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CLIMATE VARIABILITY AND HIGH ALTITUDE
TEMPERATURE AND PRECIPITATION

Mathias Vuille
Department of Atmospheric and Environmental Sciences,
University at Albany, State University of New York,
Albany, NY, USA

Definition
High altitude temperature and precipitation variability: It
is the inherent characteristic of precipitation and tempera-
ture to change over time. Variability is measured as the
temperature or precipitation deviations (anomalies) over
a given period of time from a climate statistic (long-term
mean) averaged over a reference period.

Introduction
Mountains give rise to very distinct climates at their
highest peaks where glaciers exist, and this mountain cli-
mate varies in ways that is quite different from nearby
low elevations. Mountain-induced dynamic and thermo-
dynamic processes modify synoptic weather systems and
create regional-scale atmospheric circulation regimes that
generate distinct wind systems, cloudiness, Precipitation
patterns, etc., and lead to a very unique mountain climate
(e.g., Barry, 2008). However, climate variability at high
altitude (including temperature and precipitation variabil-
ity) is not nearly as well understood as similar variations at
lower elevations. The remoteness and difficulty in
accessing many high elevation sites, combined with the
complications of operating automated weather stations
(AWS) at high elevations, make long-term measurements
very challenging. Furthermore, the complex topography
of high elevation sites often leads to very site-specific
measurements that are not always representative of
a larger regional mountain environment.

Climate observations at high elevation
While some high elevation observatories, in particular in the
Alps, have maintained climate records for over 100 years,
most mountain regions of the world are difficult to access
and essentially devoid of any high-altitude observations.
New advances in instrumentation, satellite telemetry, and
power supply through solar panels have made high eleva-
tion measurements more feasible in these regions over the
past decade. For example, new and unique measurements
have become available from remote glacier sites in the trop-
ical Andean Glaciers, the Himalayas, and Mt. Kilimanjaro,
thanks to the installation of such AWS – locations, where
previously no climatic information existed (e.g., Hardy
et al., 1998, 2003; Georges and Kaser, 2002; Moore and
Semple, 2004; Mölg et al., 2009). Figure 1 shows an exam-
ple from anAWS installed and operated by theUniversity of
Massachusetts, Amherst on the summit of Quelccaya ice
cap in Peru (14�S) at 5,670 m above sea level. Still, to be
truly useful for climate research it is imperative that these

AWS remain operational for several years and ideally
decades to allow detection of trends and variability on
interannual to decadal timescales (e.g., Bradley et al., 2004).

Characteristics of temperature and precipitation
at high elevations
In the free atmosphere temperature decreases with
height at a rate of about 6�C km�1 (Environmental Lapse
Rate), although this rate varies by region, season, time of
day, and by the type of air mass. Similarly the diurnal tem-
perature range also decreases with elevation in the free
atmosphere; an effect that can also be observed on moun-
tain slopes and summits where mixing of slope air with the
free atmosphere occurs (Barry, 2008). The comparison
between near-surface observations at high elevations and
measurements in the surrounding free atmosphere at the
same elevation, however, is not straightforward (e.g.,
Pepin and Seidel, 2005) as temperature in the free

Climate Variability and High Altitude Temperature and
Precipitation, Figure 1 Automated weather station (AWS) on
the summit of Quelccaya ice cap, located at 14�S in the eastern
Peruvian Andes (Cordillera Vilcanota) at 5,670 m above sea level.
Photo courtesy of Douglas R. Hardy.
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atmosphere is generally colder than its near-surface coun-
terpart due to both latent and sensible heating of the atmo-
sphere above elevated surfaces. Therefore, temperature
lapse rates on a mountain slope may bear a close resem-
blance to the free atmospheric lapse rate or may be almost
independent (Barry, 2008).

Precipitation distribution and amount are also strongly
affected by mountain barriers; but in many mountain
regions the exact mechanisms and impacts on Precipita-
tion are still poorly understood due to paucity of data
and problems related to accurate measurements of snow-
fall totals, in particular at exposed, windy, high-elevation
sites (e.g., Falvey and Garreaud, 2007). In general, high
elevations sites are affected by mountain-induced Oro-
graphic Uplift or convective instability that lead to region-
ally enhanced Precipitation. In typical convective patterns,
common on tropical mountains, Precipitation is usually
highest near the cloud base (generally at or below 1,500 m)
and decreases significantly at higher elevations. The zone
of maximum Precipitation tends to occur at higher eleva-
tions in drier climates. In mid-latitudes where Precipitation
is derived primarily from advective situations, at least during
thewinter season, forced large-scale ascent over a barrier can
lead to enhanced Precipitation even at 3,000 m or above on
the windward side, due to both higher intensity and longer
duration of Precipitation events (Barry, 2008). On the lee-
ward side, however, the remaining moisture that spills over
the mountain crest is usually insufficient to induce signifi-
cant condensation and Precipitation amounts tend to be
much lower than on the windward side.

Climate variability and change at high elevation
In many mountain ranges of the world both Precipitation
and temperature vary on interannual timescales in
response to changes in the large-scale circulation, forced
by major modes of ocean–atmosphere interactions. In
the Alps, for example, winter precipitation is sensitive to
the phase of the North Atlantic Oscillation, with decreased
snowfall and higher temperatures during its positive phase
(e.g., Beniston, 1997, 2006). Similarly Precipitation in parts
of the Rocky Mountains, the Cascades, and the Alaskan
coastal range (Alaskan Glaciers) are influenced by the
Pacific Decadal Oscillation, while snowfall amounts in
the mountains of East Africa and the Himalayas are sensi-
tive to the phase of the Indian Ocean dipole and the El
Niño–Southern Oscillation (ENSO) phenomenon (e.g.,
Vuille et al., 2005; Chan et al., 2008). Temperature and
snowfall variations in the tropical Andean Glaciers are also
primarily a reflection of ENSO variability (Vuille et al.,
2000; Garreaud et al., 2003), while the southern Andean
Glaciers are more strongly influenced by the state of the
Antarctic Oscillation (Gillett et al., 2006).

Superimposed on these natural climate variations,
caused by ocean–atmosphere interactions, are long-term
trends in temperature and Precipitation that have become
discernible at many high-elevation sites over the past

decades. There is clear evidence from many mountain
ranges that the temperature increase over the past 100
years has been significantly amplified at high elevations
when compared with low elevations or the global average
temperature (e.g., Beniston et al., 1997; Diaz and Bradley,
1997), and that the warming is more closely related to an
increase in daily minimum temperature than a change in
the daily maximum (Diaz and Bradley, 1997; Beniston,
2006; Giambelluca et al., 2008).

The differential temperature trends with altitude are
particularly apparent in the Alps and on the Tibetan Pla-
teau. In the Alps many locations have seen an increase in
minimum temperature of 2�C or more during the twentieth
century (Beniston, 2006). Liu and Chen (2000) reported
a significant warming on the Tibetan Plateau since the
1950s (0.16�C per decade), and especially during winter
(0.32�C per decade). They observed an amplified
warming at higher elevations, which was later attributed
primarily to a strong elevation dependence of trends in
minimum temperature (Liu et al., 2009). However, this
dependence does not seem to hold for temperature
extremes (You et al., 2008). In the mountains of the west-
ern United States (Rocky Mountains) the strongest
warming (0.5–0.6�C between 1950 and 2000) seems to
have occurred below 2,000 m (Diaz, 2005), although
strong summertime warming at high elevations has lead
to a significant reduction of alpine tundra (Diaz and
Eischeid, 2007). In East Africa the lack of an adequate
observational network has so far precluded a definite
assessment of temperature changes at high altitudes.
While some suggest that temperature has also increased
significantly at highest elevations of the East African
Mountains (e.g., Taylor et al., 2006), this has been
questioned by others (e.g., Mölg et al., 2006). In the trop-
ical Andean Glaciers the observed warming is stronger at
higher elevation only on the eastern slope, while on the
western side the strongest warming is recorded close to
sea level (Vuille and Bradley, 2000; Vuille et al., 2003).
This differential response may be related to changes in
cloud cover and the lack of a seasonal snow cover at high
elevations, which precludes an amplified warming due to
a snow-albedo feedback (e.g., Pepin and Lundquist,
2008). Nonetheless, temperatures at high elevations in
the tropical Andean Glaciers have increased by about
0.68�C over the past 70 years (Vuille et al., 2008), consis-
tent with the observed increase in the freezing level height
(altitude at which air temperature is close to 0�C) of about
1.43 m year�1 between 1948 and 2000 (Diaz et al., 2003).
Much of the warming in the high elevation tropics and
hence the increase in freezing levels can be traced back
to warmer tropical sea surface temperatures SST (Diaz
and Graham, 1996; Diaz et al., 2003; Vuille et al., 2003).
In the southern Andean Glaciers of central Chile the freez-
ing level has also increased by 122 m during winter and
200 m during summer between 1975 and 2001 (Carrasco
et al., 2005), leading to a rise in the glacier equilibrium line
altitude (Snow Line) (Carrasco et al., 2008).
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Projections of future climate change under different
Greenhouse Gas emission scenarios suggest that in many
locations higher elevations will continue to experience
the strongest warming (Global Warming and its Effect
on Snow/Ice/Glaciers). Fyfe and Flato (1999) report that
the strongest twenty-first century warming in the Rocky
Mountains will occur at the highest elevations. Similarly
model projections in the tropical Andean Glaciers suggest
that both surface and free-tropospheric temperature
changes will be largest at higher elevations where glaciers
are located (Bradley et al., 2006; Vuille et al., 2008;
Urrutia and Vuille, 2009). Simulations with regional cli-
mate models in the Alps also project a significant warming
of 4–6�C by the end of the twenty-first century, when
compared to the 1961–1990 average. In general winters
will be warmer and more humid in the Alps, while sum-
mers will also be warmer, but drier than today (see
Beniston, 2006 and references therein). For the Tibetan
Plateau Liu et al. (2009) project increases between 2.9�C
(below 500 m) and 3.9�C (above 5,000 m) by the end of
the twenty-first century.

While there is strong evidence for warming in most
mountain regions, the picture for changes in Precipitation
is much more mixed. In the northwestern Alps winter pre-
cipitation has increased significantly during the twentieth
century (up to 30% in the last 100 years) but decreased
by the same amount in the southeast (Schmidli et al.,
2005; Schär and Frei, 2005). Vuille et al. (2003) found
a positive Precipitation trend in the tropical Andean Gla-
ciers north of about 10�S and a negative trend further
south, but in general the trends were weak and statistically
not significant. Bhutiyani et al. (2009) reported
a significant decline in summer monsoon Precipitation
over the northwestern Himalayas during the past 140
years, but found no change in the amount of winter Precip-
itation. In general changes in timing or amount of Precip-
itation are much more ambiguous and difficult to detect
and there is no clear evidence of significant changes in
Precipitation patterns in most mountain regions. Nonethe-
less Precipitation characteristics at high elevation will
change significantly over the next 100 years as the
increase in temperature will lead to more Precipitation
falling in the form of rain. For roughly every �C rise in
temperature the snow/rain transition will rise by about
150 m (e.g., Beniston, 2003).

Summary
Temperature and Precipitation variability are still poorly
understood at many high elevation sites due to the lack
of an adequate long-term monitoring network, but studies
on mountain-induced dynamic and thermodynamic pro-
cesses have advanced our understanding of climate vari-
ability at high altitude. In many mountain ranges of the
world large-scale ocean-atmosphere interactions are the
main driver for observed variability in both Precipitation
and temperature. Over the past 100 years long-term

warming trends (Global Warming and its Effect on
Snow/Ice/Glaciers) have been superimposed on this natu-
ral variability and become increasingly evident at most
high altitude sites. In many mountain regions of the world
high altitudes appear to experience a stronger warming
than the surrounding lowlands. Projections of future cli-
mate change in the twenty-first century suggest continued
warming and rising freezing levels, combined with altered
Precipitation patterns in many high altitude locals.
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CLOUDBURST

Vijay Kumar
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Roorkee, India

Cloudbursts have no strict meteorological definition. The
term usually signifies a sudden, heavy fall of rain over
a small area in a short period of time. Cloudburst repre-
sents cumulonimbus convection in conditions of marked
moist thermodynamic instability and deep, rapid dynamic
lifting by steep orography. The phenomenon occurs due to
sudden upward drift of moisture-laden clouds as a tall
vertical column termed “Cumulonimbus clouds.” The
ascending moisture-laden clouds become heavier and at
certain point they produce violent rainstorm within
a short interval. Orographic lifting of moist unstable air
releases convective available potential energy necessary
for a cloudburst (Das et al., 2006).
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