Hurricane Katrina (2005), gradient wind, the centripetal force, and spin ATM 210 -- Fall 2023 -- Fovell

Review

- Four fundamental forces influence the horizontal wind
 - Pressure gradient force (PGF)
 - Coriolis force
 - Centripetal or centrifugal force
 - Friction force
- Coriolis is a self-serving apparent force that explains real, important phenomena
- Centrifugal is a self-serving apparent force that is often centripetal force and/or inertia in disguise

Gradient wind balance: Recipe: PGF + Coriolis + Centripetal

Gradient wind balance: CCW around L, CW around H in NH

Reminder: tropical cyclones do not form on, or cross, the equator

61 years of tropical cyclone tracks

Hurricane Katrina (2005)

Oblique view

Surface chart showing sea-level pressure (SLP)

09 UTC 8/29/2005

Tighter isobar spacing \rightarrow faster winds

09 UTC 8/29/2005

09 UTC 8/29/2005

Question #1: We often see strong flow around L, but almost never around H. Why?

Question #2: Curving flow involves centripetal force. But where did the force come from?

Question #3: Why use centripetal force and not centrifugal force?

You in the cylinder ride. CCW or CW, it's all the same pain.

At any instant, **inertia** wants you moving **straight**

You may interpret this as a centrifugal force, pushing you against the wall

But it's really a **centripetal force**, supplied by the **wall**

Centripetal force points in towards the center of **spin**

Adding centripetal to the L means flow curves CCW

Adding centripetal to the H means flow curves CW

But this does not explain where the centripetal force came from, why the speed changes, and why CCW flow is subgeostrophic and CW flow is supergeostrophic

Start with geostrophic balance: PGF + Coriolis

There is a force balance. No acceleration. Yet.

Suppose the air path is towards curving isobars...

5

Air **can** cross isobars. But the forces will become unbalanced.

Notice also that this path is carrying the air towards higher pressure!

7

PGF always points $H \rightarrow L$ Coriolis always to right...

...but note the forces are no longer opposing. They are unbalanced.

A component of the PGF is now **opposing** the motion. The air **slows down**.

Coriolis is proportional to speed. As the air **slows**, Coriolis gets weaker.

PGF "wins" the tug-of-war, turning the wind.

As the wind turns, so does Coriolis, always to the right.

So the air **slows** into the CCW turn as PGF gains the upper hand

Where is the centripetal force? It is the **force imbalance**.

Implications of Newton's 1st and 2nd laws

- Unbalanced forces \rightarrow acceleration
- Acceleration is a change of speed, direction, or both
- Air circulating CCW around a large-scale L (cyclone) parallel to isobars is **constantly changing direction**
- A portion of the PGF is acting against the motion, slowing the air down
- You don't need a centrifugal force to explain this
- You don't really need a centripetal force either

Do the same for CW flow and see the air speeds up as it curves CW

So why don't we see stronger winds around anticyclones (H)?

Typical situation. Something is breaking the symmetry.

Part of the answer: spin makes low pressure

And it doesn't matter which way you stir. <u>Cyclostrophic flow:</u> "to turn in a circle".

Spin supports the low and works against the high.

[end]