursion precipitation). It is possible that there are nuances of this interpretation that could be attributed to the large-scale circulation changes via modulation of cold air incursion activity, and we leave this for future work. The PSM used in this study is limited in that it does not account for circulation changes. However, given the dynamical conditions presented in Figures 3c and 3d, most of the moisture that undergoes convection along the fronts of cold air incursions are likely from the north and east, evaporated from the Atlantic and transported or recycled over the Amazon Basin.
Figure 11. Austral summer (DJF) SST (left column) and OLR (right column) regressed against (a, b) observed QIC $\delta^{18}O$, (c, d) QIC $\delta^{18}O$ from the local snow gain/loss simulations, (e, f) QIC $\delta^{18}O$ from the temperature simulations, and (g, h) QIC $\delta^{18}O$ from the water vapor initial δ value simulations. Green lines surround areas where the correlation between QIC $\delta^{18}O$ and SST or OLR is significant at the 95% confidence level.

Limitations to this study also include a lack of observational constraints on details of the Rayleigh fractionation models. For instance, the altitude of condensation above Quelccaya is assumed to be the pressure level (400 hPa) above the summit. This parameter likely varies throughout the year and on synoptic time scales. The time period of our study, about 14 years, also presents a limitation particularly on the application of our results to multidecadal variability from the Quelccaya paleoclimate archive for the last 1,800 years.

The results presented here do highlight the importance of the initial water vapor isotope ratio as a function of monsoon dynamics and clarify that the isotope signal should not be interpreted as a simple temperature response. Furthermore, we see from our results that the seasonality of the local hydrologic cycle and the seasonal distribution of snowfall events also has an influence on the isotope archive. In the examples shown here, enhanced late summer snowfall during La Niña helps to preserve more negative isotope ratios at Quelccaya, because water vapor isotope ratios in the lower troposphere over the western Amazon Basin reach their minimum at this time. However, this impact is relatively small compared with the influence of the initial water vapor isotope ratio.
To further consider the interannual relationships between Quelccaya isotope ratios, ENSO, and the monsoon, we completed field correlation and regression analyses (Figure 11) between the observed and simulated Quelccaya $\delta^{18}O$ archives and both SST and OLR. Regression of observed Quelccaya $\delta^{18}O$ with SST exhibits typical ENSO patterns (Figure 11a), as would be expected. Warmer SSTs in the eastern tropical Pacific such as during El Niño correspond with higher $\delta^{18}O$ ratios at Quelccaya. Regression of observed Quelccaya $\delta^{18}O$ with OLR also exhibits expected and ENSO-like patterns (Figure 11b). Anomalous convective activity (low OLR) over the Amazon Basin (such as occurs during La Niña) corresponds with lower $\delta^{18}O$ ratios at Quelccaya. We then completed the same field correlation and regression analyses against SST and OLR, using the simulated Quelccaya $\delta^{18}O$ archives. These analyses were completed by correlating and regressing SST and OLR against the simulated $\delta^{18}O$ archives that were computed using the PSM forced with isolated ENSO variability of (i) local snow gain/loss (Figures 11c and 11d), (ii) temperature (Figures 11e and 11f), and (iii) the water vapor initial δ value (Figures 11g and 11h). As we showed in the previous section for the annual time series, the spatial patterns of the slope of the linear relationship between Quelccaya $\delta^{18}O$ and both local snow gain/loss (Figures 11c and 11d) and temperature (Figures 11e and 11f) are weak, compared with the observed relationships. We find that most of the observed linear spatial patterns between $\delta^{18}O$ and both SST and OLR are accounted for by variability in the initial water vapor δ-value over the western Amazon Basin (Figures 11g and 11h). Importantly, these patterns are consistent with ENSO climate variability and demonstrate the connections between tropical Pacific SST, convection over the Amazon Basin, and Quelccaya $\delta^{18}O$. The positive relationship between observed Quelccaya $\delta^{18}O$ and Amazon Basin OLR reflects upstream convection and rainout, thereby lowering water vapor δ values that then impact downstream precipitation over the Andes. Similar mechanisms have been observed in Tibet, where precipitation isotope ratios have been correlated with upstream convection over India (He et al., 2015), and from both the western Africa (Okazaki et al., 2015) and Asian (Ishizaki et al., 2012) monsoon regions.

It is important to consider how the results of our study may have bearing on the interpretation of the 1,800-year Quelccaya $\delta^{18}O$ archive. For example, Rojas et al. (2016) recently presented modeling results that suggest the SASM was strengthened during the Little Ice Age (LIA, 1450-1850 CE) compared with the Medieval Climate Anomaly (MCA, 950-1250 CE). Quelccaya isotope ratios were indeed lower during the LIA, consistent with our results presented here. A number of additional archives in the tropical Andes, which also incorporate the isotopic composition of Andean precipitation and hence western Amazon Basin water vapor into their record, show similar negative departures in their isotopic signal during the LIA (e.g. Apaestegui et al., 2014; Bird et al., 2011; Kanner et al., 2013; Vuille et al., 2012). Conversely, the MCA may have represented a period of reduced monsoon intensity which led to higher water isotopologue ratios over the western Amazon Basin and at Quelccaya. Our results show that the past joint history of ENSO and SASM are tied to Quelccaya $\delta^{18}O$, and call for re-interpretation of the QIC isotope archive, particularly as it relates to convection and water vapor isotope histories over the Amazon Basin. Turning to the future, extreme El Niño events give rise to catastrophic weather phenomena and they are expected to become more frequent as a function of global warming (Santoso et al., 2013). In that regard, we expect that the results presented here may provide some guidance in interpreting how global-warming influences South American and Andean hydrology.

Acknowledgments
The authors thank three reviewers whose comments vastly improved the quality of this paper. ERA-Interim reanalysis was obtained from the Research Data Archive (RDA) that is maintained by the Computational and Information Systems Laboratory at the National Center for Atmospheric Research (NCAR). NCAR is sponsored by the National Science Foundation (NSF). The original data are available from the RDA (http://rda.ucar.edu) in data set ds627.0. GPCP 1° daily precipitation data were obtained from the NASA Goddard Space Flight Center (http://precip.gsfc.nasa.gov/). TES Lite Products data were obtained from the NASA Jet Propulsion Laboratory (tes.jpl.nasa.gov/data/).

References

