## ATM 211

Skew-T intro, and moisture variables:

| Name: |  |
|-------|--|
|       |  |

Using your Skew-T, solve the following problems:

1. 
$$T = 20^{\circ} C$$
,  $T_d = 10^{\circ} C$  at 1000 mb.

$$w =$$
\_\_\_\_\_  $RH =$ \_\_\_\_\_

2. 
$$T = 14^{\circ} C$$
,  $T_d = -2^{\circ} C$  at 850 mb.

$$w =$$
\_\_\_\_\_  $RH =$ \_\_\_\_\_

3. 
$$T = 23^{\circ} C$$
,  $T_d = 22^{\circ} C$  at 980 mb.

$$W =$$
\_\_\_\_\_  $RH =$ \_\_\_\_\_

4. 
$$T = 0^{\circ} C$$
,  $T_d = -31^{\circ} C$  at 560 mb.

$$w =$$
\_\_\_\_\_  $w_s =$ \_\_\_\_  $RH =$ \_\_\_\_\_

5. 
$$T = 38^{\circ} C$$
,  $T_d = -3^{\circ} C$  at 1010 mb.

$$W =$$
\_\_\_\_\_  $W_s =$ \_\_\_\_  $RH =$ \_\_\_\_\_

6. 
$$w = 6 \text{ g/kg}$$
,  $w_s = 10 \text{ g/kg}$  at 850 mb.

$$T =$$
\_\_\_\_\_  $RH =$ \_\_\_\_\_

7. 
$$w = 1.4 \text{ g/kg}$$
,  $w_s = 5.0 \text{ g/kg}$  at 1000 mb.

$$T =$$
\_\_\_\_\_  $T_d =$ \_\_\_\_  $RH =$ \_\_\_\_\_

8. 
$$w = 9 \text{ g/kg}$$
,  $w_s = 28 \text{ g/kg}$  at 950 mb.

$$T = \underline{\hspace{1cm}} T_d = \underline{\hspace{1cm}} RH = \underline{\hspace{1cm}}$$

9. RH = 50%, w = 4.0 g/kg at 750 mb.

T =\_\_\_\_\_  $W_s =$ \_\_\_\_ Td =\_\_\_\_\_

10. RH = 100%, T =  $-15^{\circ}$  C at 600 mb.

 $T_d = \underline{\hspace{1cm}} w = \underline{\hspace{1cm}} w_s = \underline{\hspace{1cm}}$ 

11. Why does the relative humidity vary during a typical diurnal (daily) cycle?

12. Is it possible for the relative humidity to be higher on a cold day, than on a warm day? Why/why not?