ATM 210 Chapter 1 and 2 practice problems

Fall, 2023 - Fovell
Some equations $\left[p=\operatorname{pressure}(\mathrm{Pa}) ; \rho=\operatorname{density}\left(\mathrm{kg} / \mathrm{m}^{3}\right) ; T=\right.$ temperature $(\mathrm{K}) ; \bar{T}=$ layer mean temperature (K); $Z=$ height (m); $E=$ energy per unit area; $\lambda=$ wavelength (microns)]:

- $p=\rho R T$
- $\frac{d p}{d z}=-\rho g$
- $Z_{2}-Z_{1}=\frac{R \bar{T}}{g} \ln \left(\frac{p_{1}}{p_{2}}\right)$
- $E=\sigma T^{4}$
- $\lambda_{\max } \approx \frac{3000}{T}$

Some constants/conversions:

- $R=287 \mathrm{~J} / \mathrm{kg} / \mathrm{K}$
- $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$
- $1 \mathrm{mb}=1 \mathrm{hPa}=100 \mathrm{~Pa}$
- $1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}$
- $1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m}$
- $1 \mathrm{~N}=\frac{\mathrm{kg} \mathrm{m}}{\mathrm{s}^{2}}$

1. A dry air parcel has $\mathrm{T}=300 \mathrm{~K}$ and density $1 \mathrm{~kg} / \mathrm{m}^{3}$. What pressure is it at? Express in mb for hPa.
Start with the IGL $p=\rho R T$. Plug in.

$$
\begin{aligned}
p & =\rho R T \\
& =\left(1 \mathrm{~kg} / \mathrm{m}^{3}\right)(287 \mathrm{~J} / \mathrm{kg} / \mathrm{K})(300 \mathrm{~K}) \\
& =86100 \mathrm{~N} / \mathrm{m}^{2} \\
& =86100 \mathrm{~Pa} \\
& =861 \mathrm{mb}
\end{aligned}
$$

2. Dry air parcel A is at 800 mb with temperature $0^{\circ} \mathrm{C}$. Dry air parcel B has the same temperature but is at 700 mb . Which parcel is less dense? For full credit, calculate and compare the densities.
Qualitative response: The IGL is $p=\rho R T$. We are comparing dry air parcels at the same temperature, so both T and R are constant in this problem. Parcel B has a lower p so its density also has to be smaller.

Quantitative response: Parcel A has $p=80000 \mathrm{~Pa}$ and $T=273 \mathrm{~K}$, so

$$
\begin{aligned}
p & =\rho R T \\
\rho & =\frac{p}{R T} \\
& =\frac{(80000 \mathrm{~Pa})}{(287 \mathrm{~J} / \mathrm{kg} / \mathrm{K})(273 \mathrm{~K})} \\
& =1.02 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Parcel B has $p=70000 \mathrm{~Pa}$ and $T=273 \mathrm{~K}$, so

$$
\begin{aligned}
\rho & =\frac{p}{R T} \\
& =\frac{(70000 \mathrm{~Pa})}{(287 \mathrm{~J} / \mathrm{kg} / \mathrm{K})(273 \mathrm{~K})} \\
& =0.89 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Parcel B has lower density.
3. Layer A extends between 800 and 600 mb , and layer B extends between 300 and 100 mb . Which layer contains more mass?
They're the same. Pressure is proportional to mass; the pressure depths of the layers (200 mb) are the same so the mass is the same.
4. A hot sidewalk has $T=40^{\circ} \mathrm{C}$. An ice cube has $T=0^{\circ} \mathrm{C}$. How much more radiation per unit area is the sidewalk producing?
Sidewalk $T=40^{\circ} \mathrm{C}=313 \mathrm{~K}$. Ice cube $T=0^{\circ} \mathrm{C}=273 \mathrm{~K}$. Take the ratio of the StefanBoltzmann laws for the two objects:

$$
\begin{aligned}
\frac{E_{\text {sidewalk }}}{E_{\text {icecube }}} & =\frac{\sigma T_{\text {sidewalk }}^{4}}{\sigma T_{\text {icecube }}^{4}} \\
& =\left(\frac{T_{\text {sidewalk }}^{4}}{T_{\text {icecube }}^{4}}\right) \\
& =\left(\frac{313 \mathrm{~K}}{273 \mathrm{~K}}\right)^{4} \\
& =(1.15)^{4} \\
& =1.73
\end{aligned}
$$

The sidewalk is producing 1.73 times more radiation per unit area than the ice cube.
5. Suppose the density of air near the surface is constant with height and is $1 \mathrm{~kg} / \mathrm{m}^{3}$. What is the rate of change of pressure with height, in $\mathrm{mb} / \mathrm{km}$, presuming the atmosphere is hydrostatic (i.e., the hydrostatic balance applies)?

Start with the hydrostatic equation, the left hand side of which is the rate of pressure change with height, $d p / d z$, and plug in for ρ and g :

$$
\begin{aligned}
\frac{d p}{d z} & =-\rho g \\
& =-\left(1 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =-9.81 \mathrm{~N} / \mathrm{m}^{3} \\
& =-9.81 \mathrm{~Pa} / \mathrm{m} \cdot(1 \mathrm{mb}) /(100 \mathrm{~Pa}) \cdot(1000 \mathrm{~m}) /(1 \mathrm{~km}) \\
& =-98.1 \mathrm{mb} / \mathrm{km}
\end{aligned}
$$

Pressure decreases by roughly 100 mb per kilometer in the lower troposphere. So, if your surface pressure is 1000 mb , about 1 km above you the pressure is 900 mb , a reduction of 10%.
6. The hypsometric equation tells us the thickness $Z_{2}-Z_{1}$ of the $p_{1}-p_{2}$ layer - where $Z_{2}>Z_{1}$ and $p_{1}>p_{2}-$ is:

$$
Z_{2}-Z_{1}=\frac{R \bar{T}}{g} \ln \frac{p_{1}}{p_{2}}
$$

Say the mean temperature of the $1000-500 \mathrm{mb}$ layer is $0^{\circ} \mathrm{C}$. What is its thickness?

$$
\begin{aligned}
Z_{2}-Z_{1} & =\frac{R \bar{T}}{g} \ln \frac{p_{1}}{p_{2}} \\
& =\frac{(287 \mathrm{~J} / \mathrm{kg} / \mathrm{K})(273 \mathrm{~K})}{9.81 \mathrm{~m} / \mathrm{s}^{2}} \ln \left(\frac{1000}{500}\right) \\
& =7986.9 \mathrm{~J} / \mathrm{kg} \mathrm{~s}^{2} / \mathrm{m}(0.693) \\
& =5536 \mathrm{~m}
\end{aligned}
$$

7. Today, the $1000-200 \mathrm{mb}$ layer mean T is 255 K . Tomorrow, it will be 260 K . How much thicker will the layer be tomorrow than today?
Straightforward application of the hypseometric equation similar to the question above. Today's thickness is 12007 m , tomorrow's will be 12242 m , so the thickness increase is 235 m.
8. Betelgeuse is a star in the constellation Orion with an outer surface temperature of $\mathrm{T}=3600$ K. What is its wavelength of maximum emission? What color is the star?

Wien's law: $\lambda_{\max }=\frac{3000}{T}=3000 / 3600=0.83 \mu \mathrm{~m}$. This wavelength is outside of the visible range $(0.4-0.7 \mu \mathrm{~m})$, so the star is red. Among the colors visible to us, more red than others is being produced, so we see red.

