The elusive polar jet

ATM 210 -- Fall 2023 -- Fovell

The one-cell model for hemispheric circulation does not work

Earth rotation breaks it up into 3 cells per hemisphere, providing preferred latitudes for storms and deserts

We call these cells Polar, Ferrel, and Hadley. The Ferrel is thermally indirect

T gradient \rightarrow p gradient \rightarrow west to east geostrophic wind

500 mb **isobaric surface** slants down towards cold pole

WINTER MEAN 500 mb height

WINTER MEAN 500 mb height

But this picture needs to be revised...

The **tropopause** also tilts down towards the cold pole

A more accurate view of the 3 cells

So the Polar cell is **shallower** than the Hadley cell

And there are **two jets**, one at 30°N, the other at 60°N

Both jets are located at the tropopause

The **polar jet** is located at a lower altitude and is **much faster**

And it is located above the **polar front** at 60°N: Sharp N-S T gradient \rightarrow westerly vertical wind shear

Two tropopause jets

- Subtropical jet (weaker; nominally above 30°N)
 - Moderate horizontal T gradient [colder to N]
 - Moderate westerly vertical wind shear
 - Deeper tropospheric depth [warmer]
 - Jet max about 40 m/s (90 mph) in winter season composite
- **Polar jet** (stronger; nominally above 60°N)
 - Very large horizontal T gradient [colder to N]
 - Substantial westerly vertical wind shear [above polar front]
 - Shallower tropospheric depth [colder]
 - Jet max in winter season composite...

NCEP/NCAR Reanalysis Zonal Wind (m/s) Composite Mean

NH WINTER

16

The Case of the Missing Jet

"A three-pipe problem?"

Facts at hand

- **Two** jets both at **tropopause**:
 - Subtropical jet above 30°N [slower]
 - Polar jet above 60°N [faster]
- Tropopause tilts down towards the cold pole
 - Polar jet has a lower physical altitude above sea level
- Although slower, the subtropical jet shows up very well in seasonal composites while the polar jet is nearly absent!

NCEP/NCAR Reanalysis Zonal Wind (m/s) Composite Mean

NH WINTER

One day's middle tropospheric winds

Very windy between 40-60°N Not so windy at 30°N... those winds are a little higher up.

https://svs.gsfc.nasa.gov/3864

The polar jet meanders → it's wavy → it shifts in time and space → it smears itself out

polar jet

-30°N

https://svs.gsfc.nasa.gov/3864

A month-long animation

And if we average all this along latitude circles...

https://svs.gsfc.nasa.gov/3864

NCEP/NCAR Reanalysis Zonal Wind (m/s) Composite Mean

NH WINTER

23

NCEP/NCAR Reanalysis Zonal Wind (m/s) Composite Mean

NH SUMMER

It is weaker and shifted N but **does not meander quite as much**.

24

The means are important but so are the variances

And the variances are the weather

[case closed]