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[1] High-resolution regional climate models (RCMs), run over a limited domain, are
increasingly used to simulate seasonal to interannual climate variability over South
America and to assess the spatiotemporal impact of future climate change under a variety
of emission scenarios. These models often give a better spatiotemporal representation of
climate at a regional scale; however, they are subject to errors introduced by the driving
global models. Here we analyze two different simulations with the Hadley Centre Regional
Climate Modeling System Providing Regional Climate for Impact Studies (PRECIS)
model over tropical South America. The two simulations cover the same 30 year period
(1961–1990) but were forced with different lateral boundary conditions. The first
simulation was forced with the Hadley Centre Atmospheric Model version 3 (baseline),
and the second was forced with European Centre for Medium-Range Weather Forecasts
Re-analysis (ERA) data. Our results indicate that the ERA-forced simulation more
accurately portrays seasonal temperature and precipitation, consistent with previous
studies. Empirical orthogonal function and spatial regression analyses further indicate that
the ERA-forced simulation more realistically simulates the El Niño–Southern Oscillation
related fingerprint on interannual climate variability over South America during austral
summer. The two gridded observational data sets used for model validation display large
differences, which highlight significant uncertainties and errors in observational data sets
over this region. In some instances the observational data quality is rivaled or even
surpassed by the ERA-forced RCM results.
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1. Introduction

[2] Globally averaged temperature has increased at an
alarming pace over the last 150 years with a rise of �0.75�C
since the early 20th century [Meehl et al., 2007]. The
unprecedented rate of warming, due to increased greenhouse
gas concentrations in our atmosphere, has and will continue to
have a strong effect on global climate. However, the impacts
will be most strongly felt at a regional to local level, which are
difficult to simulate with global climate models (GCMs).
[3] Regional climate models (RCMs) have shown some

success in improving our understanding of interannual and
seasonal climate variability, as well as the spatiotemporal
impact of future warming scenarios at the regional scale by
dynamically downscaling information provided by a global
climate model. A regional climate model with its higher
vertical and horizontal resolution should allow for more
accurate simulations of synoptic patterns affecting weather,

and thus climate, than a GCM. Much of the skill of a RCM
to accurately simulate climate variability over a limited
domain, however, depends on the quality of the lateral
boundary conditions used to drive the RCM. This depen-
dence was demonstrated in a two-part study by Seth and
Rojas [2003] and Rojas and Seth [2003] using RegCM3
nested in the Community Climate Model version 3 (CCM3)
to simulate two extreme wet and dry rainfall seasons
(January–May) in 1983 and 1985. Their results indicate that
the regional model significantly improved the simulated
monthly evolution of the extreme rainfall seasons when
compared with the global model. Furthermore, the regional
model RegCM3 provided much more accurate results when
the lateral boundary conditions were provided by reanalysis
data rather than by the CCM3 model ensemble.
[4] Here we build on these results by comparing the Pro-

viding Regional Climate for Impact Studies (PRECIS) model
results over tropical South America using (1) European
Centre for Medium-Range Weather Forecasts (ECMWF)
reanalysis (ERA-40) data and (2) Hadley Center GCM ver-
sion 3 (HadCM3) data as lateral boundary conditions. The
study aims to identify the PRECIS models’ biases and ability
to accurately simulate present-day, December to February
(DJF) precipitation and temperature from 1961 to 1990.
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Comparing model results from these two different simula-
tions with observational data will help determine whether
part of the model bias can be attributed to errors in the driving
lateral boundary conditions, rather than poor model perfor-
mance itself. Unlike Seth and Rojas [2003] and Rojas and
Seth [2003], however, our focus is on the ability of the
model to accurately reproduce the observed spatiotemporal
associations with El Niño–Southern Oscillation (ENSO), the
leading climate mode affecting tropical South America on
interannual time scales. Such studies are important since the
capability of the model to accurately simulate modern cli-
matic conditions to some extent constrains its ability to
accurately simulate future climate [Urrutia and Vuille, 2009].
This idea of course is based on the assumption that current
climate teleconnections with ENSO continue to operate in the
same manner under a warming scenario. Observational
records over tropical South America are sparse and gridded
data sets rely on data interpolation over long distances in
some regions, so we rely on two independent observational
data sets to assess model bias.
[5] Many observational studies have shown that ENSO is

associated with preferred patterns of precipitation and tem-
perature over tropical South America during the wet season,
which coincides with DJF, over much of the domain. To our
knowledge, however, this is the first study assessing the
ability of a RCM to simulate the climate impacts associated
with ENSO over tropical South America using two different
driving data sets as lateral boundary conditions. ENSO is
known to alter the position and intensity of the Hadley and
Walker circulations and induce Rossby wave trains, which
propagate into the subtropical and extratropical regions of
South America [Grimm, 2003]. El Niño events are generally
associated with decreased wet season precipitation over the
northern part of South America and the tropical Andes, and
increasing precipitation along the coastal areas of Ecuador
and Peru and over the southeast. La Niña events tend to have
the opposite effect [Garreaud et al., 2009; Vuille, 1999;
Vera and Silvestri, 2009].
[6] The first part of the study will provide a thorough

quantitative evaluation of the PRECIS model performance
under modern day conditions and diagnose the role played
by errors introduced by the driving boundary conditions.
The second part will focus on the leading climate mode
affecting both temperature and precipitation during austral
summer. This mode will be identified through empirical
orthogonal function (EOF) analyses, and its relationship
with large-scale climate variations will be diagnosed through
spatial correlation and regression analyses.

2. Data and Methods

[7] The PRECIS model is an atmospheric and land surface
model, which was run over the domain 13�N–30�S and
89�W–41�W. Owing to adjustments between the GCM and
RCM taking place along the lateral boundaries, the domain
used for analysis is reduced to 10�N–27�S and 86�W–44�W.
The PRECIS model is a part of the Hadley Centre Regional
Climate Modeling System, which has been run over several
domains across the world including Africa, Asia, Caribbean
and Central America, South America, the Middle East and
Europe [e.g., Tadross et al., 2005; Bloom et al., 2008; Islam
et al., 2008; Karmalkar et al., 2008, 2011; Garreaud and

Falvey, 2009; Islam and Rehman, 2009; Urrutia and
Vuille, 2009; Marengo et al., 2010].
[8] The regional model is driven by the Hadley Centre

Climate Model version 3 (HadCM3). In this study PRECIS
was run at a �50 km � 50 km horizontal resolution
(0.44� lat � 0.44� lon). The atmosphere is resolved in
19 vertical levels from 50 m to 30 km. The model uses ter-
rain-following sigma coordinates (s = pressure/surface
pressure) at the bottom four levels and purely pressure
coordinates at the top three levels with a combination in
between. In order to remain in equilibrium, the model has a
time step of five minutes. Physics schemes such as dynam-
ical flow, atmospheric sulphur cycle, clouds and precipita-
tion, radiative processes, land surface and deep soil are
described by Jones et al. [2004]. The model grid elevation is
different from observational data sets used in this study,
which introduces an additional bias over high terrain, espe-
cially when comparing surface variables such as temperature
[e.g., Urrutia and Vuille, 2009].
[9] Two modern-day simulations were run with different

lateral boundary conditions to investigate the model perfor-
mance and its dependence on the driving data set. In the first
simulation, run from 1960 to 1990, the lateral boundary
conditions were provided by the global driving model
Hadley Centre Atmospheric Model version 3P (HadAM3P).
This simulation will be referred to as the baseline run (BL).
In order to avoid spin-up errors caused in the first year of
simulation, the year 1960 is removed from the analysis. Sea
surface temperature (SST) and sea-ice extent are prescribed
from observations (HadISST1) [Rayner et al., 2003].
[10] The second simulation was driven with lateral

boundary conditions from the European Centre for Medium-
Range Weather Forecasts (ECMWF) 40-year Re-analysis
(ERA-40) data from 1957 to 2001 [Uppala et al., 2005] and
will be referred to as the ERA run. The lateral boundary
conditions are updated every 6 hours, while the surface
boundary conditions are updated every day. As in the BL
run, SST and sea-ice extent are prescribed from HadISST1
[Rayner et al., 2003]. Here we only analyze the common
period of overlap between ERA and BL, starting in 1961 and
ending in 1990.
[11] We rely on two different observational data sets

produced by the Climatic Research Unit (CRU TS 2.1) and
the University of Delaware (UDEL), both provided on a
0.5 degree � 0.5 degree grid [New et al., 2002; Legates and
Willmott, 1990a, 1990b] to assess model bias and its ability
to simulate ENSO-related interannual temperature and pre-
cipitation variability. The data from PRECIS is linearly
interpolated at 0.5 degree resolution to match the observa-
tional data set’s grid.
[12] Here we focus on temperature and precipitation vari-

ability from 1961 to 1990 during DJF, which coincides with
the mature phase of the South American Summer monsoon
[Zhou and Lau, 1998; Vera et al., 2006; Marengo et al.,
2011]. Results for JJA are presented by McGlone [2011].
DJF represents the core of the wet season over much of the
model domain and in some regions, such as the Central
Andes, accounts for 50–80% of the annual total precipitation
[Vuille et al., 2000]. The 1961 value calculated for DJF
precipitation represents the 1961–1962 season for both
temperature and precipitation; hence 29 full seasons were
available for analysis. For a few analyses where annual mean
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temperature and annual precipitation totals were considered,
the full data over the 30 year period were used.
[13] EOFs are calculated from both observational and

simulated data sets using correlation matrices of the aver-
aged DJF precipitation and temperature anomalies in order
to extract the primary modes of climate variability. Here we
focus exclusively on the leading EOF, which as discussed
below, is associated with ENSO variability. The lower order
EOFs were not found to be associated with real, physical
modes of climate variability. In an effort to make the lower
order EOFs more stable and less affected by domain
dependence, a varimax rotation was performed. However,
the rotation of the EOFs did not improve the representation
of real, physical modes of climate variability for the lower
order EOFs. A more detailed discussion of the rotation and
resulting modes of climate variability beyond EOF1 is given
by McGlone [2011].
[14] In order to test the physical authenticity of the leading

modes and to see whether they indeed capture ENSO-related
climate variability, linear, least square fit spatial regression

and Pearson correlation analyses were performed. All the
correlation coefficients reported are significant at the 95%
level unless noted otherwise. For the spatial regression anal-
yses, different atmospheric and oceanic variables known to be
key diagnostics to identify ENSO-related perturbations were
spatially regressed with the first unrotated principal compo-
nent (PC1). The influence of climate modes other than ENSO,
such as the Pacific Decadal Oscillation (PDO), Tropical
Atlantic Variability (TAV) and the Atlantic Multidecadal
Oscillation (AMO) are described elsewhere [McGlone,
2011]. For this analysis we relied on gridded Extended
Reconstructed Sea Surface Temperature (ERSST.v3b) at
2 degree resolution and ERA-40 850 hPa wind field and
geopotential height data. Since the PRECIS lateral boundary
conditions were provided by ERA-40 reanalysis data for the
ERA run, we purposefully chose to use ERA-40 reanalysis
data for our regression and correlation analyses rather than
using a different reanalysis data set, such as National Centers
for Environmental Prediction–National Center for Atmo-
spheric Research (NCEP-NCAR) reanalysis data. Using a

Figure 1. (a) Difference between average BL and CRU DJF temperature (1961–1990), (b) same as
Figure 1a but ERA–CRU, (c) same as Figure 1a but BL–UDEL, and (d) same as Figure 1a but
ERA–UDEL.
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different observational data set would have made comparison
with observations more difficult to interpret [Seth and Rojas,
2003].
[15] Last, to independently confirm our results, a backward-

spatial regression is performed in which each run’s DJF
temperature and precipitation data are spatially regressed
against the Niño 3.4 index, describing sea surface tempera-
ture anomalies (SSTA) over the domain 120�W–170�W and
5�S–5�N [Trenberth, 1997].

3. Results

3.1. Seasonal Bias

[16] Figure 1 shows the DJF temperature differences
between BL and CRU (Figure 1a), ERA and CRU
(Figure 1b), BL and UDEL (Figure 1c), and ERA and UDEL
(Figure 1d) over the 29-season period, respectively. Clearly
the model shows a cold bias over much of the domain,
irrespective of which observational data sets is used for
comparison. This bias is consistent with the results of

Urrutia and Vuille [2009]. However, the cold bias over the
Amazon and the Andes is reduced when the model is forced
with reanalysis data (Figures 1b and 1d) rather than a GCM
(Figures 1a and 1c). In addition the UDEL temperature
observations are more in line with the simulated DJF tem-
perature over the lowlands than CRU, but suggest a larger
model bias over the Andes. The comparison of simulated
and observed temperature over the Andes, however, is
complicated by the fact that the underlying grid topography
is not identical. As shown by Urrutia and Vuille [2009], this
difference accounts for a significant fraction of the apparent
temperature bias over the Andes. The two small regions with
a large positive temperature bias over the central Andes are
related to the large lakes of Titicaca and Poopó, which are
much warmer in the model simulations.
[17] Figure 2 shows the average DJF precipitation differ-

ences between models and observational data sets, respec-
tively. The model produces excess precipitation along
the eastern slopes of the Andes, while underestimating pre-
cipitation over the northeast coast and Amazon Basin.

Figure 2. (a) Difference between average BL and CRU DJF precipitation (1961–1990), (b) same as
Figure 2a but ERA–CRU, (c) same as Figure 2a but BL–UDEL, and (d) same as Figure 2a but
ERA–UDEL.
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Overestimation of rainfall, similar to that shown along the
eastern slopes of the Andes, is a common problem with
RCMs in regions of steep topography [Liang et al., 2004;
Frei et al., 2003]. However, the actual amount of precipita-
tion over this complex terrain is not known. It is likely that
the CRU and UDEL observational data sets have problems
due to the lack of station data, and thus, these results should
be interpreted with caution. Both BL and ERA exhibit fairly
similar errors in precipitation. The PRECIS model over-
estimates precipitation along the Andes during the wet season
by up to 800 mm or more. The close correspondence between
regions of enhanced cold (Figure 1) and wet bias (Figure 2)
along the eastern Andean slopes suggests they may be
dynamically linked through cloud cover or soil moisture
feedbacks, which will be discussed later on. The wet bias
over the northern interior and along the Andes in DJF is
slightly reduced with ERA. Reanalysis data also appears to
slightly improve the dry bias over the majority of the interior.
[18] Consistent with the results from Seth and Rojas [2003]

and Rojas and Seth [2003], the mean conditions during DJF
appear to be somewhat improved when the RCM is forced
with lateral boundary conditions from reanalysis data rather
than from a GCM ensemble. In general our study suggests that
the RCM, when driven by ERA-40 reanalysis data, shows a
reduced seasonal cold bias and also a slightly reduced over-
estimation of wet season precipitation along the eastern Andes
when compared to the GCM-forced BL simulation.

3.2. EOF Results

3.2.1. Temperature
[19] The leading EOFs (EOF1) of DJF temperature look

similar, with positive loadings over the entire tropical
domain (Figure 3). EOF1 for CRU, UDEL, BL and ERA
explains 38.6%, 28.8%, 75.3% and 60.2% of the total

variance, respectively. The loadings become negative in all
data sets except BL (Figure 3c) over the subtropics east of
the Andes. The loading pattern is consistent with the known
large-scale association with El Niño showing uniform
warming throughout the tropics. Nonetheless there is sig-
nificant overestimation of this mode of variability, shown by
the total variance in the RCM simulations BL and ERA
(75.3% and 60.2%, respectively) when compared to the
observational data sets (38.6% and 28.8%, respectively).
This discrepancy suggests that the model is overestimating
the relevance of the first mode, and its association with
South American climate.
[20] The corresponding normalized PC1 for each EOF1 is

plotted below the loading pattern (Figure 3). To highlight the
fact that this leading mode is indeed related to ENSO the
Niño 3.4 index, averaged over DJF, is superimposed as a
dashed line. As indicated by the highly significant correla-
tion between the two time series, there is a clear linear
relationship between ENSO and EOF1 of DJF temperature
(Figure 3). The leading modes for CRU, UDEL, BL and
ERA have correlation coefficients with the Niño 3.4 index of
0.88, 0.80, 0.87 and 0.92, respectively. These highly posi-
tive correlation coefficients indicate significant large-scale
warming (cooling) over tropical South America during El
Niño (La Niña) events, which is accurately reproduced in
simulations with both GCM and ERA-40 forcing. Overall,
however, the ERA-driven simulation does a better job at
reproducing the weaker ENSO association with temperature
over the southeast and the negative relationship with El Niño
over the subtropics.
3.2.2. Precipitation
[21] The leading EOFs of DJF precipitation are shown in

Figure 4. CRU EOF1, which explains 18.4% of the variance
(Figure 4a), displays a dipole pattern with positive loadings

Figure 3. (a) EOF1 for CRUDJF temperature (1961–1990), (b) same as Figure 3a but for UDEL, (c) same
as Figure 3a but for BL, and (d) same as Figure 3a but for ERA. (e–h) Corresponding DJF temperature
principal component 1 (PC1, solid line), DJF Niño 3.4 index (dashed line), and correlation coefficients
(all significant at the 95% significance level).
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in eastern Brazil and south central South America and neg-
ative loadings to the north and along the west coast. The
UDEL precipitation loading (Figure 4b) appears to represent
a different leading mode that explains 14.3% of the total
variance. Interestingly, the first rotated EOF of the UDEL
data set is much more aligned with CRU EOF1 and also
shows a strong linear correlation with the Niño 3.4 index
(not shown). The total variance explained by the ERA and
BL EOF1 is somewhat higher than the observations (25.4%
and 26.1%, respectively). The loading patterns for the BL
and ERA EOF1 look more like CRU EOF1, although there
are significant differences. ERA EOF1 has positive loadings
extending farther to the west across subtropical South
America, creating a north-south oriented dipole. BL EOF1
produces positive loadings at lower amplitude, and they are
spatially restricted to the southeast of the domain. Both BL
and ERA EOF1 display positive loadings along the west
coast of Ecuador and Peru, a pattern that is not observed in
the CRU EOF1. When compared with known precipitation
anomalies associated with ENSO events, ERA EOF1 dis-
plays by far the most realistic pattern of all four leading
EOFs. The CRU EOF1 associates the same mode of vari-
ability east and west of the Andes, which is not characteristic
of ENSO (i.e., it does not show the “wet El Niño” pattern
along the west coast). BL simulates this coastal El Niño
signal, but it penetrates too far inland along the west coast up
to the Andes. ERA on the other hand depicts what would be
a realistic response to ENSO with a strong signal of the same
sign along a narrow strip of the west coast and in south-
eastern South America and an opposite signal over the
northeast, the Amazon basin and the tropical Andes [see
Garreaud et al., 2009].
[22] The comparison of the corresponding PC1s with the

Niño 3.4 index confirms that the leading mode of DJF

precipitation variability does have an association with ENSO
(Figure 4, bottom graphs), except for the UDEL EOF1 (r =
0.27, not significant). The PC1 of CRU, BL and ERA has a
correlation coefficient with Niño 3.4 of 0.44, 0.50, and 0.45,
respectively. The correlation coefficients for CRU, BL and
ERA precipitation indicate a weaker linear relationship with
ENSO than was observed for temperature, but nonetheless
they are statistically significant.

3.3. Spatial Regression

3.3.1. Temperature
[23] To further explore the relationship between ENSO

and PC1, a spatial regression analysis was performed where
the principal components were regressed upon various
variables indicative of ENSO. The regression coefficients
indicate local anomalies associated with a unit anomaly in
the standardized temperature or precipitation PC.
Figures 5a–5d show the spatial regression between CRU,
UDEL, BL, ERA PC1, and SSTA for DJF temperature. All
correlation fields show positive coefficients extending from
the west coast of South America westward across the date-
line with the highest values located over the central, tropical
Pacific. There is another extension of the signal northeast-
ward into the tropical North Atlantic. All spatial patterns are
highly reminiscent of the canonical ENSO signature, with
the typical ENSO tongue being bracketed by anomalies of
the opposite sign over the mid latitudes of both hemispheres.
PC1 of CRU, UDEL and ERA display the highest regression
coefficients over the Niño 3.4 region, while the highest
regression coefficients for BL are located slightly farther to
the east over the Niño 3 index region (Figure 5c).
[24] Figure 6 shows the results of the spatial regression

analysis between PC1 and the DJF 850 hPa geopotential
height and wind field. All regression fields clearly reveal the

Figure 4. (a) EOF1 for CRU DJF precipitation (1961–1990), (b) same as Figure 4a but for UDEL,
(c) same as Figure 4a but for BL, and (d) same as Figure 4a but for ERA. (e–h) Corresponding DJF
precipitation principal component 1 (PC1, solid line), DJF Niño 3.4 index (dashed line), and correlation
coefficients (all significant at the 95% significance level, except for UDEL).
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large-scale east-west pressure dipole associated with the
negative phase of the Southern Oscillation [e.g., Trenberth
and Caron, 2000]. The trade winds over the tropical
Pacific are relaxed or even reversed (westerly wind anoma-
lies along the equator), and the subtropical jet over the North
Pacific and the Caribbean is significantly strengthened, in

geostrophic balance with the enhanced meridional pressure
gradient. Overall, the differences between the four regres-
sion fields are minor.
3.3.2. Precipitation
[25] The spatial regression analysis for DJF precipitation

PC1 with SSTA can be seen in Figures 5e–5h. The analyses

Figure 6. (a) CRU DJF temperature PC1 regressed on 850 hPa geopotential height and wind anomalies,
(b) same as Figure 6a but for UDEL, (c) same as Figure 6a but for BL, and (d) same as Figure 6a but for
ERA. Wind vectors are only plotted where the correlation with either the u or v component of the wind is
significant at the 90% level.

Figure 5. (a) CRU DJF temperature PC1 regressed against Extended Reconstructed Sea Surface Temper-
ature (ERSST v3b) anomalies, (b) same as Figure 5a but for UDEL, (c) same as Figure 5a but for BL, and
(d) same as Figure 5a but for ERA. (e–h) Same as Figures 5a–5d but for CRU DJF precipitation PC1.
Black contour lines indicate 90% significance level of correlation coefficient.
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again show significant correlations and positive regression
coefficients across the equatorial Pacific, except for UDEL
(Figure 5f). These results suggest a clear link between ENSO
and DJF precipitation variability over tropical South Amer-
ica as captured by the first EOF, which will be expanded on
in section 3.4. Weak regression coefficients in UDEL PC1
(Figure 5f) indeed confirm that this mode does not well
capture ENSO variability, as was already suggested by the
low correlation coefficient with Niño 3.4 and the poor
resemblance with the other EOFs (Figure 4b). However,
after varimax rotation, the spatial regression between UDEL
rotated PC1 and SSTA looks similar to CRU, albeit with
higher-magnitude, positive loadings in the central Pacific
and positive coefficients in the Atlantic (not shown). The
results for BL (Figure 5g) are also somewhat different from
the rest. BL projects much more strongly onto SST vari-
ability over the eastern equatorial Pacific than the other data
sets, which is an overestimation of the nature of the linear
relationship between Pacific SSTA and tropical South
American precipitation. ERA (Figure 5h) again seems to
better reproduce the relationship observed by CRU
(Figure 5e) revealing strong regression coefficients over the
central western equatorial Pacific. The magnitude and spatial
extent of these significant regressions coefficients is slightly
underestimated when compared to CRU.
[26] Figure 7 shows the regression analysis between

850 hPa geopotential height and wind field with CRU,
UDEL, BL and ERA PC1 of DJF precipitation. As with
temperature, the resulting large-scale regression field is
reminiscent of the negative phase of the Southern Oscillation,
with negative height anomalies over the southeast Pacific and
positive anomalies over the western equatorial Pacific and

Southeast Asia. Anomalous convergence of easterly and
westerly wind anomalies over the central equatorial Pacific
documents the anomalous eastward shift in the zone of deep
convection during El Niño. This convection shift suggests
that the leading mode of summer precipitation over tropical
South America is strongly influenced by the resulting large-
scale perturbations in the zonal (Walker) circulation. The
result of the UDEL regression analysis again is different from
the other three, showing a much weaker response in the
height anomaly field and with westerly wind anomalies along
the equator that are placed too far to the east (Figure 7b). As
indicated before, UDEL results look similar to CRU after
varimax rotation (not shown). It is also noteworthy that both
UDEL and BL show positive height anomalies in their
regression fields over the North Atlantic (Figures 7b and 7c),
which is not present in CRU data (Figure 7a). Only ERA
(Figure 7d) correctly reproduces these negative height
anomalies and the anomalous cyclonic circulation over this
region of the north Atlantic shown in CRU.
[27] Since the spatial regression analysis is limited to PC1

extracted from the EOF analysis, and this leading mode may
not have perfectly isolated ENSO-related variability in South
American precipitation and temperature data, we next
explore another way to investigate the role of ENSO on DJF
temperature and precipitation. We perform a backward
regression, where the Niño 3.4 index (predictor) is regressed
on DJF temperature and precipitation data (predictand) from
the model simulations and observational data sets. Hence
positive (negative) coefficients in the spatial regression
fields of Figures 8–11 indicate increased (decreased) tem-
perature or precipitation during an El Niño event and inverse
conditions during a La Niña event.

Figure 7. (a) CRU DJF precipitation PC1 regressed on 850 hPa geopotential height and wind anomalies,
(b) same as Figure 7a but for UDEL, (c) same as Figure 7a but for BL, and (d) same as Figure 7a but for
ERA. Wind vectors are only plotted where the correlation with either the u or v component of the wind is
significant at the 90% level.
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3.4. Backward Regression

3.4.1. Temperature
[28] Figure 8 shows the results of the UDEL, CRU, BL

and ERA DJF temperature regressed against the Niño 3.4
index. Since ENSO has proven to have such a strong role
shaping the leading mode of variance for seasonal tempera-
ture and precipitation, the backward regression should look
similar to EOF1 and be statistically significant over the
majority of the domain. The regression fields do indeed
show clear similarities with the leading EOFs extracted in
Figure 3, documenting that these modes are in fact depicting
ENSO-related temperature variability. Positive regression
coefficients dominate over almost the entire domain, indic-
ative of the warming (cooling) of the tropical continent
during El Niño (La Niña). In the central subtropics, the
signal is reversed except for BL, consistent with the negative
loadings in EOF 1 over this region (Figure 3c). Again ERA
appears to outperform BL by correctly displaying the north-
south temperature gradient shown in CRU and to a lesser

extent in UDEL. The only major error in the ERA regression
field occurs over NE Brazil where the temperature response
to ENSO is exaggerated (Figure 8d). Warming associated
with El Niño is apparent along the west coast from Colombia
to Chile in all the data sets, although the signal in CRU has
the largest eastward extension. Finally, while focusing on
errors in the two model simulations, it is noteworthy to also
point out the large differences between the two observational
data sets. In fact differences between the observational data
sets CRU and UDEL are as large as between CRU and ERA.
For model validation it clearly matters which observational
data sets is used as ground truth.
[29] Over the northeast coast, ENSO (a unit deviation in

the Niño 3.4 index) accounts for �1�C of warming in BL
and ERA, which is much stronger than either observational
data set suggests. Since both runs produce large, positive
coefficients along the northeast coast not present in the
observations, irrespective of boundary conditions used, these
anomalous patterns may be related to a problem in the

Figure 8. (a) Regression of the DJF Niño 3.4 index against CRU DJF temperature, (b) same as Figure 8a
but for UDEL, (c) same as Figure 8a but for BL, and (d) same as Figure 8a but for ERA. Black contour
lines indicate 90% significance level of correlation coefficient.
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regional model itself, such as an unrealistically strong feed-
back mechanism, rather than caused by imperfect lateral
boundary conditions.
[30] To investigate the high regression coefficients over

NE Brazil in BL and ERA, the DJF Niño 3.4 index was
regressed against two feedback components that are known
to have the potential to amplify ENSO-related warming, DJF
soil moisture and cloud cover data from the different model
simulations. Indeed the regions of strongest ENSO-induced
warming in NE Brazil (Figure 8) are almost identical with the
areas of strongest ENSO-soil moisture coupling (Figure 9), in
both BL and ERA runs. The same is, to a lesser extent, also
true for the cloud-cover feedback (Figure 9). While the soil
moisture coupling is indeed very relevant to set up the tem-
perature response to ENSO [Barreiro and Diaz, 2011], our
results suggest that soil moisture and cloud cover may pro-
vide an unrealistically high positive feedback in the model
during El Niño, with strongly reduced soil moisture and
cloud cover further amplifying temperature.

3.4.2. Precipitation
[31] Figure 10 shows the backward-spatial regression of

DJF precipitation with the Niño 3.4 index. Significant drying
over Colombia, and especially over the northeast is apparent
during El Niño events in the observations from CRU and
UDEL (Figures 10a and 10b). BL (Figure 10c) shows a more
robust drying signal over the Colombian Andes than ERA
(Figure 10d) but fails to capture the significant increase in
precipitation over the southeast during El Niño events. All
data sets indicate wet conditions along the coast of Ecuador
and northern Peru during El Niño, but only the BL and ERA
model simulations seem capable to accurately distinguish
between a wet El Niño signal along the coast and a dry
signal over the high Andes [Francou et al., 2004]. ERA is
the only data set, which accurately portrays the dry condi-
tions on the Altiplano observed during El Niño [e.g.,
Garreaud and Aceituno, 2001; Garreaud et al., 2003; Vuille
and Keimig, 2004]. This implies higher skill in this regard
than the observational data sets, which place the most arid
conditions too far north and east. Overall ERA again

Figure 9. (a) Regression of the BL DJF cloud cover against the DJF Niño 3.4 index, (b) same as Figure 9a
but for ERA, (c) regression of the BL DJF soil moisture against the Niño 3.4 index, and (d) same as
Figure 9c but for ERA. Black contour lines indicate 90% significance level of correlation coefficient.

MCGLONE AND VUILLE: ENSO AND SOUTH AMERICAN CLIMATE IN A RCM D06105D06105

10 of 15



performs significantly better than BL, and over regions of
complex topography also appears to outperform the obser-
vational data sets.

4. Discussion

[32] Given that the two observational data sets yielded
different results and both UDEL and CRU have been widely
applied in observational studies over South America, it is of
interest to analyze these results in some more detail.
Garreaud et al. [2009], for example, recently performed a
similar study regarding the association between ENSO and
other climate modes on temperature and precipitation vari-
ability in South America using UDEL data and relying on
the same spatial regression approach as in this study.
However, instead of using seasonal temperature and pre-
cipitation, Garreaud et al. [2009] used annual averages of
UDEL from 1959 to 1999 and regressed them against the
Multivariate ENSO Index (MEI). The MEI is another way
to measure ENSO, calculated as the first unrotated principal

component over the tropical Pacific of sea level pressure,
zonal and meridional components of the surface wind, SST,
surface air temperature, and total cloudiness fraction
[Wolter and Timlin, 1993]. Here we compare the results by
Garreaud et al. [2009] to our own annual regressions
between Niño 3.4 and temperature and precipitation to
explore the stationarity of the ENSO fingerprint over dif-
ferent time periods, the changes of preferred temperature and
precipitation patterns using a different measurement of
ENSO and the annual versus wet season fingerprint. We will
refer to the results from the Garreaud et al. [2009] study as
UDEL2. For annual temperature, UDEL2 (Figure 11a)
implies warmer (cooler) than normal conditions over tropical
and subtropical latitudes during a positive (negative) MEI.
As with DJF, annual temperature associations with ENSO
are uniform over tropical South America. Both of the UDEL
analyses (Figures 11a and 11b) look similar to each other,
except the response is stronger along the northeast coast in
UDEL and negative over southeastern Brazil (Figure 11b).
CRU’s annual temperature regression (Figure 11c) looks

Figure 10. (a) Regression of the DJF Niño 3.4 index against CRU DJF precipitation, (b) same as
Figure 10a but for UDEL, (c) same as Figure 10a but for BL, and (d) same as Figure 10a but for ERA. Black
contour lines indicate 90% significance level of correlation coefficient.
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similar to both UDEL regressions with warming over the
entire domain during a positive Niño 3.4 index. While all
three observational data sets show the strongest warming
occurring along the west coast, the amplitude of the warm-
ing is a bit higher in CRU. While most similar to UDEL,
CRU also displays slightly stronger warming over the
northeastern Amazon than both UDEL analyses.
[33] Both BL and ERA (Figures 11d and 11e) appear to

overestimate the annual warming associated with El Niño
over most of the domain, when compared with the observa-
tional data sets. They are notably different from observations
over the northeast coast where they both show excess
warming during an El Niño event. Again, this is likely related
to positive feedbacks discussed earlier between Niño 3.4 and
annual soil moisture and cloud cover (Figure 9). The erro-
neous strong warming during El Niño events over the
southeast of the domain seen in the BL regression field on the
other hand (Figure 11d) seems likely related to errors in the
driving data set, since the simulation relying on ERA data is
perfectly capable of reproducing the lack of an ENSO influ-
ence on temperature in that region (Figure 11e). When the
annual ENSO fingerprint is compared to the DJF fingerprint,
the main difference is the greater magnitude of warming over
the Amazon Basin during DJF in CRU, BL and ERA. All the
data sets indicate warming or no temperature anomaly during
El Niño over the central subtropics in the annual fingerprint,
whereas during DJF, all data sets except the BL-driven sim-
ulation exhibit cooling.

[34] Garreaud et al. [2009] likewise performed a spatial
regression analysis for annual precipitation (Figure 12).
Again, an updated UDEL precipitation analysis from 1961
to 1990 with the Niño 3.4 index is performed for compari-
son. The results in Figure 12a again suggest that tropical
South America is associated with below normal precipitation
during a positive MEI (El Niño) while above normal pre-
cipitation characterizes the southeastern portion of the con-
tinent, with opposite conditions prevailing during La Niña.
The two UDEL analyses again look almost identical to each
other indicating that the change in time period and ENSO
index used is not an important factor when considering
ENSO’s fingerprint over tropical South America (Figures 12a
and 12b). CRU captures the general drought conditions over
northern South America, especially the increased drying over
the northeast during El Niño and also shows positive coef-
ficients over the southeast (Figure 12c). ENSO’s effect on
high-altitude precipitation is not always represented well by
spatially interpolated data sets due to complex terrain, the
horizontal resolution of the precipitation data and the lack of
station data as input, which leads to spatial interpolation
errors across regions with large precipitation gradients. An
example is the coast of southern Ecuador and northern Peru,
which records flood conditions at the height of an El Niño
event. The positive coefficients in Ecuador are realistically
restricted to the narrow coastline in UDEL and UDEL2.
CRU on the other hand extends the strong positive precipi-
tation anomalies too far inland toward the high Andes and

Figure 11. (a) UDEL annual mean surface air temperature regressed against MEI from 1959 to 1999
(from Garreaud et al. [2009], reprinted with permission from Elsevier), (b) same as Figure 11a except
using Niño 3.4 index from 1961 to 1990, (c) same as Figure 11b except for CRU, (d) same as Figure 11b
except for BL, and (e) same as Figure 11b except for ERA. Black contour lines indicate 90% significance
level of correlation coefficient.
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even the interior of the Amazon basin. Over the lowlands of
Colombia and Venezuela, UDEL, UDEL2 and CRU all
capture a significant increase in precipitation associated with
El Niño events.
[35] When these observations are compared to BL and

ERA, it seems that the model simulations lack a coherent,
large-scale signal. ERA barely captures the overall drying
trend over the north during El Niño (Figure 12e), while BL
does a somewhat better job capturing the magnitude of
the drying over the northeast and the Colombian Andes
(Figure 12d). ERA does however display a significant
change in precipitation both over the northeast and to the
southeast that is spatially more like the observational data
sets, but the magnitude is too weak to be displayed. BL on
the other hand, correctly captures the magnitude of the
ENSO-related precipitation signal to the southeast but not its
full spatial extent. Using annual data eliminates the drying
signal seen over the central Andes during DJF, highlighting
the importance of accounting for seasonality when studying
ENSO influences. Also, over the southeast, the wet signal
seen in DJF is reduced and displaced farther south into the
subtropics. Overall it appears as if BL is better able to
reproduce the observed magnitude of the ENSO-induced
precipitation anomalies, while ERA more accurately simu-
lates the spatial significance.
[36] While both UDEL and CRU have 0.5 degree resolu-

tion, the UDEL data appears to show more fine-scale details,

implying less spatial interpolation or smoothing. Clearly
there appear to be some key differences in the observational
data sets. Using CRU data for model validation of DJF
temperature (Figure 1) shows the model having a strong cold
bias over the interior Amazon basin. When using UDEL data
for the same analysis, however, the cold bias produced by
the models over the interior Amazon basin is small to almost
negligible. Similarly UDEL data would suggest that the
precipitation bias of the models is much larger with stronger
drying over the interior of the continent, but no wet bias to
the north when compared to CRU. Relying on UDEL data
for model validation, on the other hand, improves the wet
bias of the models over the Andes and implies a dry model
bias along the west coast.

5. Conclusions

[37] Alongside testing the models’ ability to accurately
simulate the leading mode of climate variability, ENSO,
under modern-day conditions, the ultimate goal of this
study is to quantitatively evaluate the PRECIS model per-
formance and diagnose the role played by errors introduced
by the driving lateral boundary conditions. This analysis is
crucial to better understand the model’s ability and limita-
tions in projecting future climate change for the tropical
South American region [Urrutia and Vuille, 2009;
Marengo et al., 2010].

Figure 12. (a) UDEL annual mean precipitation regressed on MEI from 1959 to 1999. (from Garreaud
et al. [2009], reprinted with permission from Elsevier), (b) same as Figure 12a except using Niño 3.4 index
from 1961 to 1990, (c) same as Figure 12b except for CRU, (d) same as Figure 12b except for BL, and
(e) same as Figure 12b except for ERA. Black contour lines indicate 90% significance level of correlation
coefficient.
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[38] This study has shown that errors in lateral boundary
conditions will influence the leading modes of DJF tem-
perature and precipitation variability as simulated by the
regional model. The ERA-driven simulation produces a
more realistic representation of the magnitude of these fields
for DJF EOF1 when compared to the observational EOFs
from CRU and UDEL. The ENSO signal in the SSTA
regression field also indicates that ERA is better able to
reproduce the mode captured by observations, while the BL
regression analysis tends to extend the central Pacific
anomalies too far east near the west coast of South America.
[39] Since the precipitation signal is more spatially com-

plex, it comes as no surprise that both BL and ERA EOF1
have larger differences when compared to CRU and UDEL
than the leading EOFs of temperature. Since UDEL captured
a different leading mode, it cannot be directly compared to
ERA and BL. CRU, BL and ERA all show negative coeffi-
cients over the north, but have different spatial patterns of
positive loadings to the southeast. The amplitude of the
positive coefficients to the southeast in BL are much less than
CRU, whereas ERA has equal amplitude to CRU but extends
the high-amplitude signal farther west. Even though CRU is
not a model simulation but based on interpolation of actual
observed data, Figure 4d shows that ERA EOF1 provides the
most realistic representation of DJF precipitation’s leading
mode. CRU erroneously produces a mode that varies in phase
east and west of the Andes and does not show the wet El Niño
signal along the west coast of northern Peru and Ecuador
[Waylen and Caviedes, 1986; Rossel and Cadier, 2009]. BL
EOF1 on the other hand extends the wet El Niño signal along
the west coast too far inland up into the Andes. A backward
regression between temperature, precipitation and the Niño
3.4 index suggests that ERA again seems to do a better job at
replicating the pattern and magnitude of the regression
shown in the observational data sets.
[40] It is well known that the use of regional climate

models, which better resolve regions of complex topography
such as the Andes, improves the climatic representation on a
regional scale when compared to a GCM [e.g., Sun et al.,
2005; Feser et al., 2011]. Our study, however, even sug-
gest that the RCM can rival the quality of gridded observa-
tional data sets in regions of poor data coverage and complex
topography. However, the errors and problems within the
observational data sets along the Andes make it hard to
verify whether the reanalysis data and increased resolution
would consistently create added value. Until there is a better
observational network that addresses the inhomogeneities
and data errors over the tropical Andes and South America,
it is difficult to determine exactly how much added value can
be gained from employing dynamically downscaled GCM
output over complex terrain.
[41] The results of this study demonstrate that while

dynamical downscaling of GCM output has some limita-
tions, these shortcomings improve when using reanalysis
data as boundary conditions. Many of the regional climate
model inaccuracies and biases, however, relate back to the
model parameterizations and model physics. Despite these
limitations, there is still a role for dynamical downscaling
studies using future emission scenarios. Creating ensembles
using several GCM-RCM combinations or comparing
results with studies that rely on statistical downscaling are

additional avenues to reduce uncertainties in future regional-
scale climate change projections.
[42] Using two observational data sets helps to better

evaluate the model performance and presents some inter-
esting results regarding the quality of observational gridded
data products over tropical South America. Both observa-
tional data sets seem to have strengths and weaknesses. The
inconsistencies in the data sets most likely arise from diffi-
culties in data access, nondigitized records, inhomogeneities,
and presence of data errors [Garreaud et al., 2009]. These
errors are most likely exacerbated over the Andes and
Amazon Basin where sparse data, discontinuous records and
complex topography with strong climatic gradients can lead
to interpolation errors.
[43] A few assumptions were made in order to perform the

analyses in this study. Although the leading EOF was shown
to capture ENSO, some error may arise in the EOF loadings
from the simulation errors associated with, for example,
PRECIS’ overestimate of precipitation along the eastern
slopes of the Andes. Also, both the correlation and regres-
sion analyses implicitly assume a linear relationship between
ENSO and the two variables temperature and precipitation.
ENSO’s effect on temperature and precipitation is not
always best described with a linear relationship, but over this
region it is a reasonable first-order assumption [Garreaud
et al., 2009]. There are also different spatiotemporal char-
acteristics associated with each ENSO event, so the Niño 3.4
index and the MEI may not capture every individual ENSO
event to the same extent. Nonetheless, the comparison of our
results with those obtained by Garreaud et al. [2009] using
annual temperature and precipitation data suggest that over
the past 50 years, it matters little which index is used to
describe the climatic impacts over tropical South America.
Similarly the choice of time period (1950–99 versus 1961–
90) does not appear to dramatically alter the results, sug-
gesting that ENSO’s influence on tropical South American
climate was stationary over this period. Seasonality seems to
be important, as there were some differences in the regres-
sion fields of temperature and precipitation with ENSO
between annual and DJF time scales.
[44] This study explores the contemporaneous relationship

between temperature, precipitation and ENSO without tak-
ing into account a potential lead-lag relationship with the
climate indices. While the analyses between the ENSO
indices and climate variables over tropical South America
yielded significant results, they might have produced an
even stronger relationship if a lag between ENSO forcing
and climate response had been introduced. For example
tropical Pacific SSTA are known to lead the temperature
response over the tropical Andes by 1–2 months [Vuille
et al., 2000].
[45] Since this model has been used to simulate future

climate change over the same domain [Urrutia and Vuille,
2009; Marengo et al., 2010], the results produced here
may also be relevant for the discussion of how potential
future changes in ENSO characteristics might impact climate
over South America. A big question mark in this regard is
the whether the relationship between ENSO, temperature
and precipitation over tropical South America as presented
here, will remain stationary.
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