
JohnnyWei-Bing Lin

A Hands-On Introduction to Using
Python in the Atmospheric and

Oceanic Sciences

http://www.johnny-lin.com/pyintro

2012

Robert Fovell
wherever you see print statements,
they need to use parentheses

c� 2012 Johnny Wei-Bing Lin.
Some rights reserved. Printed version: ISBN 978-1-300-07616-2. PDF ver-
sions: No ISBNs are assigned.

This work is licensed under the Creative Commons Attribution-Noncom-
mercial-Share Alike 3.0 United States License (CC BY-NC-SA). To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
us or send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA.

Who would not want to pay money for this book?: if you do not need
a black-and-white paper copy of the book, a color PDF copy with functional
hyperlinks, have limited funds, or are interested in such a small portion of
the book that it makes no sense to buy the whole thing. The book’s web site
(http://www.johnny-lin.com/pyintro) has available, for free, PDFs of every
chapter as separate files.

Who would want to pay money for this book?: if you want a black-
and-white paper copy of the book, a color PDF copy with functional hy-
perlinks, or you want to help support the author financially. You can buy
a black-and-white paper copy of the book at http://www.johnny-lin.com/
pyintro/buypaper.shtml and a hyperlink-enabled color PDF copy of the book
at http://www.johnny-lin.com/pyintro/buypdf.shtml.

A special appeal to instructors: Instruction at for-profit institutions, as
a commercial use, is not covered under the terms of the CC BY-NC-SA, and
so instructors at those institutions should not make copies of the book for
students beyond copying permitted under Fair Use. Instruction at not-for-
profit institutions is not a commercial use, so instructors may legally make
copies of this book for the students in their classes, under the terms of the CC
BY-NC-SA, so long as no profit is made through the copy and sale (or Fair
Use is not exceeded). However, most instruction at not-for-profit institutions
still involves payment of tuition: lots of people are getting paid for their
contributions. Please consider also paying the author of this book something
for his contribution.

Regardless of whether or not you paid money for your copy of the book,
you are free to use any and all parts of the book under the terms of the CC
BY-NC-SA.

Contents

Preface v

Notices xi

How to Use This Book xiii

1 What Is and Why Python? 1
1.1 Python: The good and the bad 1
1.2 Examples of AOS uses for Python 2

2 Using the Python Interpreter and Interactive Development Envi-
ronment 7
2.1 Getting and installing Python 7

2.1.1 The easiest way: EPD 8
2.1.2 The mostly easy way, but for Ubuntu 12.04 8
2.1.3 The not as easy way, but it’s still free 9

2.2 Getting and installing the course files 9
2.3 The Python interpreter . 9
2.4 The command-line environment 11
2.5 The IDLE environment . 12
2.6 Exercises using Python programming environments 13

3 Basic Data and Control Structures 17
3.1 Overview of basic variables and operators 17
3.2 Strings . 19
3.3 Booleans . 20
3.4 NoneType . 21
3.5 Lists and tuples . 22
3.6 Exercises with lists and tuples 25
3.7 Dictionaries . 26
3.8 Exercises with dictionaries 28

i

3.9 Functions . 29
3.10 Logical constructs . 33
3.11 Looping . 34

3.11.1 Looping a definite number of times 34
3.11.2 Looping an indefinite number of times 36

3.12 Exercises on functions, logical constructs, and looping . . . 37
3.13 Modules . 39
3.14 A brief introduction to object syntax 41
3.15 Exercise that includes using a module 42
3.16 Exception handling . 43
3.17 Summary . 45

4 Array Operations 47
4.1 What is an array and the NumPy package 47
4.2 Creating arrays . 47
4.3 Array indexing . 50
4.4 Exercises in creating and indexing arrays 52
4.5 Array inquiry . 53
4.6 Array manipulation . 54
4.7 General array operations 58

4.7.1 General array operations: Method 1 (loops) 58
4.7.2 General array operations: Method 2 (array syntax) . 59
4.7.3 Exercise on general array operations 62

4.8 Testing inside an array . 63
4.8.1 Testing inside an array: Method 1 (loops) 63
4.8.2 Testing inside an array: Method 2 (array syntax) . . 64
4.8.3 Exercise on testing inside an array 70

4.9 Additional array functions 71
4.10 Summary . 72

5 File Input and Output 73
5.1 File objects . 74
5.2 Text input/output . 74

5.2.1 Text input/output: Reading a file 75
5.2.2 Text input/output: Writing a file 75
5.2.3 Text input/output: Processing file contents 76
5.2.4 Exercise to read a multi-column text file 79

5.3 NetCDF input/output . 79
5.3.1 NetCDF input/output: Reading a file 80
5.3.2 NetCDF input/output: Writing a file 84
5.3.3 Exercise to read and write a netCDF file 86

ii

5.4 Summary . 87

6 A “Real” AOS Project: Putting Together a Basic Data Analysis
Routine 89
6.1 The assignment . 89
6.2 Solution One: Fortran-like structure 90
6.3 Solution Two: Store results in arrays 92
6.4 Solution Three: Store results in dictionaries 93
6.5 Solution Four: Store results and functions in dictionaries . . 94
6.6 Exercises on using dictionaries and extending your basic da-

ta analysis routine . 95
6.7 Summary . 96

7 An Introduction to OOP Using Python: Part I—Basic Principles
and Syntax 97
7.1 What is object-oriented programming 97

7.1.1 Procedural vs. object-oriented programming 98
7.1.2 The nuts and bolts of objects 98

7.2 Example of how objects work: Strings 99
7.3 Exercise on how objects work: Strings 100
7.4 Example of how objects work: Arrays 101
7.5 Exercise on how objects work: Arrays 103
7.6 Defining your own class 104
7.7 Exercise on defining your own class 107
7.8 Making classes work together to make complex program-

ming easier . 110
7.9 Case study 1: The bibliography example 110

7.9.1 Structuring the Bibliography class 110
7.9.2 What sort entries alpha illustrates about OOP . 112
7.9.3 Exercise in extending the Bibliography class . . . 113
7.9.4 What the write bibliog alpha method illustrates

about OOP . 115
7.10 Case study 2: Creating a class for geosciences work—Sur-

face domain management 115
7.11 Summary . 119

8 An Introduction to OOP Using Python: Part II—Application to
Atmospheric Sciences Problems 121
8.1 Managing metadata and missing values 121

8.1.1 What are masked arrays and masked variables? . . . 122
8.1.2 Constructing and deconstructing masked arrays . . . 126

iii

8.1.3 Exercise using masked arrays 129
8.2 Managing related but unknown data: Seeing if attributes are

defined . 130
8.3 Exercise to add to the Atmosphere class 135
8.4 Dynamically changing subroutine execution order (optional) 137
8.5 Summary . 141

9 Visualization: Basic Line and Contour Plots 143
9.1 What is matplotlib? . 143
9.2 Basic line plots . 144

9.2.1 Controlling line and marker formatting 145
9.2.2 Annotation and adjusting the font size of labels . . . 146
9.2.3 Plotting multiple figures and curves 150
9.2.4 Adjusting the plot size 152
9.2.5 Saving figures to a file 152

9.3 Exercise on basic line plots 153
9.4 Basic contour plots . 154
9.5 Exercise on basic contour plots 156
9.6 Superimposing a map . 158
9.7 Exercise on superimposing a map 161
9.8 Summary . 162

10 What Next? 165
10.1 What Python topics would be good to cover next? 165
10.2 Some packages of interest to AOS users 167
10.3 Additional references . 168
10.4 A parting invitation . 169

Glossary 171

Acronyms 175

Bibliography 177

Index 179

iv

Preface

Why this book and who it is for
There are many good books out there to help people learn the Python pro-
gramming language but none that I know of that are focused on atmospheric
and oceanic sciences (AOS) users. For the highly motivated “early adopter”
user, this is not a problem, but for most of us, more general resources are not
as useful for two reasons:

• We do not learn programming languages as ends in and of themselves
but to help us to better do our AOS work. We are not interested in
the nature of object-oriented programming (OOP), but rather we are
interested in whether we can use (and how to use) OOP to help us
make better model runs, analyze reanalysis data, etc.

• Just because computer scientists are scientists does not mean AOS
users will find computer science explanations illuminating. Di↵erent
disciplines not only speak di↵erent languages but they also have di↵er-
ent thinking processes. This is even true between the di↵erent physical
sciences. Thus, learning a language is easier if the explanations and
examples are geared to how AOS users think.

This book is a Python introduction for the “rest of us”: for researchers,
graduate students, and advanced undergraduates who are interested in learn-
ing Python but who want to learn first and foremost how Python will help
them in their own work. The computer science will just come along for the
ride.

What we’ll cover
I assume that readers will have had some background in procedural program-
ming (perhaps Fortran, IDL, or Matlab) and so already understand variables,

v

arrays, looping, conditionals (if/then), simple input/output, and subrou-
tines/functions. I also assume that in their work, most readers use a proce-
dural programming methodology, writing programs that are broken up into
subroutines and functions where input is passed in and out using argument
lists (or common blocks or modules). As a result, I start out by showing
how you can use Python as a more-or-less drop-in replacement for whatever
traditionally procedural programming language you use (e.g., Fortran, IDL,
Matlab, etc.). If this is all you want, the first half of the book (Chs. 1–6)
should be all you need.

However, while Python can be used solely procedurally,1 and for many
AOS purposes, procedural programming works very well, Python is natively
object-oriented, and so users who never tap into Python’s object-oriented
nature will end up missing one of the key benefits of moving to Python. To
put it another way, if you’re going to write Fortran code in Python, why not
just write it in Fortran? As a result, while the first half of the book (mainly)
discusses procedural programming in Python, starting in Ch. 7, I provide a
gentle introduction to object-oriented programming and how object-oriented
programming can be applied to AOS problems to enable us to write analysis
and modeling programs that are more reliable, easier to maintain, and enable
more science to be done.

Is this the only Python book I’ll ever need?
If you’re looking to buy and/or use only one Python book, this is not the book
for you. If you can learn from a reference book, something like Martelli
(2006) would be a great book to use instead of this one: it’s comprehensive,
concise, authoritative, and clearly written.

When I was learning Python, there was nothing written for a person like
me, so I had to use application programming interface (API) documentation,
etc. to learn the language. Because I am first an atmospheric scientist, then a
programmer, this was very slow going for me. I needed someone to explain
to me why Python was structured the way it was, in language that I (not a
computer scientist) could understand. This is what this book aims to achieve.

After the introduction provided by this book, you should be better able
to make full use of reference works like Martelli (2006). In Ch. 10, I provide
a list of topics and resources you will want to explore after you finish this
book.

1One of Python’s strengths is that it is a multi-paradigm language that can be used pro-
cedurally, in an object-oriented way, and/or functionally.

vi

Software you’ll need
I assume that you have a (later) version of Python 2.x (preferably 2.7) in-
stalled on your computer, along with the NumPy, matplotlib (with Basemap),
and ScientificPython packages. Although Python has now moved on to ver-
sion 3.x, almost all scientific users still use a version of 2.x. Please see
Section 2.1 for help on installing Python and the needed packages.

Typesetting and coloring conventions
Throughout the book, I use di↵erent forms of typesetting and coloring to
provide additional clarity and functionality (text coloring is available in only
some versions of the book; later on in this preface I discuss the di↵erent
versions of the book). Some of the special typesetting conventions I use
include:

• Source code: Typeset in a serif, non-proportional font, as in a = 4.

• Commands to type on your keyboard or printed to the screen: Typeset
in a serif, non-proportional font, as in print ’hello’.

• Generic arguments: Typeset in a serif, proportional, italicized font, in
between a less than sign and a greater than sign, as in <condition>.

• File, directory, and executable names: Typeset in a serif, proportional,
italicized font, as in /usr/bin.

Please note that general references to application, library, module, and
package names are not typeset any di↵erently from regular text. Thus, refer-
ences to the matplotlib package are typeset just as in this sentence. As most
packages have unique names, this should not be confusing. In the few cases
where the package names are regular English words (e.g., the time module),
references to the module will hopefully be clear from the context.

Usually, the first time a key word is used and/or explained, it will be bold
in the text like this. Key words are found in the glossary, and when useful,
occurrences of those words are hyperlinked to the glossary (if the document
has hyperlinks). Many acronyms are hyperlinked to the acronym list (again,
if the document has hyperlinks). The glossary and acronym lists start on
p. 171.

All generic text is in black. All hyperlinks (whether to locations internal
or external to the document), if provided, are in blue. All margin notes are
in magenta (if the version supports colors).

vii

Updates, additional resources, and versions of this
book
Updates and additional resources are available at the book’s website, http:
//www.johnny-lin.com/pyintro. This includes a link to a list of addenda and
errata, the latest edition of which you can also access directly by going here:
http://www.johnny-lin.com/pyintro/addenda errata.shtml.

Some of the examples and/or exercises in this book make use of files that
are available online for free at the book’s website. You’ll want to download
these files before you start the book; the link to these course files is at the bot-
tom of the book’s web page, or you can go directly to http://www.johnny-lin.
com/pyintro/course files.tar (which takes you to the version of these files for
the latest edition of the book). In the book, these files are referred to as the
files that are found in the course files directory.

There are three versions of the book available. While the textual content
is the same in all of them, you should know about the di↵erences, so you can
find the one that works for you:

• Print version: Black-and-white text and margin notes; black-and-white
figures; no hyperlinks; all chapters bound together; margins formatted
for binding; includes a cover; costs money.

• Full PDF version: Black-and-white text and colored margin notes;
color figures; colored and enabled hyperlinks; all chapters in a sin-
gle file; margins formatted without binding; includes a cover; costs
money.

• Free PDF version: Black-and-white text and colored margin notes;
color figures; no hyperlinks; each chapter in a separate file; margins
formatted without binding; does not include a cover; available for free
at the book’s website.

Although the PDF versions are not bound, the pagination and the format-
ting are kept consistent with the printed version, i.e., the same paper size and
as if printed on left-right opening two-sided pages. Thus, all text, figures,
and notes will be in the same relative places on the page, whether it is PDF
or printed; the only di↵erence is that with the PDF versions the margins are
di↵erent to reflect the lack of a binding o↵set.

Information on how to obtain each version of the book is found on the
copyright page (the page right after the title page). Links to access all ver-
sions of the book are also given at the book’s website, http://www.johnny-lin.
com/pyintro. Note, as a special gift for purchasing the printed version, the

viii

original owners of a print copy of this book can download a copy of the latest
edition of the Full PDF version of the book for free. Please see the last page
of the printed book (the Colophon page) for details.

Personal Acknowledgments

While I often use first person throughout this book, I am acutely aware of the
debt I owe to family, friends, and colleagues who, over many years, gener-
ously nurtured many of the ideas in this book: Indeed, we all do stand on the
shoulders of giants, as Newton said. All praise I happily yield to them; any
mistakes and errors are my own.

Much of this book came from a series of short courses I taught at the 2011
and 2012 American Meteorological Society (AMS) Annual Meetings. I want
to thank Charles Doutriaux and Dean Williams who were co-teachers in
those courses and my students from those courses whose questions and com-
ments helped refine my teaching of this material.

Interactions with and/or support of the following are very much appreci-
ated: Nick Barnes, Dan Braithwaite, Dave Brown, Rodrigo Caballero, June
Chang, Laura Clemente, Christian Dieterich, Tyler Erickson, Chih-Yung
Feng, Mike Fiorino, Zech Gelzer, Mary Haley, Rob Jacob, Linda McDonald,
Tim Olusanya, Ray Pierrehumbert, Ricky Rood, Mike Steder, and Kirsten
Trout.

Thanks too for ideas and reference assistance from: Yun-Lan Chen and
her colleagues at the Central Weather Bureau (Taiwan) and PyAOS com-
menter “N eil”2 (Ch. 6); Peter Caldwell (Ch. 8); Mary Haley and the online
and/or interpreter PyNGL, matplotlib, and Basemap documentation (Ch. 9);
and the online and/or interpreter Python, NumPy, and CDAT documentation
(multiple chapters of the book).

I am personally grateful for those who gave me permission to use ma-
terial they created: These are acknowledged in the Notices section starting
on p. xi and in the captions of the included or adapted figures. And my
overflowing thanks to those who provided feedback on drafts of the book:
Yun-Lan Chen and her colleagues at the Central Weather Bureau, Taiwan,
Alex Decaria, Karen Lin, Grant Petty, and Scott Sellars.

2See the first comment on http://pyaos.johnny-lin.com/?p=755 (accessed August 16,
2012).

ix

My father and mother, sister Joann and brother-in-law Cary, and nephew
and niece Tyler and Claire, have given me so much of themselves over the
years. My sons Timothy and James fill my life with their infectious laughter
(the above comic is firmly tongue-in-cheek ,), and my wife Karen’s love
and partnership with me in this book is beyond praise. I started working at
home on this book, in earnest, the same week we began to toilet train our
eldest son; that alone says volumes about how sacrificially she has supported
me in bringing this book to fruition. Finally, I thank my Lord and Savior
Jesus Christ for giving me the one fundamental prerequisite for writing this
book, life itself, both physically and spiritually: “. . . I have come that they
may have life, and have it to the full” (John 10:10b, NIV).

Johnny Wei-Bing Lin
Chicago, Illinois
August 18, 2012

x

Notices

Trademark Acknowledgments
ArcGIS is a registered trademark of Environmental Systems Research Insti-
tute, Inc. Debian is a registered trademark of Software in the Public Interest,
Inc. IDL is a registered trademark of Exelis Corporation. Linux is a trade-
mark owned by Linus Torvalds. Mac, Mac OS, and OS X are registered
trademarks of Apple Inc. Mathematica is a trademark of Wolfram Research,
Inc. Matlab and MathWorks are registered trademarks of The MathWorks,
Inc. Perl is a registered trademark of Yet Another Society. Python is a reg-
istered trademark of the Python Software Foundation. Solaris is a trademark
of Oracle. Swiss Army is a registered trademark of Victorinox AG, Ibach,
Switzerland and its related companies. Ubuntu is a registered trademark of
Canonical Ltd. Windows is a registered trademark of Microsoft Corporation.
All other marks mentioned in this book are the property of their respective
owners. Any errors or omissions in trademark and/or other mark attribution
are not meant to be assertions of trademark and/or other mark rights.

Copyright Acknowledgments
Scripture taken from the HOLY BIBLE, NEW INTERNATIONAL VER-
SION R�. Copyright c� 1973, 1978, 1984 Biblica. Used by permission of
Zondervan. All rights reserved. The “NIV” and “New International Version”
trademarks are registered in the United States Patent and Trademark O�ce
by Biblica. Use of either trademark requires the permission of Biblica.

Portions of Ch. 1 are taken and/or adapted from Lin (2012), c� Copyright
2012 American Meteorological Society (AMS) and are used by permission.
Permission to use figures, tables, and brief excerpts from Lin (2012) in sci-
entific and educational works is hereby granted provided that the source is
acknowledged. Any use of material in Lin (2012) that is determined to be
“fair use” under Section 107 of the U.S. Copyright Act or that satisfies the

xi

conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108,
as revised by P.L. 94-553) does not require the AMS’s permission. Repub-
lication, systematic reproduction, posting in electronic form, such as on a
web site or in a searchable database, or other uses of Lin (2012), except as
exempted by the above statement, requires written permission or a license
from the AMS. Additional details are provided in the AMS Copyright Pol-
icy, available on the AMS Web site located at http://www.ametsoc.org or
from the AMS at 617-227-2425 or copyright@ametsoc.org. Lin (2012) has
been submitted for publication and thus copyright in that work may be trans-
ferred without further notice, and that version may no longer be accessible.

Sprinkled throughout the book are comics from Under the Microscope,
a whimsical look at the world of geoscience, academia, and the meaning
of life, by Dan Johnson and Johnny Lin, and are used by permission. The
comics are available online at http://www.johnny-lin.com/comic. In some
cases, the comics I’ve included are related to the section at hand; in others,
they’re just for fun.

All figures not created by myself are used by permission and are noted
either in this acknowledgments section or in the respective figure captions.
Use in this book of information from all other resources is believed to be
covered under Fair Use doctrine.

Other Usage Acknowledgments
The cover image (if a cover is provided) was resized and cropped from an
image taken by the crew of Expedition 23 on-board the International Space
Station (ISS) on May 25, 2010 and shows an edge-on view of the Earth’s at-
mosphere over the Indian Ocean (outer space is to the upper right). The im-
age is provided by the ISS Crew Earth Observations experiment and Image
Science and Analysis Laboratory, at NASA’s Johnson Space Center. The im-
age is available online at http://earthobservatory.nasa.gov/IOTD/view.php?
id=44267 and is not copyrighted.

The dataset of monthly mean surface/near-surface air temperature from
the NCEP/NCAR Reanalysis 1 was taken from NCEP Reanalysis data pro-
vided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA from their
web site at http://www.esrl.noaa.gov/psd.

xii

How to Use This Book

First, the bad news: How not to use this book
Because I wrote this book to help teach atmospheric and oceanic scientists
brand-new to Python how to use the language, there are a lot of things the
book does not do well, and there are a lot of topics the book does not cover.

Things the book does not do well: This book is a bad Python reference.
The order in the book matters, because the topics build on each another. This
book also does a poor job of telling you how to install Python. I touch on it
in Section 2.1, but that isn’t the focus of the book.

Topics that are not covered: This book is geared for beginners so I had
to leave out a lot of topics that, while important, are not central to helping
beginners use and understand Python. Topics I have left out include: object
inheritance, operating system commands, environment customization, wrap-
ping Fortran routines, and many worthy visualization packages. I describe
some of these topics in Section 10.1, but only enough to motivate the reader
to look into those issues after they have a handle on the concepts I do cover.

How not to use the book: Along the lines of using this book as a refer-
ence, you will find the book to be sorely lacking if you ignore the exercises.
Yes, every author says “do the exercises,” but in this book, the exercises are
intimately interwoven with the pedagogy. Skipping the exercises is not just
skipping breakfast, but more like skipping air. (I talk about this more below.)

How to use this book
I recommend you don’t think of this book as a text you’re reading but as a
course you’re taking. (In fact, the source code and sample data files are in a
directory called course files and much of the content comes from the 2012
AMS Annual Meeting Beginner’s Python short course I taught.) As a course
you’re taking (either a self-study course or a course with an instructor), this
will involve not just reading but a lot of doing.

xiii

I am a firm believer that the only real way you can learn a programming
language is to program in that language—this book has “hands-on” in its title
for a reason ,. As a result, this book is built around examples and exercises
for the reader. I will start o↵ by discussing a topic, and interspersed with that
discussion will be worked out examples of varying degrees of complexity.
You really have to type in the examples, even if they are worked out and
explained in the text; otherwise, you won’t get much out of the text. After
discussion and examples, I provide exercises that implement the material we
just discussed. Those exercises are also crucial to getting the most out of the
book. In fact, for a number of the exercises, later discussion builds o↵ of
your attempt (successful or not) at completing the exercise.3

All examples and exercises are numbered globally; numbering does not
restart with a new chapter.

Before you start using the book, you’ll want to download the supporting
files for some of the examples and exercises. In the book, these will the files
referred to as residing in the directory course files. This directory of files is
available online at the book’s website; see p. viii for details on how to obtain
the files.

Additional notes about the way I wrote this book
Tone: Because I grew up in Seattle and did my undergraduate and graduate
work all in California, I’m a “son of the West” (to misappropriate Tolkien’s
phrase), and so I’ve written this book in a more informal, conversational
tone. (I use contractions and put in smileys ,.) I hope you find my voice to
be something of a “tour guide” of Python and that you will be encouraged to
explore and try things out. Ultimately, I think this will make it both easier to
learn Python and more fun.

Repetition: In most academic papers and books, the author will talk
about a topic once and then (often) assume you remember what was said for
the rest of this book. I always found it frustrating when textbook authors fol-
lowed that convention. Repetition is one of the best ways to teach (and learn);
why don’t textbook authors take advantage of this pedagogy? Besides, if I
am a brand-new learner, I probably will not fully understand a concept the
first time I hear it. Thus, in this book, I repeat myself, repeatedly. If you
are a naturally gifted programmer, you may find this annoying, and I apolo-
gize for annoying you, but then again, I didn’t write this book for naturally

3This pedagogy is based on an AMS Board on Continuing Professional Development
template derived from a template by Results Through Training <http://www.RTTWorks.
com>.

xiv

Chapter Subject Class Hours

1 What Is and Why Python 1
2 Using the Python Interpreter and Interactive

Development Environment
1

3 Basic Data and Control Structures 3
4 Array Operations 3
5 File Input and Output 2
6 A “Real” AOS Project: Putting Together a Ba-

sic Data Analysis Routine
1

7 An Introduction to OOP Using Python:
Part I—Basic Principles and Syntax

3

8 An Introduction to OOP Using Python:
Part II—Application to Atmospheric Sciences
Problems

2

9 Visualization: Basic Line and Contour Plots 3
10 What Next? 1

Table 1: Breakdown of class time to cover each chapter.

gifted programmers but for people like myself who learned programming by
looping through the topic many times.

A note to instructors

As I mentioned earlier, this book works well for self-study but can also be
used as part of a course. When I taught this as short course, we covered
nearly 80% of the material over the course of two (long) days. Table 1 gives
an estimate of how much class time each chapter will take, in instructor
contact hours. This totals 20 class hours. Depending on whether and how
you augment the content with additional homework exercises and projects,
this book will work for a 2 credit hour, one quarter (10 week) class or a 1–2
credit hour, one semester (15 week) class.

The AMS 2012 Short Courses web page has PDF copies of the presenta-
tion slides for the Beginner’s course as well as an Advanced course that was
also o↵ered. You’re welcome to download and use the slides under the terms
of their license: please see http://pyaos.johnny-lin.com/?page id=807.

xv

An online, introductory Python course
If you’re interested in an online, introductory, AOS Python course taught
by the author of this book, please email me at pyintro@johnny-lin.com.
The course includes real-time, interactive video lectures (which can also be
viewed outside of the scheduled class meeting time), not just online assign-
ments and interaction.

xvi

Chapter 1

What Is and Why Python?

1.1 Python: The good and the bad
So, what’s with all the fuss about Python? If you’re reading this book, you
might have heard about Python from a co-worker who swears by it, heard a
reference to the language in a talk at a conference, or followed a link from
a page on scientific computing. When you’ve asked others about Python,
they might have thrown out words like “object-oriented,” “interpreted,” or
“open-source.” What does all this mean?

This book answers that question, from the standpoint of a researcher in
the atmospheric or oceanic sciences. That doesn’t mean, however, there isn’t
a shorter answer to the question. Here is one summary list of the attributes
and features of Python:

• Structure: Python is a multi-paradigm language, and can be used for
scripting, procedural programming, as a fully native object-oriented
(OO) language, and as a functional language.

• Interpreted: Python is loosely or dynamically typed and interactive.
There is no separate compiler but rather commands typed into the in-
terpreter are automatically compiled, linked (as needed) and executed.

• Data structures: Python has a robust built-in set of data types, and
users are free to define additional structures.

• Syntax: Easy to read and includes an array syntax that is similar to
Matlab, IDL, and Fortran 90 (no loops!).

• Platform independent, open-source, and free!

1

1.2. EXAMPLES OF AOS USES FOR PYTHON

But what do these features allow you to do? Here is where Python users
start waxing enthusiastically. First, because of Python’s concise but natu-
ral syntax, for both arrays and non-arrays, programs are exceedingly clear
and easy to read; as the saying goes, “Python is executable pseudocode.

“Python is
executable

pseudocode.”

Perl is executable line noise.”1 Second, because the language is interpreted,
development is much easier; you do not have to spend extra time with ma-
nipulating a compiler and linker. Third, the object-orientation makes code
more robust/less brittle, and the built-in set of data structures are very pow-
erful and useful (e.g., dictionaries). Fourth, Python is designed with a built-
in namespace management structure which naturally prevents variable and
function collisions. In contrast with linking multiple Fortran libraries, where
you can easily overwrite a function from one library with a function from
another, in Python you have to work at causing such a collision. Finally,
Python’s open-source pedigree added with a large user and developer base
in industry, as well as science—institutions supporting AOS Python include
Lawrence Livermore National Laboratory (LLNL)’s Program for Coupled
Model Diagnostics and Intercomparison (PCMDI) and National Center for
Atmospheric Research (NCAR)’s Computational Information Systems Lab-
oratory (CISL)—means that your programs can take advantage of the tens
of thousands of Python packages that exist. Multiple visualization packages
are available, some numerical libraries, packages that deliver tight intercon-
nects with compiled languages (Fortran via f2py and C via SWIG), memory
caching, webservices, graphical user interface (GUI) programming, etc. You
are not limited to only what one vendor can provide, or even what only the
scientific community can provide!

To be fair, Python has real disadvantages, including that pure Python
Python’s dis-

advantages. code runs much slower than compiled code, there are comparatively few
scientific libraries compared to Fortran, and documentation and support for
new science users is relatively sparse. There are tools to overcome the speed
penalty, the collection of scientific libraries is growing, and science support
resources are becoming more robust (which this book hopefully contributes
to), but these are real issues. For many, if not most, AOS applications, how-
ever, the strengths of Python outweigh the weaknesses.

1.2 Examples of AOS uses for Python
But this all sounds kind of abstract: what are some examples of what Python
can do for AOS users? Figure 1.1 shows examples of typical AOS visual-

1I don’t know who first said this, but you can find one instance of this quote at http:
//mindview.net/Books/Python/ThinkingInPython.html (accessed March 14, 2012).

2

1.2. EXAMPLES OF AOS USES FOR PYTHON

ization tasks (skew-T and meteograms), using the PyNGL package, which
implements all the primitives (and some of the higher-level functions) of the
NCAR Graphics Language (NGL). Figure 1.2 shows screenshots of an ap-
plication (WxMAP2) written in Python that visualizes and delivers weather
maps of numerical weather prediction model results. And Figure 1.3 shows
an application written in Python (VisTrails) that manages provenance in the
context of geoscientific analysis and visualization: VisTrails enables you to
analyze and visualize a dataset while at the same time keeping a record of the
operations you did. As these examples show, Python can be used for nearly
any analysis and visualization task you would want to do in AOS research
and operations.

As neat as these examples are, however, the greatest advantage of Python
Python
enables a
unified
workflow.

to AOS work (in my opinion) is how it enables one to have a truly unified
workflow: analysis, visualization, and workflow management are all (poten-
tially) integrated together. Figure 1.4 illustrates this potential. As shown in
the figure, the problem encountered by the Northeast Regional Climate Cen-
ter (NRCC) was how to unify the many di↵erent components of the Applied
Climate Information System: data ingest, distribution, storage, analysis, web
services (tasks and formats in black). The traditional solution would be to
cobble together a crazy mix of shell scripts, compiled code, makefiles, Mat-
lab/IDL scripts, and a web server. (And when you think of it, most AOS
workflows are like that; a crazy mix of tools that talk to each other through

3

1.2. EXAMPLES OF AOS USES FOR PYTHON

Figure 1.1: Visualization of a skew-T plot and a meteogram using PyNGL.
These plots are taken from the PyNGL website http://www.pyngl.ucar.edu.
See http://www.pyngl.ucar.edu/Examples/gallery.shtml for the source code
to make the plots. Plots are copyright, University Corporation for At-
mospheric Research. Graphics were generated with PyNGL, developed at
NCAR and sponsored by NSF. Used by permission.

text pipes or files.) NRCC’s solution: Do it all in Python (package names
in red), and the resulting single environment of shared state created a more
powerful, flexible, and maintainable system than would otherwise have been
possible.

So, this is why I’m so excited about Python and why I wrote this book!
Python is a flexible, powerful, open, and free language whose native object-
oriented structure permits more robust programs to be written. The result is
a language that enables better atmospheric and oceanic sciences to be done
more easily at less cost, both in time and money. The bottom line is that
Python enables me to do my science more easily and reliably; how cool is
that?

4

1.2. EXAMPLES OF AOS USES FOR PYTHON

Figure 1.2: Screenshots taken from the WxMAP2 package web site. See:
http://sourceforge.net/projects/wxmap2. These screenshots are by Michael
Fiorino (NOAA Earth System Research Laboratory, Boulder, CO.) and are
used by permission.

Figure 1.3: Session of the VisTrails visualization and data workflow and
provenance management system; salinity data in the Columbia River es-
tuary is graphed. See: http://www.vistrails.org/index.php?title=File:Corie
example.png&oldid=616. The screenshot is by Steven Callahan and is used
by permission.

5

1.2. EXAMPLES OF AOS USES FOR PYTHON

Figure 1.4: Image from: AMS talk by William Noon, Northeast Re-
gional Climate Center, Ithaca, NY, http://ams.confex.com/ams/91Annual/
flvgateway.cgi/id/17853?recordingid=17853. Used by permission.

6

Chapter 2

Using the Python Interpreter and
Interactive Development
Environment

2.1 Getting and installing Python

In Ch. 1, we saw how Python is practically the best thing for AOS users since
sliced bread ,. Now that I’ve built-up your expectations, I need to describe
the first place where things are not all they should be in the Python universe,
and that is the level of support for installation and new science users. In con-
trast with commercial data analysis software companies (e.g., MathWorks,
Wolfram Research, etc.), which make installation a piece-of-cake and pro-
vide copious amounts of online, print, and live-human support, installation
of Python and all the libraries needed by science users can be tricky. And
once the install is complete, there is no simple and comprehensive way to
find out everything you have and how to use it.

So, if you’re a newbie, what do you do? Unfortunately, there are many
ways to install Python and the needed scientific libraries. In this section, I
will describe three di↵erent ways: just choose the one that works best for
you. Each has its pluses and minuses. The first two do not require you to
be a budding system administrator (though you will need the password of a
user with administrator privileges). The last one requires you to build some-
thing from source, so that installation method is for those who are willing to
experiment a little more. Please pay attention to the footnotes in this section;
that’s where I’ll put the addresses to the web pages you’ll want to access.

7

2.1. GETTING AND INSTALLING PYTHON

2.1.1 The easiest way: EPD

The easiest way to get Python is to install the Enthought Python Distribu-
EPD is the

easiest way to
install Python

and the
needed

scientific
libraries.

tion (EPD),1 which bundles Python with over 100 modules and packages in
an easy to install package. The full distribution is free to employees and
students of academic institutions.2 Commercial users have to pay money.
Once you have EPD installed, you will have both Python and all the libraries
you need to do all the examples and exercises in this book; see Enthought’s
“Getting Started with EPD” instructions for information on running EPD
once you have it installed.3 EPD is available for Mac OS X, Windows,
GNU/Linux, and Solaris.

Enthought also o↵ers a stripped down version of EPD, free to everyone
(not just those in academia), called EPD Free.4 EPD Free is enough to do
most of the examples and exercises in this book, except for the overlaying
of continental boundary maps on matplotlib plots. In this book, I use the
Basemap package to plot those boundaries, and Basemap is not included
with EPD Free (though Basemap is included with the full EPD).

If you already have EPD Free and you want to install Basemap, you can
use Enthought’s package manager to do so: just type enpkg basemap at the
command-line.5 However, you need to have an EPD subscription in order to
use enpkg; that subscription costs money.6

2.1.2 The mostly easy way, but for Ubuntu 12.04

With the Ubuntu 12.04 GNU/Linux distribution (and perhaps later versions),
Installing

using a
package

manager on
Ubuntu
12.04.

the standard package manager will enable you to install everything you
need to run Python and do all the examples and exercises in this book.7 Log
in as a user with administrator privileges, open a terminal window, and type
in the following at the Unix command-line:

1http://www.enthought.com/products/epd.php (accessed August 16, 2012).
2The academic download is accessed on this page: http://www.enthought.com/products/

edudownload.php (accessed August 16, 2012).
3http://www.enthought.com/products/epdgetstart.php (accessed August 16, 2012).
4http://www.enthought.com/products/epd free.php (accessed August 16, 2012).
5http://www.enthought.com/products/update.php (accessed August 16, 2012).
6http://www.enthought.com/products/getepd.php (accessed August 16, 2012).
7See http://packages.ubuntu.com/precise/python for a list of Python packages on Ubuntu

12.04 (accessed August 16, 2012).

8

2.2. GETTING AND INSTALLING THE COURSE FILES

sudo apt-get update
sudo apt-get install python2.7
sudo apt-get install python-matplotlib
sudo apt-get install python-scipy
sudo apt-get install python-scientific
sudo apt-get install python-mpltoolkits.basemap

Feel free to substitute in your favorite package manager (I actually use ap-
titude instead) for apt-get. After these commands are run, you will have
Python 2.7 (plus select libraries) installed.

2.1.3 The not as easy way, but it’s still free
If you aren’t running Ubuntu 12.04, but you are using Mac OS X or an-
other version of GNU/Linux, you can still use a package manager to install
Python and most of the needed scientific packages for this book and build
the final package needed (Basemap) from source. See the PyAOS articles
on installing on a Mac8 and installing on GNU/Linux9 for details. (Note
these articles address an installation using Python 2.5; the names may have
changed for Python 2.7 related packages.)

While Python works fine on Windows, for the rest of this book, I will
assume that you are using a Unix system (e.g., Mac OS X, GNU/Linux,
etc.). For many operating systems, the default distribution of Python and
associated applications are located in /usr/bin; if your system is di↵erent,
please substitute accordingly anytime you see /usr/bin in this book.

2.2 Getting and installing the course files
Throughout this book, you will find reference to files from a directory called
course files. This directory of files is not part of a Python distribution but is
instead a set of files I have created for this book. This directory of files is
available online at the book’s website; see p. viii for details on accessing the
site and files.

2.3 The Python interpreter
Python is an interpreted language, meaning that you just type in a command
in Python, press Enter, and Python will execute that command right then and

8http://pyaos.johnny-lin.com/?p=190 (accessed August 16, 2012).
9http://pyaos.johnny-lin.com/?p=76 (accessed August 16, 2012).

9

2.3. THE PYTHON INTERPRETER

there. This is similar to the behavior of Matlab, IDL, and Mathematica, and
the environment where this all occurs in Python is called the interpreter.
Let’s try an example:

Example 1 (My first Python interpreter command):
Start out by opening a terminal window. Everything you do will be in

that window.

• Start the Python interpreter by typing python at the Unix command-
line. You should get something that looks like Figure 2.1. If this
doesn’t happen, here are some possible fixes:

Questions to
ask if you

can’t start the
Python

interpreter.

– If your environment path is not set up correctly, you may have to
type in the full path name to your Python binary. One common
name is /usr/bin/python.

– On some other installations, you may have to type in the version
of Python you want, e.g., python2.5.

– If you are using Mac OS X and you installed Python using EPD,
you may have to type something like:
/Library/Frameworks/Python.Framework/Versions/
7.3/bin/python

instead of just python (or you may want to add the EPD Python
path to your shell environment’s PATH variable).

– If you are using Mac OS X and you installed Python using the
Fink package manager, you may have to type something like
/sw/bin/python2.5.

• When you see the >>> prompt, type:

print "hello world!"

and press Enter.

• The interpreter immediately executes the command, printing the string
hello world! to screen.

• To exit the interpreter and return to the Unix command-line, type Ctrl-
Press Ctrl-d

to exit the
interpreter.

d.

10

Robert Fovell
wherever you see print statements,
they need to use parentheses

2.4. THE COMMAND-LINE ENVIRONMENT

Figure 2.1: Starting the Python interpreter in a terminal window.

The Python interpreter has two very helpful interpreter commands:

• help(x): This shows online help for the command x.

• dir(): This shows (approximately) all the variables and functions
The help and
dir
commands.

defined in the current scope.

We’ll talk more about these commands as we go along. For now, just
keep them in mind.

Usually, you will write code in a file and ask Python to execute the code,
Other
development
environments
for Python.

rather than doing everything interactively in the interpreter. There are a num-
ber of excellent and sophisticated programming (or development) environ-
ments available for Python, such as IPython,10 Python(x,y),11 and Spyder.12

For our purposes, we’ll go basic and consider two very simple ways of set-
ting up a programming environment.

2.4 The command-line environment
In this example, we set up a programming environment using multiple ter-
minal windows.

Example 2 (A simple command-line programming environment):

• Open two terminal windows on your desktop.

• In one window, use a text editor (e.g., vim, emacs, gedit) to open a file
foo.py.

10http://ipython.scipy.org (accessed August 16, 2012).
11http://code.google.com/p/pythonxy (accessed August 16, 2012).
12http://packages.python.org/spyder (accessed August 16, 2012).

11

2.5. THE IDLE ENVIRONMENT

• In that file, type: print "hello world!"

• Save the file.

• In the other window, type: python -i foo.py

• Python will execute the commands in your file and leave you in the
interpreter, where you can type in more commands, if you wish.

Note, to automatically exit to the operating system after executing the
Python commands in your file, do not include the -i option.

The -i
option;

interpreter
command

history.

An aside regarding command history: On many Unix systems, the up-
and down-arrow keys allow you to scroll through the history of the com-
mands typed into the interpreter, with the up-arrow scrolling into the past
and the down-arrow scrolling back towards the present. This feature, how-
ever, is a function of how readline is implemented in the operating system,
so this may or may not work for you.

2.5 The IDLE environment
Python comes with its own interactive development environment called
IDLE. IDLE is actually written in Python, using the Tk GUI widgets sys-
tem.

Example 3 (Using IDLE):

• To start IDLE, at the command-line, type: idle &

– The ampersand puts the process in the background.

– If you are using Mac OS X, you may have to first start up X11.

– Sometimes you have to specify the version number of IDLE, e.g.,
idle2.5. On Ubuntu, it might be called idle-python2.7, or
something similar.

• A Python Shell window will automatically open up. (You should get
IDLE has a
source code

window and a
shell window.

something like what is shown in Figure 2.2, though yours will probably
be a little larger.) This window contains a Python interpreter (shown
by the >>> prompt), and so whenever in this book I talk about typing
something into the interpreter, if it’s short, you can type it in here.

12

Robert Fovell
wherever you see print statements,
they need to use parentheses

2.6. EXERCISES USING PYTHON PROGRAMMING
ENVIRONMENTS

Figure 2.2: The Python shell in IDLE, just started.

• In the menu bar of the Python Shell window, pick File ! New Win-
dow. (This is a window for a code file. Whenever in this book I talk
about typing something into the interpreter, and it’s long, type it in
here, save it, and run it as described in the next few bullet points.)

• In that window, type: print "hello world!"

• Save the file as foo.py using File! Save.

• In that same window (your code window), pick Run! Run Module.

• Python will execute, in the Python Shell window, the commands you
typed in your code file.

An aside regarding command history: In IDLE, the up- and down-arrows
generally do not work to access command history. Instead, place the mouse
on the line of the Python Shell you want to execute again, click on that line
(i.e., click on the left mouse button; do not select or highlight the line), then
press Return, and the line will be duplicated at the current interpreter cursor.

Command
history in
IDLE.

If you press Return again, that line will be executed.

2.6 Exercises using Python programming envi-
ronments

Exercises are your opportunity to implement what you’ve learned by trying
out the examples; usually, exercises are permutations of topics you’ve seen
in the examples. Try the following exercises to help you get used to the

13

Robert Fovell
wherever you see print statements,
they need to use parentheses

2.6. EXERCISES USING PYTHON PROGRAMMING
ENVIRONMENTS

command-line and IDLE environments. Exercise 2 also introduces using
Python as a simple calculator.

⇤ Exercise 1 (Printing some words to the screen):

• In your first terminal window, open a file and type in a series of print
The print
command. commands, operating on strings, one on each line. For instance:

print "My name is Johnny Lin."
print "I think Python is neat."
print "I wish I had used it for my Ph.D."

• Save the file.

• In your second terminal window, run the file. Did you get what you
expected?

• Change one of the lines and add another line printing additional text.
Save the file and re-run it.

⇤ Exercise 2 (Using Python as a simple calculator):

• In your first terminal window, open a file and type in a series of print
commands, with an arithmetic calculation expression as the argument,
one on each line. For instance:

Python as a
calculator.

print 5*4
print 6/2
print 13+5+7
print 6**2

• Save the file. Predict what will happen when you run the file.

• In your second terminal window, run the file. Did you get what you
predicted?

• Change one of the lines in the file, save the file, and re-run it.

14

Robert Fovell
wherever you see print statements,
they need to use parentheses

2.6. EXERCISES USING PYTHON PROGRAMMING
ENVIRONMENTS

Solution and discussion: (Cover this up if you haven’t finished the ex-
ercise!) We’ll be talking more about this in Ch. 3, but if you typed in a case

Integer
division
discards the
remainder.

where you divided two integers, and the division was not even, you might
have encountered results you did not expect. For integer division, when the
two operands are both integers, Python throws away the remainder and re-
turns only the quotient.

⇤ Exercise 3 (Getting used to the IDLE environment):
Do Exercises 1 and 2, but using the IDLE environment.

15

2.6. EXERCISES USING PYTHON PROGRAMMING
ENVIRONMENTS

16

Chapter 3

Basic Data and Control Structures

Python, like any other programming language, has variables and all the stan-
dard control structures. As a multi-paradigm language, however, Python has
data and control structures not commonly found in languages traditionally
used by AOS users. In this chapter, I will describe Python’s basic data and
control structures that support procedural programming. By the end of this
chapter, you should be able to write Fortran programs in Python ,.

3.1 Overview of basic variables and operators
Unlike languages like Fortran, Python is dynamically typed, meaning that

Python is
dynamically
typed.

variables take on the type of whatever they are set to when they are assigned.
Thus, a=5 makes the variable a an integer, but a=5.0 makes the variable a
a floating point number. Additionally, because assignment can happen any-
time during the program, this means you can change the type of the variable
without changing the variable name.

The built-in variable types are as you would guess, along with a few
others. Here’s a partial list of some of the most important basic types:

• Integer (short and long) and floating point (float)

• Strings

• Booleans

• NoneType

• Lists and tuples

• Dictionaries

17

3.1. OVERVIEW OF BASIC VARIABLES AND OPERATORS

The first three items are probably familiar to you, but NoneType, lists,
tuples, and dictionaries might not be. I’ll be talking about all these types as
we go along in this chapter.

Arithmetic operators are as you would guess: (+, -, /, *, ** for addi-
Arithmetic

and
comparison

operators.

tion, subtraction, division, multiplication, and exponentiation, respectively),
as are comparison operators (>, <, >=, <=, !=, == for greater than, less
than, greater than or equal to, less than or equal to, not equal, and equal,
respectively).

Please note that Python is case-sensitive, so “N” and “n” are di↵erent.
Python is

case-
sensitive.

Example 4 (Create and use some numerical variables):
Open up a Python interpreter by typing python in a terminal window or

use the Python Shell in IDLE. Type these lines in in the interpreter:

a = 3.5
b = -2.1
c = 3
d = 4
a*b
b+c
a/c
c/d

What did you find?

Solution and discussion: You should have gotten something like this:

>>> a = 3.5
>>> b = -2.1
>>> c = 3
>>> d = 4
>>> a*b
-7.3500000000000005
>>> b+c
0.8999999999999999
>>> a/c
1.1666666666666667
>>> c/d
0

18

3.2. STRINGS

Remember Python is dynamically typed: It automatically decides what type
a variable is based on the value/operation. Thus, a and b are floats and c and
d are integers.

For operations, Python will generally make the output type the type that
Python
usually
upcasts type
if needed.

retains the most information. E.g., if one of the variables is float, a float
variable is returned. However, if both variables are integers, integer division
is performed, where the remainder is discarded. Thus a/c returns what you
expect since a is float, but c/d does integer division and returns only the
quotient (as an integer). Note that in Python 2.x, integers can be short or
long; short has a size limit but long does not. In Python 3.x, all integers are
long.

Here’s a question: Why is the answer to a*b not exactly �7.35? Re-
Binary
floating point
representa-
tions are
inexact and
the allclose
function.

member that floating point numbers on any binary computer are, in general,
not represented exactly.1 (This is why you should never do logical equality
comparisons between floating point numbers; instead, you should compare
whether two floating point numbers are “close to” each other. The NumPy
array package has a function allclose that does this.) The default format-
ting setting for the print command, will sometimes print out enough of the
portion after the decimal point to show that.

Let’s take a look in more detail at the non-numeric built-in data types I
listed before, i.e., strings, booleans, NoneType, lists and tuples, and dictio-
naries.

3.2 Strings
String variables are created by setting text in either paired single or double

Creating
strings.quotes (it doesn’t normally matter which, as long as they are consistently

paired), e.g.: a = "hello".
Some “special” strings include:

Special
strings.• "\n": newline character

• "\t": tab character

• "\\": backslash

1See Bruce Bush’s article “The Perils of Floating Point,” http://www.lahey.com/float.htm
(accessed March 17, 2012).

19

3.3. BOOLEANS

Python has a special construct called “triple quotes,” i.e., quotation marks
Triple quotes.

or apostrophes placed one after the other ("""), which delimit strings that are
set to whatever is typed in between the triple quotes, (more or less) verbatim.
This includes newline characters (but not backslashes), so this is an easy way
to make strings with complex formatting.

Finally, Python uses the addition operator (+) to join strings together.
Connecting

strings.

Example 5 (An operation with strings):
Try typing this in a Python interpreter:

a = "hello"
b = "there"
a + b

What did you get? Also try: print a + b.

Solution and discussion: The first two lines set a and b as string vari-
ables with values set to the given strings. Because the addition sign concate-
nates two strings together, a + b will return the string ’hellothere’. The
print command gives you the same thing, but it does not include the quotes
which show that the result of a + b is a string.

3.3 Booleans
Boolean variables are variables that can have only one of two values, one
of which is considered “true” and the other of which is considered “false.”
In some languages, the integer value zero is considered false and the integer
value one is considered true. Older versions of Python also followed that
convention (and this still works arithmetically); in recent versions of Python,
there are two special values called True and False that serve as the values a
boolean variable can take. (Note the capitalization matters.) Logical opera-

True and
False are

Python’s
boolean
values.

tors that operate on boolean variables are mainly as expected: and, or, not,
etc.

Example 6 (Operations with boolean variables):
Try this in a Python interpreter:

20

Robert Fovell
wherever you see print statements,
they need to use parentheses

3.4. NONETYPE

a = True
b = False
print a and b
print a or b
print 4 > 5

What did you get?

Solution and discussion: The first two lines assign a and b as boolean
variables. The first two print statements return False and True, respec-
tively. Remember that and requires both operands to be True in order to
return True, while or only requires one of the operands be True to return
True. Note that comparison operators (i.e., 4 > 5) yield booleans, so the
final print line returns False.

3.4 NoneType
This is a data type you probably have not seen before. A variable of None-

The None
value.Type can have only a single value, the value None. (Yes, the word “None,”

capitalized as shown, is defined as an actual value in Python, just like True
and False.)

Example 7 (Operations with NoneType):
Try this in a Python interpreter:

a = None
print a is None
print a == 4

What did you get?

Solution and discussion: The first print statement will return True
while the second print statement will return False.

Logical
equality and
is.

The is operator compares “equality” not in the sense of value (like ==
does) but in the sense of memory location. You can type in “a == None”,

21

Robert Fovell

3.5. LISTS AND TUPLES

the better syntax for comparing to None is “a is None”.2 The a == 4 test
is false because the number 4 is not equal to None.

So what is the use of a variable of NoneType? I use it to “safely” initialize
Using None

to safely
initialize a
parameter.

a parameter. That is to say, I initialize a variable to None, and if later on my
program tries to do an operation with the variable before the variable has
been reassigned to a non-NoneType variable, Python will give an error. This
is a simple way to make sure I did not forget to set the variable to a real
value. Remember variables are dynamically typed, so replacing a NoneType
variable with some other value later on is no problem!

3.5 Lists and tuples
Lists are ordered sequences. They are like arrays (in Fortran, IDL, etc.),

Lists are
mutable
ordered

sequences.

except each of the items in the list do not have to be of the same type. A
given list element can also be set to anything, even another list. Square
brackets (“[]”) delimit (i.e., start and stop) a list, and commas between list
elements separate elements from one another. If you have a one element list,
put a comma after the element.

List element addresses start with zero, so the first element of list a is
List element
indices start

with 0.

a[0], the second is a[1], etc. IDL follows this convention but Fortran does
not. Because the ordinal value (i.e., first, second, third, etc.) of an element
di↵ers from the address of an element (i.e., zero, one, two, etc.), when we
refer to an element by its address we will append a “th” to the end of the
address. That is, the “zeroth” element by address is the first element by
position in the list, the “oneth” element by address is the second element by
position, the “twoth” element by address is the third element by position, and
so on.

Finally, the length of a list can be obtained using the len function, e.g.,
The len
function

returns the
length of lists

and tuples.

len(a) to find the length of the list a.

Example 8 (A list):
Type in the following in the Python interpreter:

a = [2, 3.2, ’hello’, [-1.2, ’there’, 5.5]]

2The reason is a little esoteric; see the web page http://jaredgrubb.blogspot.com/2009/04/
python-is-none-vs-none.html if you’re interested in the details (accessed August 16, 2012).

22

3.5. LISTS AND TUPLES

What is len(a)? What does a[1] equal to? How about a[3]? a[3][1]?

Solution and discussion: The len(a) is 4, a[1] equals 3.2, a[3] equals
Referencing
list elements
that are lists.

the list [-1.2, ’there’, 5.5], and a[3][1] equals the string ’there’.
I find the easiest way to read a complex reference like a[3][1] is from left
to right, that is, “in the threeth element of the list a, take the oneth element.”

In Python, list elements can also be addressed starting from the end; thus,
Indexing
from the end
of a sequence.

a[-1] is the last element in list a, a[-2] is the next to last element, etc.
You can create new lists that are slices of an existing list. Slicing follows

these rules:

• Element addresses in a range are separated by a colon.
Slicing rules.

• The lower limit of the range is inclusive, and the upper limit of the
range is exclusive.

Example 9 (Slicing a list):
Consider again the list a that you just typed in for Example 8. What

would a[1:3] return?

Solution and discussion: You should get the following if you print out
the list slice a[1:3]:

>>> print a[1:3]
[3.2, ’hello’]

Because the upper-limit is exclusive in the slice, the threeth element (i.e., the
fourth element) is not part of the slice; only the oneth and twoth (i.e., second
and third) elements are part of the slice.

Lists are mutable (i.e., you can add and remove items, change the size of
the list). One way of changing elements in a list is by assignment (just like
you would change an element in a Fortran, IDL, etc. array):

Example 10 (Changing list element values by assignment):
Let’s go back to the list in Example 8:

23

3.5. LISTS AND TUPLES

a = [2, 3.2, ’hello’, [-1.2, ’there’, 5.5]]

How would we go about replacing the value of the second element with the
string ’goodbye’?

Solution and discussion: We refer to the second element as a[1], so
using variable assignment, we change that element by:

a[1] = ’goodbye’

The list a is now:

[2, ’goodbye’, ’hello’, [-1.2, ’there’, 5.5]]

Python lists, however, also have special “built-in” functions that allow
you to insert items into the list, pop o↵ items from the list, etc. We’ll dis-
cuss the nature of those functions (which are called methods; this relates
to object-oriented programming) in detail in Ch. 7. Even without that dis-
cussion, however, it is still fruitful to consider a few examples of using list
methods to alter lists:

Example 11 (Changing lists using list methods):
Assume we have the list we defined in Example 8:

a = [2, 3.2, ’hello’, [-1.2, ’there’, 5.5]]

What do the following commands give you when typed into the Python in-
terpreter?:

• a.insert(2,’everyone’)

• a.remove(2)

• a.append(4.5)

Solution and discussion: The first command insert inserts the string
The insert,
remove, and
append

methods for
lists.

’everyone’ into the list after the twoth (i.e., third) element of the list. The
second command remove removes the first occurrence of the value given in
the argument. The final command append adds the argument to the end of
the list.

For the list a, if we printed out the contents of a after each of the above
three lines were executed one after the other, we would get:

24

3.6. EXERCISES WITH LISTS AND TUPLES

[2, 3.2, ’everyone’, ’hello’, [-1.2, ’there’, 5.5]]
[3.2, ’everyone’, ’hello’, [-1.2, ’there’, 5.5]]
[3.2, ’everyone’, ’hello’, [-1.2, ’there’, 5.5], 4.5]

Tuples are nearly identical to lists with the exception that tuples cannot
Tuples are
immutable
ordered
sequences.

be changed (i.e., they are immutable). That is to say, if you try to insert an
element in a tuple, Python will return an error. Tuples are defined exactly as
lists except you use parenthesis as delimiters instead of square brackets, e.g.,
b = (3.2, ’hello’).

Note: You can, to an extent, treat strings as lists. Thus, if a = "hello",
Slicing
strings as if
each
character
were a list
element.

then a[1:3] will return the substring "el".

3.6 Exercises with lists and tuples
Remember that exercises are no less necessary than examples to attempt!
The only real di↵erence between exercises and examples is that the former
are more complex than the latter; pedagogically speaking, both types of prob-
lems are used in a similar way, and in my discussion of both examples and
exercises, I will often introduce new topics.

⇤ Exercise 4 (Making and changing a list):

1. Take your street address and make it a list variable myaddress where
each token is an element. Make numbers numbers and words strings.

2. What would be the code to set the sum of the numerical portions of
your address list to a variable called address sum?

3. What would be the code to change one of the string elements of the
list to another string (e.g., if your address had “West” in it, how would
you change that string to “North”)?

Solution and discussion: We give the solutions for each of the questions
above:

1. For my work address, the myaddress list is:

myaddress = [3225, ’West’, ’Foster’, ’Avenue’,
’Chicago’, ’IL’, 60625]

25

3.7. DICTIONARIES

Note that when you type in a list in Python, you can break the list
after the completion of an element and continue the list on the next
line, and Python will automatically know the list is being continued
(leading blank spaces are ignored). In general, however, you continue
a line of code in Python by putting a backslash (“\”) at the end of a

Line
continuation

in Python.

line, with nothing after the backslash. Thus, you can also enter the
above list by typing in:

myaddress = [3225, ’West’, ’Foster’, ’Avenue’, \
’Chicago’, ’IL’, 60625]

2. This sets the sum of the numerical portions to address sum:

address sum = myaddress[0] + myaddress[-1]

3. Code to change “West” to “North”:

myaddress[1] = "North"

⇤ Exercise 5 (Altering the order of a list’s elements):
Take the list you created in Exercise 4 and change the street portion of

myaddress to have the street first and the building number at the end. Hints:
Make use of assignments and slicing.

Solution and discussion: To change the street portion of myaddress
and view the result:

a = myaddress[0]
b = myaddress[1:3]
myaddress[0:2] = b
myaddress[2] = a
print myaddress

Note that you can assign sublists of a list in one fell swoop if the value on
Assigning

sublists. the right can be parsed element-wise (e.g., is also a list of the same length).

3.7 Dictionaries
Like lists and tuples, dictionaries are also collections of elements, but dictio-

Definition of
a dictionary. naries, instead of being ordered, are unordered lists whose elements are ref-

erenced by keys, not by position. Keys can be anything that can be uniquely

26

3.7. DICTIONARIES

named and sorted. In practice, keys are usually integers or strings. Values
can be anything. (And when I say “anything,” I mean anything, just like
lists and tuples. We’ll see in Ch. 6 a little of the broad range of values that
dictionaries can hold and how that is a useful feature.) Dictionaries are very
powerful; this one data structure revolutionized my code.

Curly braces (“{}”) delimit a dictionary. The elements of a dictionary
are “key:value” pairs, separated by a colon. Dictionary elements are refer-
enced like lists, except the key is given in place of the element address. The
example below will make this all clearer:

Example 12 (A dictionary):
Type the following in the Python interpreter:

a = {’a’:2, ’b’:3.2, ’c’:[-1.2, ’there’, 5.5]}

For the dictionary a:

• What does a[’b’] return?

• What does a[’c’][1] return?

Solution and discussion: a[’b’] returns the floating point number 3.2.
a[’c’] returns the list [-1.2, ’there’, 5.5], so a[’c’][1] returns the
oneth element of that list, the string ’there’.

Like lists, dictionaries come with “built-in” functions (methods) that en-
able you to find out all the keys in the dictionary, find out all the values in
the dictionary, etc. In Ch. 7, when we introduce OOP, we’ll discuss the na-
ture of methods in detail, but even without that discussion, it is still useful to
consider a few examples of dictionary methods:

Example 13 (A few dictionary methods):
Assume we have the dictionary from Example 12 already defined in the

Python interpreter:

a = {’a’:2, ’b’:3.2, ’c’:[-1.2, ’there’, 5.5]}

If you typed the following into the Python interpreter, what would you get
for each line?:

27

3.8. EXERCISES WITH DICTIONARIES

• d = a.keys()

• d = a.values()

• a.has key(’c’)

Solution and discussion: The first line executes the command keys,
The keys,
values, and
has key
methods.

which returns a list of all the keys of a, and sets that list to the variable d.
The second command does this same thing as the first command, except d is
a list of the values in the dictionary a. The third command tests if dictionary
a has an element with the key ’c’, returning True if true and False if not.
For the dictionary a, the first line returns the list [’a’, ’c’, ’b’] and sets
that to the variable d while the second line returns True.

Note that the keys and values methods do not return a sorted list of
Do not
assume

dictionaries
are stored in

any particular
order.

items. Because dictionaries are unordered collections, you must not assume
the key:value pairs are stored in the dictionary in any particular order. If you
want to access the dictionary values in a specific order, you should first order
the dictionary’s keys (or, in some cases, values) in the desired order using a
sorting function like sorted. (Section 7.9.1 gives an example of the use of
sorted.)

3.8 Exercises with dictionaries

⇤ Exercise 6 (Create a dictionary):
Create a dictionary myaddress using your address. Choose relevant keys

(they will probably be strings), and separate your address into street address,
city, state, and postal code portions, all of which are strings (for your ZIP
Code, don’t enter it in as a number).

Solution and discussion: For my work address:

myaddress = {’street’:’3225 West Foster Avenue’,
’city’:’Chicago’, ’state’:’IL’,
’zip’:’60625’}

28

Robert Fovell
has_key NO LONGER EXISTS

Robert Fovell

3.9. FUNCTIONS

As with lists and tuples, I don’t need to specify the line continuation charac-
ter if I break the line in-between the specifications for each element.

⇤ Exercise 7 (Using elements from a dictionary):
Create a variable full address that is the concatenation of all the el-

ements of the myaddress variable from Exercise 6; in your concatenation,
include commas and blank spaces as needed. Hint: Remember that commas
and blanks can be made into strings.

Solution and discussion: Here’s my solution for my myaddress from
Exercise 6:

full_address = myaddress[’street’] + ’, ’ \
+ myaddress[’city’] + ’, ’ \
+ myaddress[’state’] + ’ ’ \
+ myaddress[’zip’]

Notice how when I choose keys that have a clear meaning, in this case labels
Dictionaries
allow you to
choose
meaningful
keys.

like “street” and “city,” my references to the values in the dictionary asso-
ciated with those keys read sensibly: myaddress[’street’] makes more
sense than myaddress[0]. This is one benefit of dictionaries over lists and
tuples.

3.9 Functions
Functions in Python, in theory, work both like functions and subroutines in

Functions
work like
Fortran
functions and
subroutines.

Fortran, in that (1) input comes via arguments and (2) output occurs through:
a return variable (like Fortran functions) and/or arguments (like Fortran sub-
routines). In practice, functions in Python are written to act like Fortran
functions, with a single output returned. (The return value is specified by the
return statement.) If you want multiple returns, it’s easier to put them into
a list or use objects.

Function definitions begin with a def statement, followed by the name of
the function and the argument list in parenthesis. The contents of the func-

All lines in a
statement
block are
usually
indented in 4
spaces.

tion after this def line are indented in “x” spaces (where “x” is a constant).
Usually, people indent 4 spaces. (In practice, if you use a development en-
vironment like IDLE, or the Python mode in vi or Emacs, you don’t have to
add the indentation yourself; the environment does it for you.) Example 14
below shows how the indentation works to indicate what lines are inside the
function.

29

3.9. FUNCTIONS

Important side note: All block structures in Python use indentation to
show when they begin and end. This convention is in lieu of “end” lines like
end do and end if in Fortran. For those of us who have had experience
using the fixed-form format of Fortran 77, this will seem like a bad idea. For
now, just trust me that this indentation convention actually makes your code
clearer, more readable, and more concise.

Example 14 (A function):
Type the following in a file (remember to use four spaces for the inden-

tation instead of a tab or another number of spaces):

def area(radius):
area = 3.14 * (radius**2)
return area

What happens if you run the file? Why did nothing happen? Now type the
following in the interpreter or Python Shell:

a = area(3)
print a

What happens?

Solution and discussion: In the first case, nothing happened because you
Functions are

defined by
def and used

by calling.

only defined the function; the function was not called. In the second case,
you call the function, set the return value to the variable a, and print out a
to the screen. Note that in such a simple function, you could have skipped
creating the local variable area and just typed:

return 3.14 * (radius**2)

which would have evaluated the expression prior to the return.
Note how the indentation shows that the two lines of code after the def

line are the lines inside the function (i.e., they are the code that does the
function’s tasks).

As we said earlier, inputs to a function, in general, come in via the argu-
Positional and

keyword
arguments.

ment list while the output is the return value of the function. Python accepts
both positional and keyword arguments in the argument list of a function: Po-
sitional arguments are usually for required input while keyword arguments

30

3.9. FUNCTIONS

are usually for optional input. Typically, keyword arguments are set to some
default value. If you do not want to have a default value set for the keyword,
a safe practice is to just set the keyword to None.

Example 15 (A function with both positional and keyword arguments):
Type the following in a file:

def area(radius, pi=None):
area = pi * (radius**2)
return area

a = area(3)

What happens if you run the file?

Solution and discussion: You should have received an error like this
(note I handwrapped the last line to make it fit on the page):

Traceback (most recent call last):
File "example.py", line 4, in <module>
a = area(3)

File "example.py", line 2, in area
area = pi * (radius**2)

TypeError: unsupported operand
type(s) for *: ’NoneType’ and ’int’

Because in your a = area(3) call you did not define the keyword argument
pi, when the function was called, it used the default value of None for pi.
When the function tried to execute an arithmetic operation using pi, an error
was raised and execution was transferred to the main program level, where
execution finally stopped.

If you type in the following in the interpreter or Python Shell, after first
executing the code in yourfilename.py (where yourfilename.py is the name of
the file in which you defined the area function):3

a = area(3, pi=3.14)
print a

3Recall you execute a file either by typing in python -i yourfilename.py at the
command-line or by running the module in IDLE.

31

3.9. FUNCTIONS

you will get a print-to-screen of the answer, 28.26. Upon the call of area,
the value of 3.14 was set to pi in the function.

Traditionally, Fortran and similar procedural language programmers have
had to deal with the problem of lengthy and unwieldy argument lists: If you
want to pass in 30 variables, your argument list has 30 variables in it. (It is
not surprising to see such subroutine calls in a climate model.) A list of such
a length is an undetected error waiting to happen; one typing slip and you
could be passing in surface roughness instead of humidity!

Python has a nifty way of passing in lists of positional and keyword ar-
A simpler,

compact way
of passing in

lists of
arguments.

guments in one fell swoop by considering a list of positional arguments as
a list/tuple and a collection of keyword arguments as a dictionary. You can
then use all of Python’s built-in list and dictionary methods to manage your
function’s arguments, with the function’s calling line only having two vari-
ables. This example illustrates how to do this:

Example 16 (Passing in lists of positional and keyword arguments):
Try typing in the following in the same file where you defined the version

of area with both positional and keyword arguments (i.e., the version in
Example 15):

args = [3,]
kwds = {’pi’:3.14}
a = area(*args, **kwds)
print a

then run your file from the Unix command line by:

python -i yourfilename.py

(or using the shell in IDLE). Remember to put these lines after your def-
inition of area; otherwise, you will not have an area function to refer to
,.

Solution and discussion: This code should work exactly the same as
Example 15, that is:

a = area(*args, **kwds)

works the same as:

32

3.10. LOGICAL CONSTRUCTS

a = area(3, pi=3.14)

where args and kwds are given as above. You will get a print-to-screen of
the answer, 28.26.

Example 16 illustrates the following rules for passing in function argu-
ments by lists and dictionaries:

• In the function call, put an asterisk (*) before the list that contains the
positional arguments and put two asterisks before the dictionary that
contains the keyword arguments.

• The list of positional arguments is a list where each element in the list
is a positional argument to be passed in, and the list is ordered in the
same order as the positional arguments.

• The dictionary of keyword arguments uses string keys corresponding
to the name of the keyword and the value of the key:value pairs as the
value set to the keyword parameter.

3.10 Logical constructs
The syntax for if-statements is

if
statements.if <condition>:

followed by the block of code to execute if <condition> is true. Because
indentation delimits the contents of the if block, there is no need for an
“endif” line.

Example 17 (A compound if statement):
Type the following in a file:

The
compound
elif
statement.

a = 3
if a == 3:

print ’I am a ’, a
elif a == 2:

print ’I am a 2’
else:

print ’I am not a 3 or 2’

33

3.11. LOOPING

First guess what you think will happen if you run the file (what do you think
elif does? else?) then run the file. What did you get? What would you
need to change to get I am a 2 or I am not a 3 or 2 to be output to the
screen?

Solution and discussion: Because a = 3, the first if test will test true
and I am a 3 will be printed to the screen.

The elif statement is used after the first test and means “else if”, or “if
the previous if was not true, consider this if”. You can have any number
of elifs after the initial if and the compound if statement will go through
each one, testing the line’s condition and executing what is in the block under
the elif line if true (then exiting the compound if) and going on to the next
test if false.

The else executes if none of the other if and elif statements tested
true and is ignored otherwise.

Don’t forget the colon at the end of if, elif, and else statements! It’s
Remember

the colon
after if, etc.!

easy to forget them , (same with the def statement for defining functions).

3.11 Looping

3.11.1 Looping a definite number of times
The standard loop in Python begins with for and has the syntax:

for <index> in <list>:

followed by the contents of the loop. (Don’t forget the colon at the end of the
The for loop
goes through
a sequence of

items.

for line.) The for loop is kind of di↵erent compared to the Fortran do loops
you might be familiar with. In Fortran, IDL, etc. you specify a beginning
value and an ending value (often 1 and an integer n) for an index, and the
loop runs through all integers from that beginning value to that ending value,
setting the index to that value. In Python, the loop index runs through a list of
items, and the index is assigned to each item in that list, one after the other,
until the list of items is exhausted.

Example 18 (A for loop):
Type the following in a file (remember to indent 4 spaces in the second

line):

34

3.11. LOOPING

for i in [2, -3.3, ’hello’, 1, -12]:
print i

Run the file. What did you get?

Solution and discussion: The code prints out the elements of the list to
screen, one element per line:

2
-3.3
hello
1
-12

This means i changes type as the loop executes. It starts as an integer, be-
comes floating point, then becomes a string, returns to being an integer, and
ends as an integer.

Recall that elements in a Python list can be of any type, and that list
elements do not all have to be of the same type. Also remember that Python is
dynamically typed, so that a variable will change its type to reflect whatever
it is assigned to at any given time. Thus, in a loop, the loop index could,

Iterators are
di↵erent than
Fortran
looping
indices.

potentially, be changing in type as the loop runs through all the elements in
a list, which was the case in Example 18 above. Since the loop index does
not have to be an integer, it doesn’t really make sense to call it an “index;”
in Python, it’s called an iterator. Note too that since the iterator is not just a
number, but an object, you have access to all of the attributes and methods
of its class (again, more on this in Ch. 7).

A lot of the time you will loop through lists. Technically, however,
You can loop
through any
iterable.

Python loops can loop through any data structure that is iterable, i.e., a
structure where after you’ve looked at one element of it, it will move you
onto the next element. Arrays (which we’ll cover in Ch. 4) are another iter-
able structure.

In Fortran, we often loop through arrays by the addresses of the elements.
The range
function
makes a list
of indices.

So too in Python, often, you will want to loop through a list by list element
addresses. To make this easier to do there is a built-in function called range
which produces such a list: range(n) returns the list [0, 1, 2, . . . , n � 1].

Example 19 (A for loop using the range function):
Type the following in a file:

35

3.11. LOOPING

a = [2, -3, ’hello’, 1, -12]
for i in range(5):

print a[i]

Run the file. What did you get?

Solution and discussion: This code will give the exact same results as in
Example 18. The function call range(5) produces the list:

[0, 1, 2, 3, 4]

which the iterator i runs through, and which is used as the index for elements
in list a. Thus, i is an integer for every step of the loop.

3.11.2 Looping an indefinite number of times
Python also has a while loop. It’s like any other while loop and begins with

The while
loop. the syntax:

while <condition>:

The code block (indented) that follows the while line is executed while
<condition> evaluates as True. Here’s a simple example:

Example 20 (A while loop):
Type in the following into a file (or the interpreter):

a = 1
while a < 10:

print a
a = a + 1

What did you get?

Solution and discussion: This will print out the integers one through
ten, with each integer on its own line. Prior to executing the code block un-
derneath the while statement, the interpreter checks whether the condition
(a < 10) is true or false. If the condition evaluates as True, the code block
executes; if the condition evaluates as False, the code block is not executed.
Thus:

36

3.12. EXERCISES ON FUNCTIONS, LOGICAL CONSTRUCTS, AND
LOOPING

a = 10
while a < 10:

print a
a = a + 1

will do nothing. Likewise:

a = 10
while False:

print a
a = a + 1

will also do nothing. In this last code snippet, the value of the variable a
is immaterial; as the condition is always set to False, the while loop will
never execute. (Conversely, a while True: statement will never terminate.
It is a bad idea to write such a statement ,.)

Please see your favorite Python reference if you’d like more information
about while loops (my reference suggestions are given in Ch. 10). Because
they are not as common as their for cousins (at least in AOS applications),
I won’t spend exercise time on them.

3.12 Exercises on functions, logical constructs,
and looping

⇤ Exercise 8 (Looping through a list of street address elements):
Take the list of the parts of your street address from Exercise 4. Write a

loop that goes through that list and prints out each item in that list.

Solution and discussion: My street address list was:

myaddress = [3225, ’West’, ’Foster’, ’Avenue’, \
’Chicago’, ’IL’, 60625]

The following loop will do the job:

for i in myaddress:
print i

37

3.12. EXERCISES ON FUNCTIONS, LOGICAL CONSTRUCTS, AND
LOOPING

as will this loop:

for i in range(len(myaddress)):
print myaddress[i]

Remember the built-in len function returns the length of the list that is
its argument; the length is an integer and is the argument passed into the
range call. Note also that the type of i behaves di↵erently in the two loops.
Python is dynamically typed!

⇤ Exercise 9 (Looping through a list of temperatures and applying a
test):

Pretend you have the following list of temperatures T:

T = [273.4, 265.5, 277.7, 285.5]

and a list of flags called Tflags that is initialized to all False. Tflags and
T are each the same size. Thus:

Tflags = [False, False, False, False]

Write a loop that checks each temperature in T and sets the corresponding
Tflags element to True if the temperature is above the freezing point of
water.

Solution and discussion: The following loop will do the job:

for i in range(len(T)):
if T[i] > 273.15:

Tflags[i] = True

Remember I’m assuming both T and Tflags are already defined before I
enter the loop.

⇤ Exercise 10 (A function to loop through a list of temperatures and
apply a test):

Turn your answer to Exercise 9 into a function. Assume that T is the input
argument and Tflags is what you will want to return from the function. A
hint: You can create a four-element list whose values all equal False by
typing [False]*4. Thus:

Tflags = [False]*4

does the same thing as:

38

3.13. MODULES

Tflags = [False, False, False, False]

Also, you may want to use the range and len functions at some point in
your code.

Solution and discussion: The following function will do the job:

def temptest(T):
Tflags = [False]*len(T)
for i in range(len(T)):

if T[i] > 273.15:
Tflags[i] = True

return Tflags

3.13 Modules
Python calls libraries “modules” and “packages,” where a package is a col-

Modules and
packages.lection of modules. (Usually, people say “module” to refer to both modules

and packages, since they’re used very similarly. I’ll do that for most of this
book.) Unlike compiled languages like Fortran, however, these modules are
not collections of object files but rather regular Python source code files. A
module is a single source code file and a package is a directory containing
source code files (and possibly subdirectories of source code files).

To import a module, Python provides a command called import, and its
Importing a
module.syntax is:

import <module name>

Let’s look at an example to help our discussion of how to import and use
Python modules:

Example 21 (Importing a module):
To import a module called NumPy (this is Python’s array package, which

we’ll talk about in-depth in Ch. 4), type:

import numpy

Type this in the Python interpreter. It should execute without any message
being printed to the screen.

39

3.13. MODULES

Once a module is imported, you can use functions, variables, etc. defined
Referring to

functions, etc.
in a module.

in the module by referring to the imported name (here numpy), putting a pe-
riod (“.”), and the name of the function, variable, etc. that was defined in the
module. Thus, to use the sin function in the package, refer to numpy.sin.

Try typing:

a = numpy.sin(4)

This will return the sine of 4 and set it to the variable a. Print out a to check
this worked correctly; it should equal �0.756, approximately (I truncated
most of the digits that the print statement provides).

What import essentially does is to run the code file that has the filename
Importing and

namespaces. of <module name>.py. When import runs that code file, it runs the file in its
own little “interpreter.” This “interpreter,” however, is not a separate Python
session but occurs in the current session within a variable named after the
module’s name. That is to say, the import executes the module’s code in
its own namespace; that namespace is a variable with the same name as the
module’s name.

For import numpy, the filename that would be run is numpy.py and the
contents of that file would be run in the namespace numpy. (This isn’t quite
what happens for NumPy, because NumPy is technically a package of many
files, not a module of a single file, but the principle is the same.) If all the
module file does is define functions, variables, etc., then nothing will be out-
put. But you have access to everything that is defined by typing the module
name, a period, then the name of the module function, variable, etc. you
want (hence, numpy.sin, etc.). Just as in a regular Python session you have
access to all the variables, functions, etc. you define in that regular session,
with an imported module, all the variables, functions, etc. that the module
created and used are also sitting inside the module’s namespace, ready for
you to access, using the syntax just mentioned.

Submodules (which are subdirectories inside the package directory) are
Referring to
submodules. also specified with the periods. For instance, NumPy has a submodule called

ma, which in turn has special functions defined in it. The submodule then
is referred to as numpy.ma and the array function in the submodule as
numpy.ma.array.

(As an aside, sometimes the name of a module as written or spoken is
di↵erent from name that goes in the import command: NumPy is the mod-
ule name, but the namespace is numpy, the Scientific Python package has

40

3.14. A BRIEF INTRODUCTION TO OBJECT SYNTAX

a namespace Scientific, and so on. This is confusing, but unfortunately
some modules are this way.)

The idea of a namespace for Python modules helps protect against col-
How
namespaces
prevent
collisions.

lisions. In Fortran, you have to be careful you do not duplicate function
and subroutine names when you compile against multiple libraries, because
if there is a function of the same name in two libraries, one of those will
be overwritten. With Python modules, this kind of collision cannot occur,
because functions are attached to modules by name through the imported
module’s namespace. It is, however, possible to defeat this feature and cause
collisions if you really want to (e.g., by having duplicate module names in
PYTHONPATH directories or improper use of from ... import), which
is why I am teaching you the safe way of importing rather than the risky way
,.

Sometimes, if you use a module a lot, you will want refer to it by a
shorter name. To do this, use the import <module> as <alias> construct,
for instance:

import numpy as N

Then, N.sin is the same as numpy.sin.
Finally, remember, modules can contain data in addition to functions.

Modules can
contain data
variables in
addition to
functions.

The syntax to refer to those module data variables is exactly the same as for
functions. Thus, numpy.pi gives the value of the mathematical constant ⇡.

3.14 A brief introduction to object syntax
While we introduced some elements of objects with Section 3.5 on lists and
tuples and Section 3.7 on dictionaries, and while we’re saving a rigorous
introduction to objects for Ch. 7), at this time, having talked about the syntax
for modules, we should briefly introduce a little of what objects are and how
in Python to refer to objects and their parts.

The key idea of objects is that variables shouldn’t be thought of as having
only values (and type), but rather they should be thought of entities that can
have any number of other things “attached” to them. If the attached thing is
a piece of data, it’s called an attribute of the object variable. If the attached
thing is a function, it’s called a method.

From a syntax viewpoint, if you have an object variable that has many
Referring to
object
attributes and
methods.

things attached to it, the question is how to refer to those attached things. In
Python, the key syntax idea is borrowed from module syntax: Just as you
describe functions attached to modules by giving the module name, a period,

41

3.15. EXERCISE THAT INCLUDES USING A MODULE

then the function name, you describe things attached to a Python object by
giving the variable name, a period, then the attribute or method name.

The syntax of operations with or by attributes and methods should also
seem familiar to you: If you want to call an object’s methods, you use the
same syntax as for functions (i.e., with a calling list given by parenthesis);
attributes of objects are in turn read and set attributes just like they were
regular variables (i.e., with an equal sign).

Thus, for instance, if I have a list object mylist, and I want to use
one of the methods attached to that object (e.g., reverse), I would type
in mylist.reverse(). This method reverses all the elements in the object,
in place, and so it does not require the passing in of any arguments: The
data to reverse is in mylist itself (note the empty argument list between the
parenthesis).

If you can attach attributes and methods to an object, you will want a
Using dir to

see what is
attached to an

object.

way of viewing all the attributes and methods that are attached. A good
interactive development environment will give nicely formatted ways to do
this, but if all you have is a Python interpreter, type dir(x), where x is the
object name, to list (approximately) all attributes and methods attached to an
object.

Lastly, as a teaser, here’s an idea I want you to think about prior to our
introduction of objects in Ch. 7: Nearly everything in Python is an object.
Everything. Thus, what I’ve been calling variables (integers, floats, strings,
lists, etc.) are not variables in the traditional Fortran, IDL, Matlab, etc. sense
but instead objects. Even functions are objects. This feature of Python will
end up having profound implications and will enable us to write programs
we never could in other languages traditionally used in the atmospheric and
oceanic sciences.

3.15 Exercise that includes using a module

⇤ Exercise 11 (Using functions from a module to do calculations on
data):

Pretend you have the list of temperatures T you saw earlier:

T = [273.4, 265.5, 277.7, 285.5]

Write code that will calculate the average of the maximum and minimum of
T. Hint: The NumPy package has a max function and a min function that
can look through a list of numerical values and return the maximum and

42

3.16. EXCEPTION HANDLING

minimum value, respectively. The single argument they take is the list of
numerical values.

Solution and discussion: Here’s code that will do the trick:

import numpy
T = [273.4, 265.5, 277.7, 285.5]
maxT = numpy.max(T)
minT = numpy.min(T)
avg_max_min = 0.5 * (maxT + minT)

3.16 Exception handling
In traditional Fortran, one common way of checking for and processing pro-

Throwing
exceptions
and raise.

gram error states is to write an “if” test for the error state and then execute
a stop statement to stop program execution and output an informative mes-
sage. In Python, you can accomplish the same thing with the raise state-
ment: If you want the program to stop when you have an error, you throw an
exception with a raise statement. Here’s an example:

Example 22 (Using raise):
Consider the function area we defined in Example 15. How would we

put in a test to ensure the user would not pass in a negative radius? One
answer: We could put in an if test for a negative radius and if true, execute
a raise statement:

def area(radius, pi=None):
if radius < 0:

raise ValueError, ’radius negative’
area = pi * (radius**2)
return area

The syntax for raise is the command raise followed by an exception class
(in this case I used the built-in exception class ValueError, which is com-
monly used to denote errors that have to do with bad variable values), then a
comma and a string that will be output by the interpreter when the raise is
thrown.

43

3.16. EXCEPTION HANDLING

Raising an exception is not exactly the same as a Fortran stop statement
Exceptions
are not the

same as
Fortran stop

statements.

(though sometimes it will act the same). In the latter, program execution
stops and you are returned to the operating system level. In the former, an
exception stops execution and sends the interpreter up one level to see if
there is some code that will properly handle the error. This means that in
using raise, you have the opportunity to gracefully handle expected errors
without causing the entire program to stop executing.

In Example 22, we saw how to create an exception, but I didn’t show you
how to handle the exception. That is, I didn’t show you how in Python to
tell the interpreter what to do if a routine it calls throws an exception. The
try/except statement is Python’s exception handler. You execute the block
under the try, then execute the excepts if an exception is raised. Consider
this example:

Example 23 (Handling an exception):
Assume we have the function area as defined in Example 22 (i.e., with

the test for a negative radius). Here is an example of calling the function
area using try/except that will gracefully recognize a negative radius and
call area again with the absolute value of the radius instead as input:

rad = -2.5
try:

a = area(rad, pi=3.14)
except ValueError:

a = area(abs(rad), pi=3.14)

When the interpreter enters the try block, it executes all the statements in
How the

interpreter
processes a
try/except

block.

the block one by one. If one of the statements returns an exception (as the
first area call will because rad is negative), the interpreter looks for an
except statement at the calling level (one level up from the first area call,
which is the level of calling) that recognizes the exception class (in this case
ValueError). If the interpreter finds such an except statement, the inter-
preter executes the block under that except. In this example, that block
repeats the area call but with the absolute value of rad instead of rad itself.
If the interpreter does not find such an except statement, it looks another
level up for a statement that will handle the exception; this occurs all the
way up to the main level, and if no handler is found there, execution of the
entire program stops.

44

3.17. SUMMARY

In the examples in this section, I used the exception class ValueError.
Exception
classes.There are a number of built-in exception classes which you can find listed

in a good Python reference (e.g., TypeError, ZeroDivisionError, etc.)
and which you can use to handle the specific type of error you are protecting
against.4 I should note, however, the better and more advanced approach is
to define your own exception classes to customize handling, but this topic is
beyond the scope of this book.

3.17 Summary
In many ways, basic Python variable syntax and control structures look a
lot like those in traditional compiled languages. However, Python includes
a number of additional built-in data types, like dictionaries, which suggest
there will be more to the language than meets the eye; in the rest of this
book, we’ll find those data structures are very powerful (just building up the
suspense level ,). Other features of Python that usually di↵er from tradi-
tional compiled languages include: Python variables are dynamically typed,
so they can change type as the program executes; indentation whitespace is
significant; imported module names organize the namespace of functions and

4See http://docs.python.org/library/exceptions.html for a listing of built-in exception
classes (accessed August 17, 2012).

45

3.17. SUMMARY

module data variables; and exceptions can be handled using the try/except
statement.

Finally, seeing all this Python code may make you wonder whether there
The Python
style guide. is a standard style guide to writing Python. Indeed, there is; it’s called PEP

8 (PEP stands for “Python Enhancement Proposal”) and is online at http:
//www.python.org/dev/peps/pep-0008.

46

Chapter 4

Array Operations

4.1 What is an array and the NumPy package

In Ch. 3, we were introduced to lists, which look a lot like Fortran arrays,
except lists can hold values of any type. The computational overhead to
support that flexibility, however, is non-trivial, and so lists are not practical
to use for most scientific computing problems: lists are too slow. To solve
this problem, Python has a package called NumPy1 which defines an array

NumPy
arrays are like
lists except all
elements are
the same
type.

data type that in many ways is like the array data type in Fortran, IDL, etc.
An array is like a list except: All elements are of the same type, so opera-

tions with arrays are much faster; multi-dimensional arrays are more clearly
supported; and array operations are supported. To utilize NumPy’s functions
and attributes, you import the package numpy. Because NumPy functions are
often used in scientific computing, you usually import NumPy as an alias,
e.g., import numpy as N, to save yourself some typing (see p. 41 for more

Importing
NumPy.about importing as an alias). Note that in this chapter and the rest of the

book, if you see the alias N in code without import numpy as N explic-
itly state, you can assume that N was defined by such an import statement
somewhere earlier in the code.

4.2 Creating arrays

The most basic way of creating an array is to take an existing list and convert
it into an array using the array function in NumPy. Here is a basic example:

1There are other array packages for Python, but the community has now converged on
NumPy.

47

4.2. CREATING ARRAYS

Example 24 (Using the array function on a list):
Assume you have the following list:

mylist = N.array([[2, 3, -5],[21, -2, 1]])

then you can create an array a with:

import numpy as N
a = N.array(mylist)

The array function will match the array type to the contents of the list. Note
Creating

arrays using
array.

that the elements of mylist have to be convertible to the same type. Thus,
if the list elements are all numbers (floating point or integer), the array
function will work fine. Otherwise, things could get dicey.

Sometimes you will want to make sure your NumPy array elements are
Making

arrays of a
given type.

of a specific type. To force a certain numerical type for the array, set the
dtype keyword to a type code:

Example 25 (Using the dtype keyword):
Assume you have a list mylist already defined. To make an array a from

that list that is double-precision floating point, you’d type:

import numpy as N
a = N.array(mylist, dtype=’d’)

where the string ’d’ is the typecode for double-precision floating point.
The dtype

keyword and
common

array
typecodes.

Some common typecodes (which are all strings) include:

• ’d’: Double precision floating

• ’f’: Single precision floating

• ’i’: Short integer

• ’l’: Long integer

Often you will want to create an array of a given size and shape, but
you will not know in advance what the element values will be. To create an

48

Robert Fovell

Robert Fovell

Robert Fovell
No difference between long int and integer in Python 3;
all integers are of the same maximum size

Robert Fovell

4.2. CREATING ARRAYS

array of a given shape filled with zeros, use the zeros function, which takes
the shape of the array (a tuple) as the single positional input argument (with
dtype being optional, if you want to specify it):

Example 26 (Using the zeros function):
Let’s make an array of zeros of shape (3,2), i.e., three rows and two

Using zeros
to create a
zero-filled
array of a
given shape.

columns in shape. Type in:

import numpy as N
a = N.zeros((3,2), dtype=’d’)

Print out the array you made by typing in print a. Did you get what you
expected?

Solution and discussion: You should have gotten:

>>> print a
[[0. 0.]
[0. 0.]
[0. 0.]]

Note that you don’t have to type import numpy as N prior to every
You only
have to
import
NumPy once
in your
module file.

use of a function from NumPy, as long as earlier in your source code file
you have done that import. In the examples in this chapter, I will periodi-
cally include this line to remind you that N is now an alias for the imported
NumPy module. However, in your own code file, if you already have the
import numpy as N statement near the beginning of your file, you do not
have to type it in again as per the example. Likewise, if I do not tell you to
type in the import numpy as N statement, and I ask you to use a NumPy
function, I’m assuming you already have that statement earlier in your code
file.

Also note that while the input shape into zeros is a tuple, which all array
shapes are, if you type in a list, the function call will still work.

Another array you will commonly create is the array that corresponds to
The arange
function.the output of range, that is, an array that starts at 0 and increments upwards

by 1. NumPy provides the arange function for this purpose. The syntax is

49

Robert Fovell

Robert Fovell
print(a)

Robert Fovell
reminder that
standard
practice is to
import numpy
 as np, not N

Robert Fovell

4.3. ARRAY INDEXING

the same as range, but it optionally accepts the dtype keyword parameter
if you want to select a specific type for your array elements:

Example 27 (Using the arange function):
Let’s make an array of 10 elements, starting from 0, going to 9, and

incrementing by 1. Type in:

a = N.arange(10)

Print out the array you made by typing in print a. Did you get what you
expected?

Solution and discussion: You should have gotten:

>>> print a
[0 1 2 3 4 5 6 7 8 9]

Note that because the argument of arange is an integer, the resulting
Be careful

that arange
gives you the

array type
you want.

array has integer elements. If, instead, you had typed in arange(10.0),
the elements in the resulting array would have been floating point. You can
accomplish the same e↵ect by using the dtype keyword input parameter, of
course, but I mention this because sometimes it can be a gotcha: you intend
an integer array but accidentally pass in a floating point value for the number
of elements in the array, or vice versa.

4.3 Array indexing
Like lists, element addresses start with zero, so the first element of a 1-D

Array indices
start with 0. array a is a[0], the second is a[1], etc. Like lists, you can also reference

elements starting from the end, e.g., element a[-1] is the last element in a
1-D array a.

Array slicing follows rules very similar to list slicing:
Array slicing

rules. • Element addresses in a range are separated by a colon.

• The lower limit is inclusive, and the upper limit is exclusive.

• If one of the limits is left out, the range is extended to the end of the
range (e.g., if the lower limit is left out, the range extends to the very
beginning of the array).

50

Robert Fovell
print(a)

4.3. ARRAY INDEXING

• Thus, to specify all elements, use a colon by itself.

Here’s an example:

Example 28 (Array indexing and slicing):
Type the following in a Python interpreter:

a = N.array([2, 3.2, 5.5, -6.4, -2.2, 2.4])

What does a[1] equal? a[1:4]? a[2:]? Try to answer these first without
using the interpreter. Confirm your answer by using print.

Solution and discussion: You should have gotten:

>>> print a[1]
3.2
>>> print a[1:4]
[3.2 5.5 -6.4]
>>> print a[2:]
[5.5 -6.4 -2.2 2.4]

For multi-dimensional arrays, indexing between di↵erent dimensions is
Multi-
dimensional
array
indexing and
slicing.

separated by commas. Note that the fastest varying dimension is always the
last index, the next fastest varying dimension is the next to last index, and so
forth (this follows C convention).2 Thus, a 2-D array is indexed [row, col].
Slicing rules also work as applied for each dimension (e.g., a colon selects
all elements in that dimension). Here’s an example:

Example 29 (Multidimensional array indexing and slicing):
Consider the following typed into a Python interpreter:

import numpy as N
a = N.array([[2, 3.2, 5.5, -6.4, -2.2, 2.4],

[1, 22, 4, 0.1, 5.3, -9],
[3, 1, 2.1, 21, 1.1, -2]])

2See http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html and the definition
of “row-major” in http://docs.scipy.org/doc/numpy/glossary.html (both accessed August 9,
2012).

51

Robert Fovell
wherever you see print statements,
they need to use parentheses

4.4. EXERCISES IN CREATING AND INDEXING ARRAYS

What is a[1,2] equal to? a[:,3]? a[1,:]? a[1,1:4]?

Solution and discussion: You should have obtained:

>>> print a[1,2]
4.0
>>> print a[:,3]
[-6.4 0.1 21.]
>>> print a[1,:]
[1. 22. 4. 0.1 5.3 -9.]
>>> print a[1,1:4]
[22. 4. 0.1]

Note that when I typed in the array I did not use the line continuation
character at the end of each line because I was entering in a list, and by start-
ing another line after I typed in a comma, Python automatically understood
that I had not finished entering the list and continued reading the line for me.

4.4 Exercises in creating and indexing arrays

⇤ Exercise 12 (Creating an array of zeros):
What is the code to create a 4 row, 5 column array of single-precision

floating point zeros and assign it to the variable a?

Solution and discussion: The zeros function does the trick. Note that
the first argument in the solution is a tuple that gives the shape of the output
array, so the first argument needs the extra set of parentheses that says the
sequence is a tuple:

a = N.zeros((4,5), dtype=’f’)

⇤ Exercise 13 (Using a multidimensional array):
Consider the example array from Example 29, here repeated:

import numpy as N
a = N.array([[2, 3.2, 5.5, -6.4, -2.2, 2.4],

[1, 22, 4, 0.1, 5.3, -9],
[3, 1, 2.1, 21, 1.1, -2]])

52

4.5. ARRAY INQUIRY

1. What is a[:,3]?

2. What is a[1:4,0:2]? (Why are there no errors from this specifica-
tion?)

3. What will b = a[1:,2] do? What will b be? Reason out first what
will happen, then try it to see. If you were wrong, why were you
wrong?

Solution and discussion: My answers:

1. a[:,3] is [-6.4, 0.1, 21].

2. a[1:4,0:2]? selects the last two rows and first three columns as a
subarray. There are no errors because while there is no “threeth” row,
the row slicing works until it’s out of rows.

3. b is the subarray consisting of the last two rows and the third column.
The code assigns that subarray to the variable b.

4.5 Array inquiry
Some information about arrays comes through functions that act on arrays;
other information comes through attributes attached to the array object. (Re-
member that basically everything in Python is an object, including arrays. In
Section 7.4 we’ll be talking more about array attributes.) Let’s look at some
array inquiry examples:

Example 30 (Array inquiry):
Import NumPy as the alias N and create a 2-D array a. Below are some

Finding the
shape, rank,
size, and type
of an array.

array inquiry tasks and the Python code to conduct these tasks. Try these
commands out in your interpreter and see if you get what you expect.

• Return the shape of the array: N.shape(a)

• Return the rank of the array: N.rank(a)

• Return the number of elements in the array: N.size(a)

• Typecode of the array: a.dtype.char

53

Robert Fovell

Robert Fovell
two

4.6. ARRAY MANIPULATION

Solution and discussion: Here are some results using the example array
from Example 29:

>>> print N.shape(a)
(3, 6)
>>> print N.rank(a)
2
>>> print N.size(a)
18
>>> print a.dtype.char
d

Note that you should not use len for returning the number of elements
in an array. Also, the size function returns the total number of elements in
an array. Finally, a.dtype.char is an example of an array attribute; notice
there are no parentheses at the end of the specification because an attribute

Use size, not
len, for

arrays.

variable is a piece of data, not a function that you call.

The neat thing about array inquiry functions (and attributes) is that you
Array inquiry

enables you
to write

flexible code.

can write code to operate on an array in general instead of a specific array
of given size, shape, etc. This allows you to write code that can be used on
arrays of all types, with the exact array determined at run time.

4.6 Array manipulation
In addition to finding things about an array, NumPy includes many functions
to manipulate arrays. Some, like transpose, come from linear algebra, but
NumPy also includes a variety of array manipulation functions that enable
you to massage arrays into the form you need to do the calculations you
want. Here are a few examples:

Example 31 (Array manipulation):
Import NumPy as the alias N and create one 6-element 1-D array a, one

8-element 1-D array b, and one 2-D array c (of any size and shape). Below
Reshaping,

transposing,
and other

array
manipulation

functions.

are some array manipulation tasks and the Python code to conduct those
tasks. Try these commands out in your interpreter and see if you get what
you expect.

• Reshape the array and return the result, e.g.:

54

Robert Fovell
Python3: use a.ndim to report number
of dimensions

4.6. ARRAY MANIPULATION

N.reshape(a,(2,3))

• Transpose the array and return the result:

N.transpose(c)

(Note that I’m asking you to use transpose on the 2-D array; the
transpose of a 1-D array is just the 1-D array.)

• Flatten the array into a 1-D array and return the result:

N.ravel(a)

• Concatenate arrays and return the result:

N.concatenate((a,b))

Note that the function concatenate has one positional argument (not
two, as the above may seem to suggest). That one argument is a tu-
ple of the arrays to be concatenated. This is why the above code has
“double” parenthesis.

• Repeat array elements and return the result, e.g.:

N.repeat(a,3)

• Convert array a to another type, e.g.:
Converting an
array to
another type.d = a.astype(’f’)

The argument of astype is the typecode for d. This is an example
of an object method; we’ll explain array object methods more in Sec-
tion 7.4.

Solution and discussion: Here’s my solution for arrays a and b, where
a = N.arange(6) and b = N.arange(8), and the 2-D array from Exam-
ple 29 is now set to the variable c:

55

Robert Fovell

Robert Fovell
c

4.6. ARRAY MANIPULATION

>>> print N.reshape(a,(2,3))
[[0 1 2]
[3 4 5]]
>>> print N.transpose(c)
[[2. 1. 3.]
[3.2 22. 1.]
[5.5 4. 2.1]
[-6.4 0.1 21.]
[-2.2 5.3 1.1]
[2.4 -9. -2.]]
>>> print N.ravel(a)
[0 1 2 3 4 5]
>>> print N.concatenate((a,b))
[0 1 2 3 4 5 0 1 2 3 4 5 6 7]
>>> print N.repeat(a,3)
[0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5]
>>> d = a.astype(’f’)
>>> print d
[0. 1. 2. 3. 4. 5.]

You’ll want to consult a NumPy reference (see Section 10.3) to get a full
list of the array manipulation functions available, but here’s one more snazzy
function I wanted to mention. In the atmospheric and oceanic sciences, we
often find ourselves using 2-D regularly gridded slices of data where the x-
and y-locations of each array element is given by the corresponding elements
of the x and y vectors. Wouldn’t it be nice to get a 2-D array whose elements
are the x-values for each column and a 2-D array whose elements are the
y-values for each row? The meshgrid function does just that:

The
meshgrid

function. Example 32 (The meshgrid function):
Consider the following code that creates two vectors, lon and lat, that

hold longitude and latitude values (in degrees), respectively, and then assigns
the result of N.meshgrid(lon,lat) to a variable a:

import numpy as N

lon = N.array([0, 45, 90, 135, 180, 225, 270, 315, 360])

lat = N.array([-90, -45, 0, 45, 90])

a = N.meshgrid(lon,lat)

56

Robert Fovell
c

Robert Fovell
[2. 1. 3. 3.2 22. 1. 5.5 4. 2.1 -6.4 0.1 21. -2.2 5.3 1.1 2.4 -9. -2.]

4.6. ARRAY MANIPULATION

What type is a? What is a[0]? a[1]?

Solution and discussion: The variable a is a tuple of two elements. The
first element of a, i.e., a[0], is a 2-D array:

>>> print a[0]

[[0 45 90 135 180 225 270 315 360]

[0 45 90 135 180 225 270 315 360]

[0 45 90 135 180 225 270 315 360]

[0 45 90 135 180 225 270 315 360]

[0 45 90 135 180 225 270 315 360]]

and the second element of the tuple a, i.e., a[1] is also a 2-D array:

>>> print a[1]

[[-90 -90 -90 -90 -90 -90 -90 -90 -90]

[-45 -45 -45 -45 -45 -45 -45 -45 -45]

[0 0 0 0 0 0 0 0 0]

[45 45 45 45 45 45 45 45 45]

[90 90 90 90 90 90 90 90 90]]

The columns of a[0] are the longitude values at each location of the
2-D grid whose longitude locations are defined by lon and whose latitude
locations are defined by lat. The rows of a[1] are the latitude values at
each location of the same 2-D grid (i.e., that grid whose longitude locations
are defined by lon and whose latitude locations are defined by lat). Which
is what we wanted ,.

An aside: Note that the first row (i.e., the zeroth row) in a[1] is the first
one printed, so going from top-to-bottom, you are moving in latitude values
from south-to-north. Thus:

>>> print a[1][0,:]

[-90 -90 -90 -90 -90 -90 -90 -90 -90]

will print the �90 degrees latitude row in a[1]. Remember that 2-D arrays
in NumPy are indexed [row, col], so the slicing syntax [0,:] will select all
columns in the first row of a 2-D NumPy array.

57

4.7. GENERAL ARRAY OPERATIONS

4.7 General array operations
So far we’ve learned how to make arrays, ask arrays to tell us about them-
selves, and manipulate arrays. But what scientists really want to do with
arrays is make calculations with them. In this section, we discuss two ways
to do exactly that. Method 1 uses for loops, in analogue to the use of loops
in traditional Fortran programming, to do element-wise array calculations.
Method 2 uses array syntax, where looping over array elements happens im-
plicitly (this syntax is also found in Fortran 90 and later versions, IDL, etc.).

4.7.1 General array operations: Method 1 (loops)
The tried-and-true method of doing arithmetic operations on arrays is to use

Using for
loops to

operate on
arrays.

loops to examine each array element one-by-one, do the operation, and then
save the result in a results array. Here’s an example:

Example 33 (Multiply two arrays, element-by-element, using loops):
Consider this code:

1 import numpy as N
2 a = N.array([[2, 3.2, 5.5, -6.4],
3 [3, 1, 2.1, 21]])
4 b = N.array([[4, 1.2, -4, 9.1],
5 [6, 21, 1.5, -27]])
6 shape_a = N.shape(a)
7 product_ab = N.zeros(shape_a, dtype=’f’)
8 for i in xrange(shape_a[0]):
9 for j in xrange(shape_a[1]):

10 product_ab[i,j] = a[i,j] * b[i,j]

Can you describe what is happening in each line? (We haven’t talked about
xrange yet, but take a guess as to what it does.)

Solution and discussion: In the first four lines after the import line
(lines 2–5), I create arrays a and b. They are both two row, four column
arrays. In the sixth line, I read the shape of array a and save it as the variable
shape a. Note that shape a is the tuple (2,4). In the seventh line, I create a
results array of the same shape of a and b, of single-precision floating point
type, and with each element filled with zeros. In the last three lines (lines 8–
10), I loop through all rows (the number of which is given by shape a[0])
and all columns (the number of which is given by shape a[1]), by index.

58

Robert Fovell

Robert Fovell

Robert Fovell

4.7. GENERAL ARRAY OPERATIONS

Thus, i and j are set to the element addresses for rows and columns, respec-
tively, and line 10 does the multiplication operation and sets the product in
the results array product ab using the element addresses.

So, what is the xrange function? Recall that the range function provides
The xrange
function
makes
looping more
e�cient.

an n-element list of the integers 0 to n�1, incremented by 1, and is useful for
providing the element addresses for lists (and arrays). The range function
creates the entire list in memory when it is called, but for the purposes of
looping through list/array element addresses, we’re not interested in being
able to access all the addresses all the time; we only need the element address
for the current loop iteration. That’s what xrange does; it provides only one
element of the array element addresses list at a time. This makes the loop
more e�cient.

One other note: In this example, I make the assumption that the shape of
Do not use
logical
equality to
check
equality
between
sequences.

a and the shape of b are the same, but I should instead add a check that this
is actually the case. While a check using an if statement condition such as:

N.shape(a) != N.shape(b)

will work, because equality between sequences is true if all corresponding
elements are equal,3 things get tricky, fast, if you are interested in more com-
plex logical comparisons and boolean operations for arrays. For instance,
the logic that works for != doesn’t apply to built-in Python boolean opera-
tors such as and. We’ll see later on in Section 4.8.2 how to do element-wise
boolean operations on arrays.

So, why wouldn’t you want to use the looping method for general array
Loops are
slower than
array syntax.

operations? In three and a half words: Loops are (relatively) s-l-o-w. Thus,
if you can at all help it, it’s better to use array syntax for general array oper-
ations: your code will be faster, more flexible, and easier to read and test.

4.7.2 General array operations: Method 2 (array syntax)
The basic idea behind array syntax is that, much of the time, arrays interact

What is array
syntax?with each other on a corresponding element basis, and so instead of requiring

the user to write out the nested for loops explicitly, the loops and element-
wise operations are done implicitly in the operator. That is to say, instead of
writing this code (assume arrays a and b are 1-D arrays of the same size):

3See the “Built-in Types” entry in the online Python documentation at http://docs.python.
org/library/stdtypes.html#sequence-types-str-unicode-list-tuple-bytearray-bu↵er-xrange
(accessed March 26, 2012).

59

Robert Fovell

Robert Fovell

Robert Fovell

Robert Fovell
“xrange” no longer
exists so text
changed to
“range:

4.7. GENERAL ARRAY OPERATIONS

c = N.zeros(N.shape(a), dtype=’f’)
for i in xrange(N.size(a)):

c[i] = a[i] * b[i]

array syntax means you can write this code:

c = a * b

Let’s try this with a specific example using actual numbers:

Example 34 (Multiply two arrays, element-by-element, using array syn-
tax):

Type the following in a file and run it using the Python interpreter:

import numpy as N
a = N.array([[2, 3.2, 5.5, -6.4],

[3, 1, 2.1, 21]])
b = N.array([[4, 1.2, -4, 9.1],

[6, 21, 1.5, -27]])
product_ab = a * b

What do you get when you print out product ab?

Solution and discussion: You should get something like this:

>>> print product_ab
[[8. 3.84 -22. -58.24]
[18. 21. 3.15 -567.]]

In this example, we see that arithmetic operators are automatically de-
Arithmetic

operators act
element-wise
by default on

NumPy
arrays.

fined to act element-wise when operands are NumPy arrays or scalars. (Op-
erators do have function equivalents in NumPy, e.g., product, add, etc.,
for the situations where you want to do the operation using function syntax.)
Additionally, the output array c is automatically created on assignment; there
is no need to initialize the output array using zeros.

There are three more key benefits of array syntax. First, operand shapes
Array syntax

already
checks

compatibility.

are automatically checked for compatibility, so there is no need to check for
that explicitly. Second, you do not need to know the rank (i.e., whether it is
1-D, 2-D, etc.) of the arrays ahead of time, so the same line of code works

60

Robert Fovell
product_ab

Robert Fovell

Robert Fovell

4.7. GENERAL ARRAY OPERATIONS

on arrays of any rank. Finally, the array syntax formulation runs faster than
the equivalent code using loops! Simpler, better, faster: pretty cool, eh? ,

Let’s try another array syntax example:

Example 35 (Another array syntax example):
Type the following in a Python interpreter:

import numpy as N
a = N.arange(10)
b = a * 2
c = a + b
d = c * 2.0

What results? Predict what you think a, b, and c will be, then print out those
arrays to confirm whether you were right.

Solution and discussion: You should get something like this:

>>> print a
[0 1 2 3 4 5 6 7 8 9]
>>> print b
[0 2 4 6 8 10 12 14 16 18]
>>> print c
[0 3 6 9 12 15 18 21 24 27]
>>> print d
[0. 6. 12. 18. 24. 30. 36. 42. 48. 54.]

Arrays a, b, and c are all integer arrays because the operands that created
those arrays are all integers. Array d, however, is floating point because it
was created by multiplying an integer array by a floating point scalar. Python
automatically chooses the type of the new array to retain, as much as possi-
ble, the information found in the operands.

61

Robert Fovell
Remember, we
need parentheses
for print statements
in Python 3

4.7. GENERAL ARRAY OPERATIONS

4.7.3 Exercise on general array operations

⇤ Exercise 14 (Calculate potential temperature from arrays of T and p):
Write a function that takes a 2-D array of pressures (p, in hPa) and a

2-D array of temperatures (T , in K) and returns the corresponding potential
temperature, assuming a reference pressure (p0) of 1000 hPa. Thus, the func-
tion’s return value is an array of the same shape and type as the input arrays.
Recall that potential temperature ✓ is given by:

✓ = T

p0

p

!

where is the ratio of the gas constant of dry air to the specific heat of dry
air at constant pressure and equals approximately 0.286.

Solution and discussion: I will give two di↵erent solutions: one using
loops and the other using array syntax. Using loops, you get:

import numpy as N

def theta(p, T, p0=1000.0, kappa=0.286):

shape_input = N.shape(p)

output = N.zeros(shape_input, dtype=’f’)

for i in xrange(shape_input[0]):

for j in xrange(shape_input[1]):

output[i,j] = T[i,j] * (p0 / p[i,j])**(kappa)

return output

Note the use of keyword input parameters to provide potentially adjustable
Remember to

use return
when passing
a result out of

a function.

constants. Remember, to return anything from a function, you have to use
the return command.

Using array syntax, the solution is even terser:

import numpy as N

def theta(p, T, p0=1000.0, kappa=0.286):

return T * (p0 / p)**(kappa)

and the array syntax solution works for arrays of any rank, not just 2-D ar-
rays.

An aside on documenting code: Python has a robust set of standardized
ways to generate code documentation. The most basic construct, as you
might guess, is the humble but ever-important comment line. The pound

Python’s
comment
character.

sign (“#”) is Python’s comment character, and all text after that symbol is
ignored by the interpreter.

62

Robert Fovell

Robert Fovell

4.8. TESTING INSIDE AN ARRAY

The most basic, specialized, built-in construct for documenting code is
the docstring. These are strings set in triple quotes that come right after a

Documenting
with the
docstring.

def statement in a function. Here is my array syntax solution to Exercise 14
with a docstring added:

import numpy as N

def theta(p, T, p0=1000.0, kappa=0.286):

"""Calculate the potential temperature.

Returns a NumPy array of potential temperature that is

the same size and shape as the input parameters. The

reference pressure is given by p0 and kappa is the

ratio of the gas constant for dry air to the specific

heat of dry air at constant pressure.

Input parameters:

:p: Pressure [hPa]. NumPy array of any rank.

:T: Temperature [K]. NumPy array of any rank.

"""

return T * (p0 / p)**(kappa)

Finally, there are a number of document generation packages that auto-
The Sphinx
documenta-
tion
generation
package.

matically convert Python code and code docstrings into web documentation.
In the docstring example I give above, I use some reStructuredText conven-
tions that will be nicely typeset by the Sphinx documentation generator. See
http://docutils.sf.net/rst.html and http://sphinx.pocoo.org for details.

4.8 Testing inside an array
Often times, you will want to do calculations on an array that involves con-
ditionals. For instance, you might want to loop through an array of data and
check if any values are negative; if any exist, you may wish to set those ele-
ments to zero. To accomplish the first part of that task, you need to do some
kind of testing while going through an array.

In Python, there are a few ways of doing this. The first is to implement
this in a loop. A second way is to use array syntax and take advantage of
comparison operators and specialized NumPy search functions.

4.8.1 Testing inside an array: Method 1 (loops)
In this method, you apply a standard conditional (e.g., if statement) while
inside the nested for loops running through the array. This is similar to

63

4.8. TESTING INSIDE AN ARRAY

traditional Fortran syntax. Here’s is an example:

Example 36 (Using looping to test inside an array):
Say you have a 2-D array a and you want to return an array answerwhich

is double the value of the corresponding element in a when the element is
greater than 5 and less than 10, and zero when the value of that element in a
is not. What’s the code for this task?

Solution and discussion: Here’s the code:

answer = N.zeros(N.shape(a), dtype=’f’)
for i in xrange(N.shape(a)[0]):

for j in xrange(N.shape(a)[1]):
if (a[i,j] > 5) and (a[i,j] < 10):

answer[i,j] = a[i,j] * 2.0
else:

pass

The pass command is used when you have a block statement (e.g., a block
The pass

command in
blocks that do

nothing.

if statement, etc.) where you want the interpreter to do nothing. In this
case, because answer is filled with all zeros on initialization, if the if test
condition returns False, we want that element of answer to be zero. But,
all elements of answer start out as zero, so the else block has nothing to
do; thus, we pass.

Again, while this code works, loops are slow, and the if statement makes
it even slower. The nested for loops also mean that this code will only work
for a 2-D version of the array a.

4.8.2 Testing inside an array: Method 2 (array syntax)
Is there a way we can do testing inside an array while using array syntax?
That way, we can get the benefits of simpler code, the flexibility of code
that works on arrays of any rank, and speed. The answer is, yes! Because
NumPy has comparison and boolean operators that act element-wise and ar-
ray inquiry and selection functions, we can write a variety of ways of testing
and selecting inside an array while using array syntax. Before we discuss
some of those ways, we need some context about using NumPy comparison
operators and boolean array functions.

64

Robert Fovell

Robert Fovell

4.8. TESTING INSIDE AN ARRAY

NumPy comparison operators and boolean array functions

NumPy has defined the standard comparison operators in Python (e.g., ==,
<) to work element-wise with arrays. Thus, if you run these lines of code:

import numpy as N
a = N.arange(6)
print a > 3

the following array is printed out to the screen:

[False False False False True True]

Each element of the array a that was greater than 3 has its corresponding
element in the output set to True while all other elements are set to False.
You can achieve the same result by using the corresponding NumPy function
greater. Thus:

Using
comparison
operators on
arrays
generate
boolean
arrays.

print N.greater(a, 3)

gives you the same thing. Other comparison functions are similarly de-
fined for the other standard comparison operators; those functions also act
element-wise on NumPy arrays.

Once you have arrays of booleans, you can operate on them using boo-
lean operator NumPy functions. You cannot use Python’s built-in and, or,

Must use
NumPy
functions to
do boolean
operations on
arrays.

etc. operators; those will not act element-wise. Instead, use the NumPy func-
tions logical and, logical or, etc. Thus, if we have this code:

a = N.arange(6)
print N.logical_and(a>1, a<=3)

the following array will be printed to screen:

[False False True True False False]

The logical and function takes two boolean arrays and does an element-
wise boolean “and” operation on them and returns a boolean array of the
same size and shape filled with the results.

With this background on comparison operators and boolean functions
for NumPy arrays, we can talk about ways of doing testing and selecting in
arrays while using array syntax. Here are two methods: using the where
function and using arithmetic operations on boolean arrays.

65

4.8. TESTING INSIDE AN ARRAY

The where function

IDL users will find this function familiar. The Python version of where,
however, can be used in two ways: To directly select corresponding values
from another array (or scalar), depending on whether a condition is true,
and to return a list of array element indices for which a condition is true
(which then can be used to select the corresponding values by selection with
indices).

The syntax for using where to directly select corresponding values is the
following:

N.where(<condition>, <value if true>, <value if false>)
Using where
to get values

when a
condition is

true.

If an element of <condition> is True, the corresponding element of
<value if true> is used in the array returned by the function, while the corre-
sponding element of <value if false> is used if <condition> is False. The
where function returns an array of the same size and shape as <condition>
(which is an array of boolean elements). Here is an example to work through:

Example 37 (Using where to directly select corresponding values from
another array or scalar):

Consider the following case:

import numpy as N
a = N.arange(8)
condition = N.logical_and(a>3, a<6)
answer = N.where(condition, a*2, 0)

What is condition? answer? What does the code do?

Solution and discussion: You should get:

>>> print a
[0 1 2 3 4 5 6 7]
>>> print condition
[False False False False True True False False]
>>> print answer
[0 0 0 0 8 10 0 0]

The array condition shows which elements of the array a are greater than 3
and less than 6. The where call takes every element of array a where that is

66

4.8. TESTING INSIDE AN ARRAY

true and doubles the corresponding value of a; elsewhere, the output element
from where is set to 0.

The second way of using where is to return a tuple of array element
Using where
to get the
indices where
a condition is
true.

indices for which a condition is true, which then can be used to select the
corresponding values by selection with indices. (This is like the behavior
of IDL’s WHERE function.) For 1-D arrays, the tuple is a one-element tuple
whose value is an array listing the indices where the condition is true. For 2-
D arrays, the tuple is a two-element tuple whose first value is an array listing
the row index where the condition is true and the second value is an array
listing the column index where the condition is true. In terms of syntax,
you tell where to return indices instead of an array of selected values by
calling where with only a single argument, the <condition> array. To select
those elements in an array, pass in the tuple as the argument inside the square
brackets (i.e., []) when you are selecting elements. Here is an example:

Example 38 (Using where to return a list of indices):
Consider the following case:

import numpy as N
a = N.arange(8)
condition = N.logical_and(a>3, a<6)
answer_indices = N.where(condition)
answer = (a*2)[answer_indices]

What is condition? answer indices? answer? What does the code do?

Solution and discussion: You should have obtained similar results as
Example 37, except the zero elements are absent in answer and now you
also have a tuple of the indices where condition is true:

>>> print a
[0 1 2 3 4 5 6 7]
>>> print condition
[False False False False True True False False]
>>> print answer_indices
(array([4, 5]),)
>>> print answer
[8 10]

67

4.8. TESTING INSIDE AN ARRAY

The array condition shows which elements of the array a are greater than
3 and less than 6. The where call returns the indices where condition is
true, and since condition is 1-D, there is only one element in the tuple
answer indices. The last line multiplies array a by two (which is also
an array) and selects the elements from that array with addresses given by
answer indices.

Note that selection with answer indiceswill give you a 1-D array, even
Using where

to obtain
indices will
return a 1-D

array.

if condition is not 1-D. Let’s turn array a into a 3-D array, do everything
else the same, and see what happens:

import numpy as N
a = N.reshape(N.arange(8), (2,2,2))
condition = N.logical_and(a>3, a<6)
answer_indices = N.where(condition)
answer = (a*2)[answer_indices]

The result now is:

>>> print a
[[[0 1]
[2 3]]

[[4 5]
[6 7]]]

>>> print condition
[[[False False]
[False False]]

[[True True]
[False False]]]

>>> print answer_indices
(array([1, 1]), array([0, 0]), array([0, 1]))
>>> print answer
[8 10]

Note how condition is 3-D and the answer indices tuple now has
three elements (for the three dimensions of condition), but answer is again
1-D.

68

4.8. TESTING INSIDE AN ARRAY

Arithmetic operations using boolean arrays

You can also accomplish much of what the where function does in terms of
testing and selecting by taking advantage of the fact that arithmetic opera-
tions on boolean arrays treat True as 1 and False as 0. By using multipli-
cation and addition, the boolean values become selectors, because any value
multiplied by 1 or added to 0 is that value. Let’s see an example of how these
properties can be used for selection:

Example 39 (Using arithmetic operators on boolean arrays as selectors):
Consider the following case:

import numpy as N
a = N.arange(8)
condition = N.logical_and(a>3, a<6)
answer = ((a*2)*condition) + \

(0*N.logical_not(condition))

Solution and discussion: The solution is the same as Example 37:

>>> print a
[0 1 2 3 4 5 6 7]
>>> print condition
[False False False False True True False False]
>>> print answer
[0 0 0 0 8 10 0 0]

But how does this code produce this solution? Let’s go through it step-by-
Using
arithmetic
with boolean
arrays as
conditional
selectors.

step. The condition line is the same as in Example 37, so we won’t say
more about that. But what about the answer line? First, we multiply array a
by two and then multiply that by condition. Every element that is True in
condition will then equal double of a, but every element that is False in
conditionwill equal zero. We then add that to zero times the logical not
of condition, which is condition but with all Trues as Falses, and vice
versa. Again, any value that multiplies by True will be that value and any
value that multiplies by False will be zero. Because condition and its
“logical not” are mutually exclusive—if one is true the other is false—the
sum of the two terms to create answerwill select either a*2 or 0. (Of course,
the array generated by 0*N.logical not(condition) is an array of zeros,
but you can see how multiplying by something besides 0 will give you a
di↵erent replacement value.)

69

4.8. TESTING INSIDE AN ARRAY

Also, note the continuation line character is a backslash at the end of the
line (as seen in the line that assigns answer).

This method of testing inside arrays using arithmetic operations on boo-
lean arrays is also faster than loops.

An aside on a simple way to do timings: The time module has a func-
A simple way
of seeing how
fast your code

runs.

tion time that returns the current system time relative to the Epoch (a date
that is operating system dependent). If you save the current time as a variable
before and after you execute your function/code, the di↵erence is the time it
took to run your function/code.

Example 40 (Using time to do timings):
Type in the following and run it in a Python interpreter:

import time
begin_time = time.time()
for i in xrange(1000000L):

a = 2*3
print time.time() - begin_time

What does the number that is printed out represent?

Solution and discussion: The code prints out the amount of time (in
seconds) it takes to multiply two times three and assign the product to the
variable a one million times. (Of course, it also includes the time to do the
looping, which in this simple case probably is a substantial fraction of the
total time of execution.)

4.8.3 Exercise on testing inside an array

⇤ Exercise 15 (Calculating wind speed from u and v):
Write a function that takes two 2-D arrays—an array of horizontal, zonal

(east-west) wind components (u, in m/s) and an array of horizontal, merid-
ional (north-south) wind components (v, in m/s)—and returns a 2-D array of
the magnitudes of the total wind, if the wind is over a minimum magnitude,

70

Robert Fovell

4.9. ADDITIONAL ARRAY FUNCTIONS

and the minimum magnitude value otherwise. (We might presume that in
this particular domain only winds above some minimum constitute “good”
data while those below the minimum are indistinguishable from the mini-
mum due to noise or should be considered equal to the minimum in order to
properly represent the e↵ects of some quantity like friction.)

Thus, your input will be arrays u and v, as well as the minimum mag-
nitude value. The function’s return value is an array of the same shape and
type as the input arrays.

Solution and discussion: I provide two solutions, one using loops and
one using array syntax. Here’s the solution using loops:

import numpy as N
def good_magnitudes(u, v, minmag=0.1):

shape_input = N.shape(u)
output = N.zeros(shape_input, dtype=u.dtype.char)
for i in xrange(shape_input[0]):

for j in xrange(shape_input[1]):
mag = ((u[i,j]**2) + (v[i,j]**2))**0.5
if mag > minmag:

output[i,j] = mag
else:

output[i,j] = minmag
return output

Here’s the solution using array syntax, which is terser and works with
arrays of all ranks:

import numpy as N
def good_magnitudes(u, v, minmag=0.1):

mag = ((u**2) + (v**2))**0.5
output = N.where(mag > minmag, mag, minmag)
return output

4.9 Additional array functions
NumPy has many array functions, which include basic mathematical func-

See other
listings for
more array
functions.

tions (sin, exp, interp, etc.) and basic statistical functions (correlate,
histogram, hamming, fft, etc.). For more complete lists of array func-
tions, see Section 10.3 for places to look. From the Python interpreter, you

71

Robert Fovell

Robert Fovell

4.10. SUMMARY

can also use help(numpy) as well as help(numpy.x), where x is the name
of a function, to get more information.

4.10 Summary
In this chapter, we saw that NumPy is a powerful array handling package
that provides the array handling functionality of IDL, Matlab, Fortran 90,
etc. We learned how to use arrays using the traditional Fortran-like method
of nested for loops, but we also saw how array syntax enables you to write
more streamlined and flexible code: The same code can handle operations
on arrays of arbitrary rank. With NumPy, Python can be used for all of the
traditional data analysis calculation tasks commonly done in the atmospheric
and oceanic sciences. Not bad, for something that’s free ,.

72

Chapter 5

File Input and Output

The atmospheric and oceanic sciences (AOS) are “data” intensive fields,
whether data refers to observations or model output. Most of the analysis
we do involve datasets, and so facilities for file input/output (i/o) are critical.
Fortunately, Python has very robust facilities for file i/o. In this chapter, we
will sort-of touch on those facilities.

Why do I say “sort-of?”: because I am in somewhat of a quandary when
it comes to talking about file input/output. On the one hand, I want to show
you how to use routines that you will want to use for your own research and
analysis. On the other hand, because this book is an introduction to Python,
I want to show you the fundamentals of how to do things in the language. In
Python, the most robust file i/o packages, while not di�cult to use, are still
rather conceptually advanced.1 The introduction of these packages might
distract from the larger goal of showing you the fundamentals. As a com-
promise, this chapter will describe ways of handling file i/o that, while not
the most e�cient or optimized, nonetheless will work for many (if not most)
AOS uses and which illustrate basic methods in using Python (this is partic-
ularly true when I discuss handling strings). In the summary in Section 5.4,
I will briefly describe additional packages for file i/o that you may want to
look into.

In this chapter we will look at input/output to and from text files and
netCDF files. But before we do so, I want to make some comments about file
objects, which are foundational to how Python interfaces with a file, whether
text, netCDF, or another format.

1An example is the PyTables package, a really great package for large datasets that
utilizes some very advanced optimization methods.

73

5.1. FILE OBJECTS

5.1 File objects
A file object is a “variable” that represents the file to Python. This is a subtle

File objects
represent the

file to the
interpreter.

but real di↵erence with procedural languages. For instance, in Fortran, you
use functions to operate on a file and unit numbers to specify the file you’re
operating on (e.g., read(3,*), where 3 is the unit number that represents
the file to Fortran). In Python, you use methods attached to file objects to
operate on the file. (More on objects is in Ch. 7.)

File objects are created like any other object in Python, that is, by as-
signment. For text files, you instantiate a file object with the built-in open

Creating file
objects using

the open
statement.

statement:

fileobj = open(’foo.txt’, ’r’)

The first argument in the open statement gives the filename. The second
argument sets the mode for the file: ’r’ for reading-only from the file, ’w’
for writing a file, and ’a’ for appending to the file.

Python has a number of modules available for handling netCDF files;
for the netCDF package we’ll be using in this chapter, there is a di↵erent

Creating
netCDF file

objects.

command to create file objects that correspond to the netCDF file, but the
syntax is similar:

fileobj = S.NetCDFFile(’air.mon.mean.nc’,
mode=’r’)

As with open, the string ’r’ means read, etc. In Section 5.3, when we
discuss netCDF input/output in more detail, I’ll explain the rest of the syntax
of the above file object creation statement. For now, I just want to point out
that the file object fileobj is created by assignment to the return of the
S.NetCDFFile command.

One method common to both the text and netCDF file objects we’ll be
The close

method of file
objects.

looking at is the close method, which, as you might expect, closes the file
object. Thus, to close a file object fileobj, execute:

fileobj.close()

5.2 Text input/output
Once you’ve created the text file object, you can use various methods at-
tached to the file object to interact with the file.

74

5.2. TEXT INPUT/OUTPUT

5.2.1 Text input/output: Reading a file

To read one line from the file, use the readline method:

aline = fileobj.readline()

Because the file object is connected to a text file, aline will be a string.
Note that aline contains the newline character, because each line in a file is
terminated by the newline character.

To read the rest of a file that you already started reading, or to read an
entire file you haven’t started reading, and then put the read contents into a

The
readlines
method.

list, use the readlines method:

contents = fileobj.readlines()

Here, contents is a list of strings, and each element in contents is a line
in the fileobj file. Each element also contains the newline character, from
the end of each line in the file.

Note that the variable names aline and contents are not special; use
whatever variable name you would like to hold the strings you are reading in
from the text file.

5.2.2 Text input/output: Writing a file

To write a string to the file that is defined by the file object fileobj, use the
write method attached to the file object:

fileobj.write(astr)

Here, astr is the string you want to write to the file. Note that a newline
character is not automatically written to the file after the string is written. If
you want a newline character to be added, you have to append it to the string
prior to writing (e.g., astr+’\n’).

To write a list of strings to the file, use the writelines method:
The
writelines
method;
write and
writelines
do not write
newline by
default.

fileobj.writelines(contents)

Here, contents is a list of strings, and, again, a newline character is not
automatically written after the string (so you have to explicitly add it if you
want it written to the file).

75

5.2. TEXT INPUT/OUTPUT

5.2.3 Text input/output: Processing file contents

Let’s say you’ve read-in the contents of a file from the file and now have
the file contents as a list of strings. How do you do things with them? In
particular, how do you turn them into numbers (or arrays of numbers) that
you can analyze? Python has a host of string manipulation methods, built-in
to string variables (a.k.a., objects), which are ideal for dealing with contents
from text files. We will mention only a few of these methods.

The split method of a string object takes a string and breaks it into a
The string

method
split.

list using a separator. For instance:

a = ’3.4 2.1 -2.6’
print a.split(’ ’)
[’3.4’, ’2.1’, ’-2.6’]

will take the string a, look for a blank space (which is passed in as the argu-
ment to split, and use that blank space as the delimiter or separator with
which one can split up the string.

The join method takes a separator string and puts it between items of a
The string

method join. list (or an array) of strings. For instance:

a = [’hello’, ’there’, ’everyone’]
’\t’.join(a)
’hello\tthere\teveryone’

will take the list of strings a and concatenate these elements together, using
the tab string (’\t’) to separate two elements from each other. (For a short
list of some special strings, see p. 19.)

Finally, once we have the strings we desire, we can convert them to nu-
Converting

strings to
numerical

types.

merical types in order to make calculations. Here are two ways of doing
so:

• If you loop through a list of strings, you can use the float and int
functions on the string to get a number. For instance:

import numpy as N
anum = N.zeros(len(a), ’d’)
for i in xrange(len(a)):

anum[i] = float(a[i])

76

Robert Fovell
a = [‘3.4’, ‘2.1’, ‘-2.6’]

Robert Fovell
z

Robert Fovell

5.2. TEXT INPUT/OUTPUT

takes a list of strings a and turns it into a NumPy array of double-
precision floating point numbers anum.2

• If you make the list of strings a NumPy array of strings, you can use
the astypemethod for type conversion to floating point or integer. For
instance:

anum = N.array(a).astype(’d’)

takes a list of strings a, converts it from a list to an array of strings
using the array function, and turns that array of strings into an ar-
ray of double-precision floating point numbers anum using the astype
method of the array of strings.

A gotcha: Di↵erent operating systems may set the end-of-line character
Di↵erent
OSes have
di↵erent
end-of-line
characters.

to something besides ’\n’. Make sure you know what your text file uses.
(For instance, MS-DOS uses ’\r\n’, which is a carriage return followed
by a line feed.) By the way, Python has a platform independent way of
referring to the end-of-line character: the attribute linesep in the module
os. If you write your program using that variable, instead of hard-coding in
’\n’, your program will write out the specific end-of-line character for the
system you’re running on.

Example 41 (Writing and reading a single column file):
Take the following list of temperatures T:

T = [273.4, 265.5, 277.7, 285.5]

write it to a file one-col temp.txt, then read the file back in.

Solution and discussion: This code will do the trick (note I use comment
lines to help guide the reader):

2Note that you can specify the array dtype without actually writing the dtype key-
word; NumPy array constructors like zeros will understand a typecode given as the second
positional input parameter.

77

5.2. TEXT INPUT/OUTPUT

import numpy as N

outputstr = [’\n’]*len(T) #- Convert to string

for i in xrange(len(T)): # and add newlines

outputstr[i] = \

str(T[i]) + outputstr[i]

fileout = open(’one-col_temp.txt’, ’w’) #- Write out

fileout.writelines(outputstr) # to the

fileout.close() # file

filein = open(’one-col_temp.txt’, ’r’) #- Read in

inputstr = filein.readlines() # from the

filein.close() # file

Tnew = N.zeros(len(inputstr), ’f’) #- Convert

for i in xrange(len(inputstr)): # string to

Tnew[i] = float(inputstr[i]) # numbers

Note you don’t have to strip o↵ the newline character before converting
the number to floating point using float.

A caveat about reading text files: In the beginning of this chapter, I said
I would talk about file reading in a way that teaches the fundamentals of
Python, not in a way that gives you the most e�cient solution to file i/o for
AOS applications. This is particularly true for what I’ve just told you about
reading text files. String methods, while powerful, are probably too low-
level to bother with every time you want to read a text file; you’d expect
someone somewhere has already written a function that automatically pro-
cesses text formats typically found in AOS data files. Indeed, this is the case:
see the asciiread function in PyNGL,3 the readAscii function in the Cli-
mate Data Analysis Tools (CDAT),4 and the SciPy Cookbook i/o page5 for
examples.

3http://www.pyngl.ucar.edu/Functions/Ngl.asciiread.shtml (accessed August 16, 2012).
4http://www2-pcmdi.llnl.gov/cdat/tips and tricks/file IO/reading ASCII.html (accessed

August 16, 2012).
5http://www.scipy.org/Cookbook/InputOutput (accessed August 16, 2012).

78

Robert Fovell

Robert Fovell

5.3. NETCDF INPUT/OUTPUT

5.2.4 Exercise to read a multi-column text file

⇤ Exercise 16 (Reading in a multi-column text file):
You will find the file two-col rad sine.txt in the datasets sub-directory of

course files. Write code to read the two columns of data in that file into two
arrays, one for angle in radians (column 1) and the other for the sine of the
angle (column 2). (The course files directory of files is available online at
the book’s website. See p. viii for details on obtaining the files. Alternately,
feel free to use a text data file of your own.)

The two columns of two-col rad sine.txt are separated by tabs. The file’s
newline character is just ’\n’ (though this isn’t something you’ll need to
know to do this exercise). The file has no headers.

Solution and discussion: Here’s my solution:

import numpy as N
fileobj = open(’two-col_rad_sine.txt’, ’r’)
data_str = fileobj.readlines()
fileobj.close()

radians = N.zeros(len(data_str), ’f’)
sines = N.zeros(len(data_str), ’f’)
for i in xrange(len(data_str)):

split_istr = data_str[i].split(’\t’)
radians[i] = float(split_istr[0])
sines[i] = float(split_istr[1])

The array radians holds the angles (in radians) and the array sines holds
the sine of those angles. Note that the above code does not need to know
ahead of time how many lines are in the file; all the lines will be read in by
the readlines method call.

5.3 NetCDF input/output
NetCDF is a platform-independent binary file format that facilitates the stor-
age and sharing of data along with its metadata. Versions of the tools needed
to read and write the format are available on practically every operating sys-
tem and in every major language used in the atmospheric and oceanic sci-
ences.

79

Robert Fovell

5.3. NETCDF INPUT/OUTPUT

Before discussing how to do netCDF i/o in Python, let’s briefly review the
structure of netCDF. There are four general types of parameters in a netCDF
file: global attributes, variables, variable attributes, and dimensions. Global
attributes are usually strings that describe the file as a whole, e.g., a title, who

The structure
of netCDF

files.

created it, what standards it follows, etc.6 Variables are the entities that hold
data. These include both the data-proper (e.g., temperature, meridional wind,
etc.), the domain the data is defined on (delineated by the dimensions), and
metadata about the data (e.g., units). Variable attributes store the metadata
associated with a variable. Dimensions define a domain for the data-proper,
but they also have values of their own (e.g., latitude values, longitude values,
etc.), and thus you usually create variables for each dimension that are the
same name as the dimension.7

As an example of a set of variables and dimensions for a netCDF file,
consider the case where you have a timeseries of surface temperature for a
latitude-longitude grid. For such a dataset, you would define “lat”, “lon”,
and “time” dimensions and corresponding variables for each of those dimen-
sions. The variable “lat” would be 1-D with the number of elements given
for the “lat” dimension and likewise for the variables “lon” and “time”, re-
spectively. Finally, you would define the variable “Ts” as 3-D, dimensioned
“lat”, “lon”, and “time”.

Several Python packages can read netCDF files, including: the Ultrascale
Visualization-Climate Data Analysis Tools (UV-CDAT), CDAT, PyNIO, py-
sclint, PyTables, and ScientificPython. We’ll be discussing ScientificPython
in this section, not because it’s the best package of this bunch but because
it was one of the earliest Python netCDF interfaces, and many subsequent
packages have emulated its user-interface.

5.3.1 NetCDF input/output: Reading a file
ScientificPython is another one of those packages whose “human-readable”

Importing the
Scien-

tificPython
netCDF

submodule.

name is di↵erent from its “imported” name. In addition, the netCDF util-
ities are in a subpackage of ScientificPython. Thus, the import name for
the netCDF utilities is long and you will almost always want to assign the
imported package to an alias:

import Scientific.IO.NetCDF as S

6It is unfortunate that “global attributes” and “variable attributes” are called attributes,
since the term attributes has a very specific meaning in object-oriented languages. When I
talk about object attributes in close proximity to netCDF attributes, in this section, I’ll try to
make the object attributes occurrence glossary-linked.

7For more on netCDF, see http://www.unidata.ucar.edu/software/netcdf/docs (accessed
August 16, 2012).

80

5.3. NETCDF INPUT/OUTPUT

The command to create a file object, as we mentioned earlier, is very sim-
ilar to the open command used for text files, except that the constructor is in
the subpackage NetCDF and is named NetCDFFile (the NetCDF subpack-
age is itself in the IO subpackage of the Scientific package). The filename is
the first argument and you specify the mode in which you wish to open the
file by the mode keyword input parameter (set to ’r’ for read, ’w’ for write,
and ’a’ for append; if you forget to write mode=, it will still all work fine).
Thus, to open the file file.nc in read-only mode, type:

fileobj = S.NetCDFFile(’file.nc’, mode=’r’)

With netCDF files, the conceptualization of a file as a file object has
a cognitive benefit. If we think of a file object as being the file itself (as
Python sees it), we might expect that the netCDF global attributes should be
actual attributes of the file object. Indeed, that is the case, and so, in the case
of our above example, if the netCDF file has a global attribute named “title”,
the file object fileobj will have an attribute named title (referred to as
fileobj.title, following the standard Python objects syntax) that is set to
the value of the global attribute.

NetCDF file objects have an attribute variables which is a dictionary.
The
variables
attribute is a
dictionary of
variable
objects.

The keys are strings that are the names of the variables, and the values are
variable objects (which is a kind of object specially defined for netCDF han-
dling) that contain the variable’s value(s) as well as the variable’s metadata
(the variable’s variable attributes). NetCDF file objects also have an attribute
dimensions which is a dictionary. The keys are strings that are the names
of the dimensions, and the values are the lengths of the dimensions. Let’s
look at an example of reading a variable named ’Ts’ from a netCDF file:

Example 42 (Reading a variable named ’Ts’):
In this example, we’ll read in the data associated with the name ’Ts’

(which is probably surface temperature) and one piece of metadata. Note
Get variable
object data
values with
the getValue
method.

that the “name” of the variable is a string; I’m not assuming that the “name”
is the actual variable itself (i.e., a variable Ts). To do the first task, we will
access the data in the variable and put it in a NumPy array. This code would
do the trick:

data = fileobj.variables[’Ts’].getValue()

The variable is found in the variables attribute, which is a dictionary,
so we use the variable name as the key (’Ts’). What is returned from that
dictionary is a special kind of object called a variable object. This object has
a method called getValue which returns the values of the data in the object,

81

5.3. NETCDF INPUT/OUTPUT

so we call that method (which takes no arguments, so we pass it an empty
argument list). Finally, we use assignment to put the values into the NumPy
array data.

Our second task is to obtain metadata about ’Ts’, in particular the units.
To do so, we’ll read the variable attribute units (which gives the units of
’Ts’) that is attached to the ’Ts’ variable object and save it to a scalar
Python variable unit str. Here’s the code that would do this:

units str = fileobj.variables[’Ts’].units

Again, variables is an attribute of fileobj and is a dictionary. Thus,
the ’Ts’ key applied to that dictionary will extract the variable object that
contains the data and metadata of ’Ts’. Variable attributes are attributes of
the variable object, so to obtain the units you specify the units attribute.
Remember, fileobj.variables[’Ts’] gives you a variable object. The
units attribute is a string, which gets set to the variable units str, and
we’re done.

Let’s put all this together and look at a more complex example of reading
a netCDF dataset, in this case, the NCEP/NCAR Reanalysis 1:

Example 43 (Reading a netCDF dataset):
The code below reads the monthly mean surface/near-surface air tem-

perature from the NCEP/NCAR Reanalysis 1 netCDF dataset found in the
subdirectory datasets of the course files directory. The netCDF file is named
air.mon.mean.nc. Without running it, what do you expect would be output?
Try to explain what each line of the code below does before you read the
solution:

1 import numpy as N
2 import Scientific.IO.NetCDF as S
3 fileobj = S.NetCDFFile(’air.mon.mean.nc’, mode=’r’)
4 print fileobj.title
5 print fileobj.dimensions
6 print fileobj.variables
7 data = fileobj.variables[’air’].getValue()
8 print N.shape(data)
9 print data[0:10,30,40]

10 print fileobj.variables[’air’].long_name

82

5.3. NETCDF INPUT/OUTPUT

Solution and discussion: The following is output to screen by the code
above (note though, because the print command does not, in general, word-
wrap properly, I put in line breaks after each item in the dictionary and every
four items in the data listing to make them more readable on this page):

Monthly mean air temperature NCEP Reanalysis
{’lat’: 73, ’lon’: 144, ’time’: None}
{’lat’: <NetCDFVariable object at 0x2194270>,
’air’: <NetCDFVariable object at 0x2194738>,
’lon’: <NetCDFVariable object at 0x21946a8>,
’time’: <NetCDFVariable object at 0x21946f0>}
(755, 73, 144)
[24.64419365 28.36103058 29.27451515 28.94766617
25.15870857 24.2053318 24.1325798 23.70580482
23.58633614 23.20644951]

Monthly Mean Air Temperature

(Note, in the discussion below, the line numbers refer to the code, not the
screen output.) The first line after the NumPy import statement imports the
NetCDF subpackage of Scientific.IO and aliases it to S. The next line
creates the file object representation of the netCDF file and sets the mode to
read-only. The global attribute title, which is the title of the entire file, is
printed out in line 4.

In lines 5 and 6, the dimensions and variables attributes are printed
out. As those attributes are dictionaries, key:value pairs are printed out. This
shows there are three dimensions (latitude, longitude, and time) and four
variables (the dimensions plus the air temperature). Note that the dimension
of ’time’ is set to None because that dimension is this netCDF file’s un-
limited dimension (the dimension along which one can append new latitude-
longitude slices).

In line 7, the NumPy array data is created from the value of the variable
named ’air’, and in the next line, the shape of data is printed out. (The
array is dimensioned [time, latitude, longitude]; remember that the rightmost
dimension is the fastest varying dimension.) In line 9, a subarray of data
is printed out, the data from the first ten time points at a single physical
location. The last line prints out the long name of the variable named ’air’.

(You can type the code in to run it. Alternately, this code can be found in
the code files subdirectory of course files, in the file example-netcdf.py.)

83

5.3. NETCDF INPUT/OUTPUT

5.3.2 NetCDF input/output: Writing a file
In order to write out a netCDF file, you first have to create a file object that
is set for writing, for instance:

fileobj = S.NetCDFFile(’file.nc’, mode=’w’)

Once the file object exists, you use methods of the file object to create the
dimensions and variable objects that will be in the file. You have to create
the dimensions before the variable objects (since the latter depends on the
former), and you have to create the variable objects first before you fill them
with values and metadata.

The createDimension method creates a dimension. This method both
creates the name of the dimension and sets the value (length) of the dimen-
sion. The createVariable method creates a variable object; note that it
only creates the infrastructure for the variable (e.g., the array shape) and
does not fill the values of the variable, set variable attributes, etc.

To fill array variables, use the slicing syntax (i.e., the colon) with the
Filling

netCDF array
and scalar
variables.

variable object in an assignment operation. (This will make more sense once
we see it in the example below.) The values of scalar variables are assigned to
the variable object through the assignValue method of the variable object
(not of the file object). Finally, variable attributes are set using Python’s
regular object assignment syntax, as applied to the variable object.

84

5.3. NETCDF INPUT/OUTPUT

To illustrate the writing process, let’s walk through an example (the ex-
ample’s code can be found in course files/code files in the file example-
netcdf.py):

Example 44 (Writing a netCDF file):
What does the following code do?:

1 fileobj = S.NetCDFFile(’new.nc’, mode=’w’)

2 lat = N.arange(10, dtype=’f’)

3 lon = N.arange(20, dtype=’f’)

4 data1 = N.reshape(N.sin(N.arange(200, dtype=’f’)*0.1),

5 (10,20))

6 data2 = 42.0

7 fileobj.createDimension(’lat’, len(lat))

8 fileobj.createDimension(’lon’, len(lon))

9 lat_var = fileobj.createVariable(’lat’, ’f’, (’lat’,))

10 lon_var = fileobj.createVariable(’lon’, ’f’, (’lon’,))

11 data1_var = fileobj.createVariable(’data1’, ’f’,

12 (’lat’,’lon’))

13 data2_var = fileobj.createVariable(’data2’, ’f’, ())

14 lat_var[:] = lat[:]

15 lon_var[:] = lon[:]

16 data1_var[:,:] = data1[:,:]

17 data1_var.units = ’kg’

18 data2_var.assignValue(data2)

19 fileobj.title = "New netCDF file"

20 fileobj.close()

Solution and discussion: The first line creates the file object connected
to the netCDF file we’ll be writing to. The lines 2–6, we create the data
variables we’ll be writing: two vectors, one 2-D array, and one scalar. After
that, in line 7, we create the latitude and longitude dimensions (named ’lat’
and ’lon’, respectively) based on the lengths of the two vectors.

Lines 9–13 create variable objects using the createVariable method
of the file object. Note how lat var will be the variable in the file named
’lat’ and is a 1-D variable dimensioned by the dimension named ’lat’.
That is to say, the ’lat’ in the first argument of createVariable refers to
the variable’s name while ’lat’ in the third argument of createVariable
(which is part of a 1-element tuple) refers to the dimension created two code
lines above. Variable lon var is structured in a similar way. Finally, note
how because data2 var is a scalar, the dimensioning tuple is empty.

85

5.3. NETCDF INPUT/OUTPUT

Lines 14–16 fill the three non-scalar variables. These arrays are filled
using slicing colons to select both the source values and their destination
elements. In the case of line 14, as a specific example, such use of the slicing
colon is interpreted as meaning “put the values of the array lat into the
values of the variable object lat var.”

Line 17 attaches a units attribute to the variable object data1 var, and
line 18 assigns a scalar value to data2 var. Line 19 assigns the global
attribute title, and the final line closes the file attached to the file object.

5.3.3 Exercise to read and write a netCDF file

⇤ Exercise 17 (Read and write a netCDF reanalysis dataset):
Open the netCDF NCEP/NCAR Reanalysis 1 netCDF dataset of monthly

mean surface/near-surface air temperature and read in the values of the time
variable. (The example data is in the datasets subdirectory of course files in
the file air.mon.mean.nc.)

Alter the time values so that the first time value is 0.0 (i.e., subtract out
the minimum of the values). Change the units string to just say ’hours’,
i.e., eliminate the datum. (The original units string from the netCDF file
gave a datum.)

Write out the new time data and units as a variable in a new netCDF file.

Solution and discussion: The solution is found in course files/code files
in the file exercise-netcdf.py and is reproduced below (with some line con-
tinuations added to fit it on the page):

86

5.4. SUMMARY

1 import numpy as N
2 import Scientific.IO.NetCDF as S
3

4 fileobj = S.NetCDFFile(’air.mon.mean.nc’, mode=’r’)
5 time_data = fileobj.variables[’time’].getValue()
6 time_units = fileobj.variables[’time’].units
7 fileobj.close()
8

9 time_data = time_data - N.min(time_data)
10 time_units = ’hours’
11

12 fileobj = S.NetCDFFile(’newtime.nc’, mode=’w’)
13 fileobj.createDimension(’time’, N.size(time_data))
14 time_var = fileobj.createVariable(’time’,
15 ’d’, (’time’,))
16 time_var.units = time_units
17 time_var[:] = time_data[:]
18 fileobj.title = \
19 "New netCDF file for the time dimension"
20 fileobj.close()

Note again how array syntax makes the calculation to eliminate the time
datum (line 9) a one-liner ,.

5.4 Summary
In this chapter we saw that Python conceptualizes files as objects, with at-
tributes and methods attached to them (as opposed to merely unit number
addresses). To manipulate and access those files, you use the file object’s
methods. For the contents of text files, we found string methods to be use-
ful, and for netCDF files, there are a variety of methods that give you the
numerical data.

While many of the methods we discussed in this chapter can work for
much daily work, you probably will find any one of a number of Python
packages to be easier to use when it comes to doing file input/output. These
include: UV-CDAT, PyNIO, pysclint, PyTables, etc. Some of these packages
include text input/output functions that do line splitting and conversion for
you. Some of these packages can also handle other formats such as HDF,
GRIB, etc. For a list of more file input/output resources, please see Ch. 10.

87

5.4. SUMMARY

88

Chapter 6

A “Real” AOS Project: Putting
Together a Basic Data Analysis
Routine

At this point, we’ve covered enough of Python for you to do basically any
atmospheric or oceanic sciences calculation you would normally use a data
analysis language like IDL or Matlab for (excepting visualization, which
we’ll cover in Ch. 9). So let’s put what we’ve learned to the test and do a
“real” AOS data analysis project.

In Section 6.1, I present your mission (should you accept it ,). In Sec-
tions 6.2–6.5, I give four di↵erent ways of solving the problem. Why four
solutions? I want to use this real-world-like project to demonstrate how the
modern features of Python enable you to write much more powerful and
robust programs than are possible in traditional compiled and data analy-
sis languages; you can write a Fortran-like program in Python, but if you
do, you’ll miss features of Python that can help make your life as a scien-
tist much easier. Finally, we finish with some exercises where we use these
modern methods to extend our data analysis program.

6.1 The assignment
Let’s say you have three data files named data0001.txt, data0002.txt, and
data0003.txt. Each data file contains a single column of data of di↵ering
lengths (on the order of thousands of points). The data files have no headers.
Write a program that:

• Reads in the data from each file into its own NumPy array.

89

6.2. SOLUTION ONE: FORTRAN-LIKE STRUCTURE

• Calculates the mean, median, and standard deviation of the values in
each data file, saving the values to variables for possible later use.

While you can do this assignment without recourse to a real dataset,
there are three data files so structured in the course files/datasets directory.
The data is random (Gaussian distributed), with the first dataset data0001.txt
having a mean and standard deviation of 1, the second data0002.txt having
a mean and standard deviation of 2, etc., so that you can see whether you’re
getting the right result. Specifically, NumPy will calculate the mean and
standard deviation as:

data0001.txt: 0.962398498535 1.00287723892
data0002.txt: 2.02296936035 1.99446291623
data0003.txt: 3.08059179687 2.99082810178

Hints: The NumPy function for calculating the mean is mean, the median
is median, and the standard deviation is std.

6.2 Solution One: Fortran-like structure
In this solution, I’ve put all the file open, closing, read, and conversion into
a function, so you don’t have to type open, etc., three times. Then, I make
use of NumPy’s statistical functions to analyze the data and assign the results

90

6.2. SOLUTION ONE: FORTRAN-LIKE STRUCTURE

to variables. The way it’s written, however, looks very Fortran-esque, with
variables initialized and/or created explicitly.

1 import numpy as N
2

3 def readdata(filename):
4 fileobj = open(filename, ’r’)
5 outputstr = fileobj.readlines()
6 fileobj.close()
7 outputarray = N.zeros(len(outputstr), dtype=’f’)
8 for i in xrange(len(outputstr)):
9 outputarray[i] = float(outputstr[i])

10 return outputarray
11

12 data1 = readdata(’data0001.txt’)
13 data2 = readdata(’data0002.txt’)
14 data3 = readdata(’data0003.txt’)
15

16 mean1 = N.mean(data1)
17 median1 = N.median(data1)
18 stddev1 = N.std(data1)
19

20 mean2 = N.mean(data2)
21 median2 = N.median(data2)
22 stddev2 = N.std(data2)
23

24 mean3 = N.mean(data3)
25 median3 = N.median(data3)
26 stddev3 = N.std(data3)

The program above works fine, but we haven’t really taken much advan-
tage of anything unique to Python. How might we change that? For instance,
in readdata, instead of using a loop to go through each element and con-

Example of
using astype
for array type
conversion.

vert it to floating point, we could use array syntax and the astype method
of NumPy array objects. The code to replace lines 7–9 would be:

outputarray = N.array(outputstr)
outputarray = outputarray.astype(’f’)

This doesn’t really change much, however. The program is still written so
that anytime you specify a variable, whether a filename or data variable, or

91

Robert Fovell

6.3. SOLUTION TWO: STORE RESULTS IN ARRAYS

an analysis function, you type it in. This is fine if you have only three files,
but what if you have a thousand? Very quickly, this kind of programming
becomes not-very-fun.

6.3 Solution Two: Store results in arrays

One approach seasoned Fortran programmers will take to making this code
better is to put the results (mean, median, and standard deviation) into arrays
and have the element’s position in the array correspond to data0001.txt, etc.
Then, you can use a for loop to go through each file, read in the data, and
make the calculations. This means you don’t have to type in the names of
every mean, median, etc. variable to do the assignment. And, since we also
have Python’s powerful string type to create the filenames, this approach is
even easier to do in Python than Fortran. The solution, then, is:

1 import numpy as N

2 num_files = 3

3 mean = N.zeros(num_files)

4 median = N.zeros(num_files)

5 stddev = N.zeros(num_files)

6

7 for i in xrange(num_files):

8 filename = ’data’ + (’000’+str(i+1))[-4:] + ’.txt’

9 data = readdata(filename)

10 mean[i] = N.mean(data)

11 median[i] = N.median(data)

12 stddev[i] = N.std(data)

(I left out the definition of readdata, which is the same as in Solution One.
This is also true for all the other solutions to come.)

This code is slightly more compact but scales up to any num files num-
ber of files. But I’m still bothered by two things. First, what if the filenames
aren’t numbered? How then do you relate the element position of the mean,
etc. arrays to the file the calculated quantity is based on? Variable names
(e.g., mean1) do convey information and connect labels to values; by putting
my results into generic arrays, I lose that information. Second, why should I
predeclare the size of mean, etc.? If Python is dynamic, shouldn’t I be able
to arbitrarily change the size of mean, etc. on the fly as the code executes?

92

Robert Fovell

6.4. SOLUTION THREE: STORE RESULTS IN DICTIONARIES

6.4 Solution Three: Store results in dictionaries
Before looking at this solution, we first need to ask how might dictionaries
be useful for our problem. We previously said variable names connect labels

Variable
names
connect labels
to values.

to values, meaning that a string (the variable name) is associated with a value
(scalar, array, etc.). In Python, there is a special construct that can associate
a string with a value: a dictionary. From that perspective, setting a value to a
key that is the variable name (or something similar), as you do in dictionaries,
is e↵ectively the same as setting a variable with an equal sign. However,
dictionaries allow you to do this dynamically (i.e., you don’t have to type

Dictionaries
can
dynamically
associate
strings with
values.

in “variable equals value”) and will accommodate any string, not just those
numbered numerically.

Here, then, is a solution that uses dictionaries to hold the statistical re-
sults. The keys for the dictionary entries are the filenames:

1 import numpy as N
2 mean = {} #- Initialize as empty dictionaries
3 median = {}
4 stddev = {}
5 list_of_files = [’data0001.txt’, ’data0002.txt’,
6 ’data0003.txt’]
7

8 for ifile in list_of_files:
9 data = readdata(ifile)

10 mean[ifile] = N.mean(data)
11 median[ifile] = N.median(data)
12 stddev[ifile] = N.std(data)

So, in this solution, instead of creating the filename each iteration of
the loop, I create a list of files and iterate over that. Here, it’s hard-coded
in, but this suggests if we could access a directory listing of data files, we

Using glob
to get a
directory file
listing.

could generate such a list automatically. I can, in fact, do this with the glob
function of the glob module:1

import glob
list_of_files = glob.glob("data*.txt")

You can sort list of files using list methods or some other sorting func-
tion. (See the discussion on p. 111 which briefly introduces the built-in
sorted function.)

1See http://docs.python.org/library/glob.html for details on the module (accessed August
16, 2012).

93

6.5. SOLUTION FOUR: STORE RESULTS AND FUNCTIONS IN
DICTIONARIES

Another feature of this solution is that statistical values are now refer-
enced intelligently. That is to say, if you want to access, say, the mean of
data0001.txt, you type in mean[’data0001.txt’]. Thus, we’ve fixed the
issue we had in Solution Two, where the element address of the variable
mean had limited meaning if the dataset filenames were unnumbered. Cool!

An aside: Again, you don’t need the continuation backslash if you’re
continuing elements of a list (or similar entities) in the next line. Also, be-
cause of Python’s namespace protections (see p. 41 for more details), we can

Example of
namespace

protection in
Python.

have a variable named mean in our program that will not conflict with the
NumPy function mean, because that function is referred to as N.mean.

6.5 Solution Four: Store results and functions in
dictionaries

The last solution was pretty good, but here’s one more twist: What if I wanted
to calculate more than just the mean, median, and standard deviation? What
if I wanted to calculate 10 metrics? 30? 100? Can I make my program
flexible in that way?

The answer is, yes! And here too, Python dictionaries save the day: The
Dictionaries
can hold any
object, even

functions and
other

dictionaries.

key:value pairs enable you to put anything in as the value, even functions and
other dictionaries. So, we’ll refactor our solution to store the function objects
themselves in a dictionary of functions, linked to the string keys ’mean’,
’median’, and ’stddev’. We will also make a results dictionary that
will hold the dictionaries of the mean, median, and standard deviation results.
That is, results will be a dictionary of dictionaries. This solution is:

1 import numpy as N

2 import glob

3

4 metrics = {’mean’:N.mean, ’median’:N.median,

5 ’stddev’:N.std}

6 list_of_files = glob.glob("data*.txt")

7

8 results = {} #- Initialize results

9 for imetric in metrics.keys(): # dictionary for each

10 results[imetric] = {} # statistical metric

11

12 for ifile in list_of_files:

13 data = readdata(ifile)

14 for imetric in metrics.keys():

15 results[imetric][ifile] = metrics[imetric](data)

94

6.6. EXERCISES ON USING DICTIONARIES AND EXTENDING
YOUR BASIC DATA ANALYSIS ROUTINE

This program is now generally written to calculate mean, median, and
standard deviation for as many files as there are in the working directory that
match "data*.txt" and can be extended to calculate as many statistical
metrics as desired. If you want to access some other files, just change the
search pattern in glob. If you want to add another statistical metric, just
add another entry in the metrics dictionary. So, you just change two lines:
nothing else in the program needs to change. This is what I mean when I
say that Python enables you to write code that is more concise, flexible, and
robust than in traditional languages. By my lights, this isn’t just cool, but
way cool ,.

6.6 Exercises on using dictionaries and extend-
ing your basic data analysis routine

⇤ Exercise 18 (Dynamically filling a dictionary):
Assume you’re given the following list of files:

list_of_files = [’data0001.txt’, ’data0002.txt’,
’data0003.txt’]

• Create a dictionary filenum where the keys are the filenames and the
value is the file number (i.e., data0001.txt has a file number of 1) as an
integer.

• Make your code fill the dictionary automatically, assuming that you
have a list list of files.

• Hints: To convert a string to an integer, use the int function on the
string, and the list and array sub-range slicing syntax also works on
strings.

Solution and discussion: Here’s my program to fill filenum:

filenum = {}
list_of_files = [’data0001.txt’, ’data0002.txt’,

’data0003.txt’]
for ifile in list_of_files:

filenum[ifile] = int(ifile[4:8])

95

6.7. SUMMARY

⇤ Exercise 19 (Extend your data analysis routine to calculate skew
and kurtosis):

For the basic data analysis routine assignment given in this chapter, ex-
tend the last solution so that it also calculates the skew and kurtosis of each
file’s data. (Hint: NumPy has functions skew and kurtosis that do the
calculations.)

Solution and discussion: Here’s my extended program:

1 import numpy as N

2 import glob

3

4 metrics = {’mean’:N.mean, ’median’:N.median,

5 ’stddev’:N.std, ’skew’:N.skew,

6 ’kurtosis’:N.kurtosis}

7 list_of_files = glob.glob("data*.txt")

8

9 results = {} #- Initialize results

10 for imetric in metrics.keys(): # dictionary for each

11 results[imetric] = {} # statistical metric

12

13 for ifile in list_of_files:

14 data = readdata(ifile)

15 for imetric in metrics.keys():

16 results[imetric][ifile] = metrics[imetric](data)

That was easy! (Again, I left out the definition of readdata from this code,
because it’s just the same as in Solution One.)

6.7 Summary
In a traditional Fortran data analysis program, filenames, variables, and func-
tions are all static. That is to say, they’re specified by typing. Python data
structures enable us to write dynamic programs, because variables are dy-
namically typed. In particular, Python dictionaries enable you to dynami-
cally associate a name with a variable or function (or anything else), which
is essentially what variable assignment does. Thus, dictionaries enable you
to add, remove, or change a “variable” on the fly. The results are programs
that are more concise and flexible. And fewer lines of code means fewer
places for bugs to hide. Way cool!

96

Robert Fovell
import scipy.stats

Chapter 7

An Introduction to OOP Using
Python: Part I—Basic Principles
and Syntax

7.1 What is object-oriented programming

Object-oriented programming (OOP), deservedly or not, has something of a
reputation as an obtuse and mysterious way of programming. You may have
heard of it, and even heard that it is a powerful way of writing programs, but
you probably haven’t heard a clear and concise description of how it works
to help you write better AOS programs. Unfortunately, I also cannot give
you a clear and concise description of how OOP works to help you program.

The problem is not that I cannot describe to you what an object is or give
you a definition of OOP, but rather that any description of the mechanics and
use of OOP does not really capture how OOP makes your life easier as a
scientist programmer. It’s like thinking that a description of oil pigments and
poplar surfaces will somehow enable you to “get” how the Mona Lisa works.
For both OOP and art, you can’t describe the forest in terms of the trees.

Really, the only way I know of to convey how OOP enables atmospheric
and oceanic scientists to do better science using a computer is to give you
many examples of its use. So, in this chapter, I’ll do just that. After a brief
description of the mechanics of OOP, we’ll look at some simple examples
and work through some more complex examples, including examples from
the atmospheric and oceanic sciences. Through these examples, I hope to
describe both how to write object-oriented programs as well as why object-
oriented programs work the way they do.

97

7.1. WHAT IS OBJECT-ORIENTED PROGRAMMING

7.1.1 Procedural vs. object-oriented programming

One good way of describing something new is to compare it with something
old. Most atmospheric and oceanic scientists have had experience with pro-
cedural programming, so we’ll start there. Procedural programs look at the

Procedural
programs

have data and
functions as

separate
entities.

world in terms of two entities, “data” and “functions.” In a procedural con-
text, the two entities are separate from each other. A function takes data as
input and returns data as output. Additionally, there’s nothing customizable
about a function with respect to data. As a result, there are no barriers to
using a function on various types of data, even inappropriately.

In the real world, however, we don’t think of things or objects as having
these two features (data and functions) as separate entities. That is, real
world objects are not (usually) merely data nor merely functions. Real world

Real world
objects have

states and
behaviors.

objects instead have both “state” and “behaviors.” For instance, people have
state (tall, short, etc.) and behavior (playing basketball, running, etc.), often
both at the same time, and, of course, in the same person.

The aim of object-oriented programming is to imitate this in terms of
software, so that “objects” in software have two entities attached to them,
states and behavior. This makes the conceptual leap from real-world to pro-
grams (hopefully) less of a leap and more of a step. As a result, we can more
easily implement ideas into instructions a computer can understand.

7.1.2 The nuts and bolts of objects

What do objects consist of? An object in programming is an entity or “vari-
able” that has two entities attached to it: data and things that act on that data.
The data are called attributes of the object, and the functions attached to the
object that can act on the data are called methods of the object. Importantly,

Objects are
made up of

attributes and
methods.

you design these methods to act on the attributes; they aren’t random func-
tions someone has attached to the object. In contrast, in procedural program-
ming, variables have only one set of data, the value of the variable, with no
functions attached to the variable.

How are objects defined? In the real world, objects are usually exam-
ples or specific realizations of some class or type. For instance, individual
people are specific realizations of the class of human beings. The specific re-

Object
instances are

specific
realizations of

a class.

alizations, or instances, di↵er from one another in details but have the same
pattern. For people, we all have the same general shape, organ structure, etc.
In OOP, the specific realizations are called object instances, while the com-
mon pattern is called a class. In Python, this common pattern or template is
defined by the class statement.

98

7.2. EXAMPLE OF HOW OBJECTS WORK: STRINGS

So, in summary, objects are made up of attributes and methods, the struc-
ture of a common pattern for a set of objects is called its class, and specific
realizations of that pattern are called “instances of that class.”

Recall that all the Python “variables” we introduced earlier are actually
objects. (In fact, basically everything in Python is an object.) Let’s look at a
number of di↵erent Python objects to illustrate how objects work.

7.2 Example of how objects work: Strings
Python strings (like nearly everything else in Python) are objects. Thus, built
into Python, there (implicitly) is a class definition of the string class, and ev-
ery time you create a string, you are using that definition as your template.
That template defines both attributes and methods for all string objects, so
whatever string you’ve created, you have that set of data and functions at-
tached to your string which you can use. Let’s look at a specific case:

Example 45 (Viewing attributes and methods attached to strings and
trying out a few methods):

In the Python interpreter, type in:

a = "hello"

Now type: dir(a). What do you see? Type a.title() and a.upper()
and see what you get.

Solution and discussion: The dir(a) command gives a list of (nearly)
all the attributes and methods attached to the object a, which is the string

The dir
command
shows an
object’s
attributes and
methods.

"hello". Note that there is more data attached to the object than just the
word “hello”, e.g., the attributes a. doc and a. class also show up in
the dir listing.

Methods can act on the data in the object. Thus, a.title() applies the
title method to the data of a and returns the string "hello" in title case
(i.e., the first letter of the word capitalized); a.upper() applies the upper
method to the data of a and returns the string all in uppercase. Notice these
methods do not require additional input arguments between the parenthesis,
because all the data needed is already in the object (i.e., "hello").

99

7.3. EXERCISE ON HOW OBJECTS WORK: STRINGS

Let’s do a quick review of syntax for objects. First, to refer to attributes
Review of
syntax for

objects.

or methods of an instance, you add a period after the object name and then
put the attribute or method name. To set an attribute, the reference should
be on the lefthand side of the equal sign; the opposite is the case to read an
attribute. Method calls require you to have parentheses after the name, with
or without arguments, just like a function call. Finally, methods can produce
a return value (like a function), act on attributes of the object in-place, or
both.

7.3 Exercise on how objects work: Strings

⇤ Exercise 20 (Strings and how objects work):
In the Python interpreter, type in:

a = ’The rain in Spain.’

Given string a:

1. Create a new string b that is a but all in uppercase.

2. Is a changed when you create b?

3. How would you test to see whether b is in uppercase? That is, how
could you return a boolean that is True or False depending on whe-
ther b is uppercase?

4. How would you calculate the number of occurrences of the letter “n”
in a?

Solution and discussion: Here are my solutions:
The upper,
isupper, and
count string

methods.

1. b = a.upper()

2. No, the upper method’s return value is used to create b; the value of
a is not changed in place.

3. Use the isupper method on the string object, i.e., b.isupper() will
return True or False, accordingly.

4. a.count(’n’)

100

7.4. EXAMPLE OF HOW OBJECTS WORK: ARRAYS

7.4 Example of how objects work: Arrays
While lists have their uses, in scientific computing, arrays are the central
object. Most of our discussion of arrays has focused on functions that create
and act on arrays. Arrays, however, are objects like any other object and have
attributes and methods built-in to them; arrays are more than just a sequence
of numbers. Let’s look at an example list of all the attributes and methods of
an array object:

Example 46 (Examining array object attributes and methods):
In the Python interpreter, type in:

a = N.reshape(N.arange(12), (4,3))

Now type: dir(a). What do you see? Based on their names, and your
understanding of what arrays are, what do you think some of these attributes
and methods do?

Solution and discussion: The dir command should give you a list of a
lot of stu↵. I’m not going to list all the output here but instead will discuss
the output in general terms.

We first notice that there are two types of attribute and method names:
those with double-underscores in front and in back of the name and those
without any pre- or post-pended double-underscores. We consider each type
of name in turn.

A very few double-underscore names sound like data. The a. doc
Double-
underscore
attribute and
method
names.

variable is one such attribute and refers to documentation of the object. Most
of the double-underscore names suggest operations on or with arrays (e.g.,
add, div, etc.), which is what they are: Those names are of the methods of the
array object that define what Python will do to your data when the interpreter
sees a “+”, “/”, etc. Thus, if you want to redefine how operators operate
on arrays, you can do so. It is just a matter of redefining that method of the
object.

That being said, I do not, in general, recommend you do so. In Python,
the double-underscore in front means that attribute or method is “very pri-

Single-
underscore
attribute and
method
names.

vate.” (A variable with a single underscore in front is private, but not as
private as a double-underscore variable.) That is to say, it is an attribute or
method that normal users should not access, let alone redefine. Python does
not, however, do much to prevent you from doing so, so advanced users who
need to access or redefine those attributes and methods can do so.

101

7.4. EXAMPLE OF HOW OBJECTS WORK: ARRAYS

The non-double-underscore names are names of “public” attributes and
methods, i.e., attributes and methods normal users are expected to access

Public
attributes and

methods.

and (possibly) redefine. A number of the methods and attributes of a are
duplicates of functions (or the output of functions) that act on arrays (e.g.,
transpose, T), so you can use either the method version or the function
version.

And now let’s look at some examples of accessing and using array object
attributes and methods:

Example 47 (Using array attributes and methods):
In the Python interpreter, type in:

a = N.reshape(N.arange(12), (4,3))
print a.astype(’c’)
print a.shape
print a.cumsum()
print a.T

What do each of the print lines do? Are you accessing an attribute or
method of the array?:

Solution and discussion: The giveaway as to whether we are accessing
attributes or calling methods is whether there are parenthesis after the name;
if not, it’s an attribute, otherwise, it’s a method. Of course, you could type

How to tell
whether you

are accessing
an attribute or

a method.

the name of the method without parentheses following, but then the inter-
preter would just say you specified the method itself, as you did not call the
method:

>>> print a.astype
<built-in method astype of numpy.ndarray object at

0x20d5100>

(I manually added a linebreak in the above screenshot to fit it on the page.)
That is to say, the above syntax prints the method itself; since you can’t
meaningfully print the method itself, Python’s print command just says
“this is a method.”

The astype call produces a version of array a that converts the values
of a into single-character strings. The shape attribute gives the shape of

102

7.5. EXERCISE ON HOW OBJECTS WORK: ARRAYS

the array. The cumsum method returns a flattened version of the array where
each element is the cumulative sum of all the elements before. Finally, the

Object
versions of
astype,
shape, and
cumsum.

attribute T is the transpose of the array a.

While it’s nice to have a bunch of array attributes and methods attached to
the array object, in practice, I find I seldom access array attributes and find
it easier to use NumPy functions instead of the corresponding array meth-
ods. One exception with regards to attributes is the dtype.char attribute;
that’s very useful since it tells you the type of the elements of the array (see
Example 30 for more on dtype.char).

7.5 Exercise on how objects work: Arrays

⇤ Exercise 21 (More on using array attributes and methods):
For all these exercises (except for the first one), do not use NumPy mod-

ule functions; only use attributes or methods attached to the arrays. (Do these
in order, since each builds on the preceding commands.)

1. Create a 3 column, 4 row floating point array named a. The array can
have any numerical values you want, as long as all the elements are
not all identical.

2. Create an array b that is a copy of a but is 1-D, not 2-D.

3. Turn b into a 6 column, 2 row array, in place.

4. Create an array cwhere you round all elements of b to 1 decimal place.

Solution and discussion: Here are array methods that one can use to
The
reshape,
ravel,
resize, and
round
function and
methods.

accomplish the exercises:

1. a = N.reshape(N.arange(12, dtype=’f’), (3,4))

2. b = a.ravel()

3. b.resize((2,6))

4. c = b.round(1)

103

Robert Fovell
row

Robert Fovell
col

7.6. DEFINING YOUR OWN CLASS

Remember, methods need to be called or else they don’t do anything;
including the parentheses to specify the calling argument list tells the inter-
preter you’re calling the method. In terms of the “output” of the method,
some methods act like a function, returning their output as a return value.
Other methods do their work “in-place,” on the object the method is attached
to; those methods do not typically have a return value.1 The resize method
is an example of a method that operates on the data in-place, which is why
there is no equal sign (for assignment) associated with the method call. You
can also make a method operate on an object in-place as well as output a
return value.

7.6 Defining your own class
We had said that all objects are instances of a class, and in the preceding
examples, we looked at what made up string and array instances, which tells
us something about the class definitions for those two kinds of objects. How
would we go about creating our own class definitions?

Class definitions start with class statement. The block following the
Defining a
class using
class.

class line is the class definition. Within the definition, you refer to the in-
stance of the class as self. So, for example, the instance attribute data
is called self.data in the class definition, and the instance method named
calculate is called self.calculate in the class definition (i.e., it is called
by self.calculate(), if it does not take any arguments).

Methods are defined using the def statement. The first argument in any
Defining

methods and
the self

argument.

method is self; this syntax is how Python tells a method “make use of all
the previously defined attributes and methods in this instance.” However,
you never type self when you call the method.

Usually, the first method you define will be the init method. This
The init

method. method is called whenever you create an instance of the class, and so you
usually put code that handles the arguments present when you create (or
instantiate) an instance of a class and conducts any kind of initialization for
the object instance. The arguments list of init is the list of arguments
passed in to the constructor of the class, which is called when you use the
class name with calling syntax.

Whew! This is all very abstract. We need an example! Here’s one:

1This statement is not entirely correct. If you do set another variable, by assignment, to
such a method call, that lefthand-side variable will typically be set to None.

104

7.6. DEFINING YOUR OWN CLASS

Example 48 (Example of a class definition for a Book class):
This class provides a template for holding and manipulating information

about a book. The class definition provides a single method (besides the ini-
tialization method) that returns a formatted bibliographic reference for the
book. The code below gives the class definition and then creates two in-
stances of the class (note line continuations are added to fit the code on the
page):

1 class Book(object):
2 def __init__(self, authorlast, authorfirst, \
3 title, place, publisher, year):
4 self.authorlast = authorlast
5 self.authorfirst = authorfirst
6 self.title = title
7 self.place = place
8 self.publisher = publisher
9 self.year = year

10

11 def write_bib_entry(self):
12 return self.authorlast \
13 + ’, ’ + self.authorfirst \
14 + ’, ’ + self.title \
15 + ’, ’ + self.place \
16 + ’: ’ + self.publisher + ’, ’ \
17 + self.year + ’.’
18

19 beauty = Book("Dubay", "Thomas" \
20 , "The Evidential Power of Beauty" \
21 , "San Francisco" \
22 , "Ignatius Press", "1999")
23 pynut = Book("Martelli", "Alex" \
24 , "Python in a Nutshell" \
25 , "Sebastopol, CA" \
26 , "O’Reilly Media, Inc.", "2003")

Can you explain what each line of code does?

Solution and discussion: Line 1 begins the class definition. By conven-
The object
object and
inheritance.

tion, class names follow the CapWords convention (capitalize the first letter
of every word). The argument in the class statement is a special object called

105

7.6. DEFINING YOUR OWN CLASS

object. This has to do with the OOP idea of inheritance, which is a topic
beyond the scope of this book. Su�ce it to say that classes you create can in-
herit or incorporate attributes and methods from other classes. Base classes
(class that do not depend on other classes) inherit from object, a special
object in Python that provides the foundational tools for classes.

Notice how attributes and methods are defined, set, and used in the class
definition: Periods separate the instance name self from the attribute and
method name. So the instance attribute title is called self.title in the
class definition. When you actually create an instance, the instance name is
the name of the object (e.g., beauty, pynut), so the instance attribute title
of the instance beauty is referred to as beauty.title, and every instance
attribute is separate from every other instance attribute (e.g., beauty.title
and pynut.title are separate variables, not aliases for one another).

Thus, in lines 4–9, I assign each of the positional input parameters in the
def init line to an instance attribute of the same name. Once assigned,
these attributes can be used anywhere in the class definition by reference to
self, as in the definition of the write bib entry method.

Speaking of which, note that the write bib entry method is called
with no input parameters, but in the class definition in lines 11–17, I still
need to provide it with self as an input. That way, the method definition is
able to make use of all the attributes and methods attached to self.

In lines 19–22, I create an instance beauty of the Book class. Note
how the arguments that are passed in are the same arguments as in the
def init argument list. In the last four lines, I create another instance
of the Book class.

(The code of this example is in course files/code files in a file called bib-
liog.py.)

Now that we’ve seen an example of defining a class, let’s look at an
example of using instances of the Book class to help us better understand
what this class does:

Example 49 (Using instances of Book):
Consider the Book definition given in Example 48. Here are some ques-

tions to test your understanding of what it does:

1. How would you print out the author attribute of the pynut instance
(at the interpreter, after running the file)?

106

7.7. EXERCISE ON DEFINING YOUR OWN CLASS

2. If you type print beauty.write bib entry() at the interpreter
(after running the file), what will happen?

3. How would you change the publication year for the beauty book to
"2010"?

Solution and discussion: My answers:

1. Type: print pynut.author. Remember that once an instance of
Book is created, the attributes are attached to the actual instance of the
class, not to self. The only time self exists is in the class definition.

2. You will print out the the bibliography formatted version of the infor-
mation in beauty.

3. Type: beauty.year = "2010". Remember that you can change in-
stance attributes of classes you have designed just like you can change
instance attributes of any class; just use assignment. (There is also a
function called setattr that you can use to assign attributes. I’ll talk
about setattr in Section 8.2.)

7.7 Exercise on defining your own class

⇤ Exercise 22 (The Book class and creating an Article class):
Here are the tasks:

1. Create another instance of the Book class using book of your choosing
(or make up a book). Execute the write bib entry method for that
instance to check if it looks like what you wanted.

2. Add a method make authoryear to the class definition that will cre-
ate an attribute authoryear and will set that attribute to a string that
has the last name of the author and then the year in parenthesis. For
instance, for the beauty instance, this method will set authoryear to
’Dubay (1999)’. The method should not have a return statement.

3. Create an Article class that manages information about articles. It
will be very similar to the class definition for Book, except publisher

107

7.7. EXERCISE ON DEFINING YOUR OWN CLASS

and place information will be unneeded and article title, volume num-
ber, and pages will be needed. Make sure this class also has the meth-
ods write bib entry and make authoryear.

Solution and discussion: Here are my answers:

1. Here’s another instance of Book, with a call to the write bib entry
method:

madeup = Book("Doe", "John", "Good Book",
"Chicago", "Me Press", "2012")

print madeup.write_bib_entry()

This code will print the following to the screen:

Doe, John, Good Book, Chicago: Me Press, 2012.

2. The entire Book class definition, with the new method (and line con-
tinuations added to fit the code on the page), is:

1 class Book(object):
2 def __init__(self, authorlast, authorfirst, \
3 title, place, publisher, year):
4 self.authorlast = authorlast
5 self.authorfirst = authorfirst
6 self.title = title
7 self.place = place
8 self.publisher = publisher
9 self.year = year

10

11 def make_authoryear(self):
12 self.authoryear = self.authorlast \
13 + ’(’ + self.year +’)’
14

15 def write_bib_entry(self):
16 return self.authorlast \
17 + ’, ’ + self.authorfirst \
18 + ’, ’ + self.title \
19 + ’, ’ + self.place \
20 + ’: ’ + self.publisher + ’, ’ \
21 + self.year + ’.’

108

Robert Fovell
‘)’

7.7. EXERCISE ON DEFINING YOUR OWN CLASS

The new portion is lines 11–13. None of the rest of the class definition
needs to change.

3. The class definition for Article (with line continuations added to fit
the code on the page) is:

1 class Article(object):
2 def __init__(self, authorlast, authorfirst, \
3 articletitle, journaltitle, \
4 volume, pages, year):
5 self.authorlast = authorlast
6 self.authorfirst = authorfirst
7 self.articletitle = articletitle
8 self.journaltitle = journaltitle
9 self.volume = volume

10 self.pages = pages
11 self.year = year
12

13 def make_authoryear(self):
14 self.authoryear = self.authorlast \
15 + ’ (’ + self.year +’)’
16

17 def write_bib_entry(self):
18 return self.authorlast \
19 + ’, ’ + self.authorfirst \
20 + ’ (’ + self.year + ’): ’ \
21 + ’"’ + self.articletitle + ’," ’ \
22 + self.journaltitle + ’, ’ \
23 + self.volume + ’, ’ \
24 + self.pages + ’.’

This code looks nearly the same as that for the Book class, with these
exceptions: some attributes di↵er between the two classes (books, for
instance, do not have journal titles) and the method write bib entry
is di↵erent between the two classes (to accommodate the di↵erent for-
matting between article and book bibliography entries). See bibliog.py
in course files/code files for the code.

109

7.8. MAKING CLASSES WORK TOGETHER TO MAKE COMPLEX
PROGRAMMING EASIER

7.8 Making classes work together to make com-
plex programming easier

So in our introduction to object-oriented programming (OOP), we found out
Summary of
introduction

to OOP.

that objects hold attributes (data) and methods (functions that act on data)
together in one related entity. Realizations of an object are called instances.
The template or form for an object is called a class, so realizations are in-
stances of a class. In Python, the class statement defines the template for
object instances. In the class statement, instances of the class are called
self. Once a real instance of the class is created, the instance (object) name
itself is “substituted” in for self.

But so what? It seems like classes are just a di↵erent way of organizing
data and functions: Instead of putting them in libraries (or modules), you put
them in a class. If you’re thinking that this isn’t that big of a deal, I would
agree that it isn’t a big deal, if all you do in a program is write a single class
with a single instance of that class; in that case, OOP does not buy you very
much.

The real power of OOP, rather, comes when objects are used in con-
junction with other classes. By properly designing your set of classes, the
object-oriented structure can make your code much simpler to write and un-
derstand, easier to debug, and less prone to error. In the remaining sections
of the chapter, we’ll look at two case studies illustrating the use of OOP in
this manner. The first case study extends our Book and Article classes by
examining the more general program of how to create a bibliography. In the
second case study, we consider how to create a class for geosciences work
that “manages” a surface domain.

7.9 Case study 1: The bibliography example
The Book and Article classes we wrote earlier manage information related
to books and articles. In this case study, we make use of Book and Article
to help us implement one common use of book and article information: the
creation of a bibliography. In particular, we’ll write a Bibliography class
that will manage a bibliography, given instances of Book and Article ob-
jects.

7.9.1 Structuring the Bibliography class
Since a bibliography consists of a list of (usually formatted) book and article
entries, we will want our Bibliography class to contain such a list. Thus,

110

Robert Fovell
class

7.9. CASE STUDY 1: THE BIBLIOGRAPHY EXAMPLE

the Bibliography class has, as its main attribute, a list of entries which
are instances of Book and Article classes. Remember, instances of Book
and Article can be thought of as books and articles; the instances are the
“objects” that specific books and articles are.

Next, we write methods for Bibliography that can manipulate the list
of Book and Article instances. To that end, the first two methods we
write for Bibliography will do the following: initialize an instance of the
class; rearrange the list alphabetically based upon last name then first name.
The initialization method is called init (as always), and the rearranging
method will be called sort entries alpha. Here is the code:

1 import operator

2

3 class Bibliography(object):

4 def __init__(self, entrieslist):

5 self.entrieslist = entrieslist

6

7 def sort_entries_alpha(self):

8 tmp = sorted(self.entrieslist,

9 key=operator.attrgetter(’authorlast’,

10 ’authorfirst’))

11 self.entrieslist = tmp

12 del tmp

Let’s talk about what this code does. In the init method, there is
only a single argument, entrieslist. This is the list of Book and Article
instances that are being passed into an instance of the Bibliography class.
The init method assigns the entrieslist argument to an attribute of
the same name.

Lines 7–12 define the sort entries alpha method, which sorts the
entrieslist attribute and replaces the old entrieslist attribute with the
sorted version. The method uses the built-in sorted function, which takes a
keyword parameter key that gives the key used for sorting the argument of
sorted.

How is that key generated? The attrgetter function, which is part of
The
attrgetter
function and
sorted.

the operator module, gets the attributes of the names listed as arguments
to attrgetter out of the elements of the item being sorted. (Note that the
attribute names passed into attrgetter are strings, and thus you refer to the
attributes of interest by their string names, not by typing in their names. This
makes the program much easier to write.) In our example, attrgetter has
two arguments; sorted indexes self.entrieslist by the attrgetter’s
first argument attribute name first then the second.

111

7.9. CASE STUDY 1: THE BIBLIOGRAPHY EXAMPLE

Note that at the end of the sort entries alpha method definition, I
use the del command to make sure that tmp disappears. I need to do this
because lists are mutable, and Python assignment is by reference not value
(see p. 140 for more discussion on reference vs. value). If I do not remove
tmp, the tmpmight float around as a reference to the entrieslist attribute;
it shouldn’t, but I’m paranoid so I explicitly deallocate tmp to make sure.

Some final comments: First, if you would like to read more on sort-
ing in Python, please see http://wiki.python.org/moin/HowTo/Sorting. The
sorted function is very versatile.

Second, there are some diagnostics at the end of bibliog.py that are run if
you type:

python bibliog.py

from the operating system command line. This is one way of writing a very
basic test to make sure that a module works. (Python has a solid unit testing

Basic testing
of programs. framework in the form of the unittest module, if you’re interested in some-

thing more robust.) These diagnostics, however, are not implemented if you
import bibliog.py as a module. This is due to the conditional:

if name == ’ main ’:

which is true only if the module is being run as a main program, i.e., by
the python command. If you import the module for use in another mod-
ule, by using import, the variable name will not have the string value
’ main ’, and the diagnostics will not execute.

7.9.2 What sort entries alpha illustrates about OOP
Let’s pause to think for a moment about the method sort entries alpha.
What have we just done? First, we sorted a list of items that are totally
di↵erently structured from each other based on two shared types of data (at-
tributes). Second, we did the sort using a sorting function that does not
care about the details of the items being sorted, only that they had these
two shared types of data. In other words, the sorting function doesn’t care
about the source type (e.g., article, book), only that all source types have the
attributes authorlast and authorfirst.

This doesn’t seem that big a deal, but think about how we would have had
Comparing

OOP vs.
procedural for

a sorting
example.

to do it in traditional procedural programming. First, each instance would
have been an array, with a label of what kind of source it is, for instance:

nature_array = ["article", "Smith", "Jane",
"My Nobel prize-winning paper",
"Nature", "481", "234-236", "2012"]

112

7.9. CASE STUDY 1: THE BIBLIOGRAPHY EXAMPLE

The procedural sorting function you’d write would need know which el-
ements you want to sort with (here the second and third elements of the
array). But the index for every array of data would potentially be di↵erent,
depending on where in the array that data is stored for that source type. Thus,
in your sorting function, you’d need to run multiple if tests (based on the
source type) to extract the correct field in the array to sort by. But, if you
changed the key you’re sorting by (e.g., from the author’s name to the date
of publication), you would have to change the element index you’re sorting
against. This means manually changing the code of the if tests in your
sorting function.

It’s easy to make such a manual code change and test that the change
works, if you only have a few source types (e.g., articles and books), but
what if you have tens or hundreds of source types? What a nightmare! And
as you make all those code changes, think of the number of possible bugs
you may introduce just from keystroke errors alone! But in object-oriented
programming, you can switch the sorting key at will and have an infinite
number of source types without any additional code changes (e.g., no if
tests to change). This is the power of OOP over procedural programming:
code structured using an OOP framework naturally results in programs that
are much more flexible and extensible, resulting in dramatically fewer bugs.

7.9.3 Exercise in extending the Bibliography class

⇤ Exercise 23 (Writing out an alphabetically sorted bibliography):
Since we programmed Book and Articlewith write bib entrymeth-

ods, let’s take advantage of that. Write a method write bibliog alpha for
the Bibliography class we just created that actually writes out a bibliogra-
phy (as a string) with blank lines between the entries, with the entries sorted
alphabetically by author name. The bibliography should be returned using a
return statement in the method. Some hints:

• Elements of a list do not have to all have the same type.

• for loops do not only loop through lists of numbers but through any
iterable. This includes lists of any sort, including lists of objects (such
as Book and Article instances.

• Strings are immutable, so you cannot append to an existing string. In-
stead, do a reassignment combined with concatenation (i.e., a=a+b).

113

7.9. CASE STUDY 1: THE BIBLIOGRAPHY EXAMPLE

• To initialize a string, in order to grow it in concatenation steps such
as in a for loop, start by setting the string variable to an empty string
(which is just ’’).

Solution and discussion: Here is the solution for the entire class, with
the new method included:

1 import operator
2

3 class Bibliography(object):
4 def __init__(self, entrieslist):
5 self.entrieslist = entrieslist
6

7 def sort_entries_alpha(self):
8 tmp = sorted(self.entrieslist,
9 key=operator.attrgetter(’authorlast’,

10 ’authorfirst’))
11 self.entrieslist = tmp
12 del tmp
13

14 def write_bibliog_alpha(self):
15 self.sort_entries_alpha()
16 output = ’’
17 for ientry in self.entrieslist:
18 output = output \
19 + ientry.write_bib_entry() + ’\n\n’
20 return output[:-2]

The only code that has changed compared to what we had previously is
the write bibliog alpha method; let’s talk about what it does. Line 14
defines the method; because self is the only argument, the method is called
with an empty argument list. The next line calls the sort entries alpha
method to make sure the list that is stored in the entrieslist attribute
is alphabetized. Next, we initialize the output string output as an empty
string. When the “+” operator is used, Python will then use string concate-
nation on it. Lines 17–19 run a for loop to go through all elements in the
list entrieslist. The output of write bib entry is added one entry at a
time, along with two linebreaks after it. Finally, the entire string is output ex-
cept for the final two linebreaks. (Remember that strings can be manipulated
using list slicing syntax.)

114

7.10. CASE STUDY 2: CREATING A CLASS FOR GEOSCIENCES
WORK—SURFACE DOMAIN MANAGEMENT

7.9.4 What the write bibliog alpha method illustrates
about OOP

Here too, let’s ask how would we have written a function that wrote out an
alphabetized bibliography in procedural programming? Probably something
like the following sketch:

def write_bibliog_function(arrayofentries):

[open output file]

for i in xrange(len(arrayofentries)):

ientryarray = arrayofentries[i]

if ientryarray[0] = "article":

[call function for bibliography entry

for an article, and save to output file]

elif ientryarray[0] == "book":

[call function for bibliography entry

for an book, and save to output file]

[...]

[close output file]

This solution sketch illustrates how in procedural programming we are
stuck writing if tests in the bibliography writing function to make sure we
format each source entry correctly, depending on source type (e.g., article,
book). In fact, for every function that deals with multiple source types, we
need this tree of if tests. If you introduce another source type, you need to
add another if test in all functions where you have this testing tree. This is
a recipe for disaster: It is exceedingly easy to inadvertently add an if test in
one function but forget to do so in another function, etc.

In contrast, with objects, adding another source type requires no code
changes or additions. The new source type just needs a write bib entry
method defined for it. And, since methods are designed to work with the
attributes of their class, this method will be tailor-made for its data. So much
easier!

7.10 Case study 2: Creating a class for geoscien-
ces work—Surface domain management

I think the bibliography example in Section 7.9 does a good job of illustrating
what object-oriented programming gives you that procedural programming

115

Robert Fovell

7.10. CASE STUDY 2: CREATING A CLASS FOR GEOSCIENCES
WORK—SURFACE DOMAIN MANAGEMENT

cannot. I also like the example because all of us have had to write a bibliog-
raphy, and the idea of “sources” (books, articles) very nicely lends itself to
being thought of as an “object.” But can the OOP way of thinking help us
in decomposing a geosciences problem? In this section, we consider a class
for managing surface domains (i.e., a latitude-longitude domain). I present
the task of defining the class as an exercise and give two possible solutions.
The exercise and solutions, while valuable in and of themselves, o↵er a nice
illustration of how OOP enables atmospheric and oceanic scientists to write
more concise but flexible code for handling scientific calculations.

⇤ Exercise 24 (Defining a SurfaceDomain class):
Define a class SurfaceDomain that describes surface domain instances.

The domain is a land or ocean surface region whose spatial extent is de-
scribed by a latitude-longitude grid. The class is instantiated when you pro-
vide a vector of longitudes and latitudes; the surface domain is a regular
grid based on these vectors. Surface parameters (e.g., elevation, tempera-
ture, roughness, etc.) can then be given as instance attributes. The quantities
are given on the domain grid.

In addition, in the class definition, provide an instantiation method that
saves the input longitude and latitude vectors as appropriately named at-
tributes and creates 2-D arrays of the shape of the domain grid which have
the longitude and latitude values at each point and saves them as private at-
tributes (i.e., their names begin with a single underscore).

116

7.10. CASE STUDY 2: CREATING A CLASS FOR GEOSCIENCES
WORK—SURFACE DOMAIN MANAGEMENT

Hint: An example may help with regards to what I’m asking for with
respect to the 2-D arrays. If lon=N.arange(5) and lat=N.arange(4),
then the lonall instance attribute would be:

[[0 1 2 3 4]
[0 1 2 3 4]
[0 1 2 3 4]
[0 1 2 3 4]]

and the latall instance attribute would be:

[[0 0 0 0 0]
[1 1 1 1 1]
[2 2 2 2 2]
[3 3 3 3 3]]

Solution and discussion: The two solutions described below (with the
second solution commented out) are in course files/code files in the file sur-
face domain.py). Here’s the solution using for loops:

1 import numpy as N

2

3 class SurfaceDomain(object):

4 def __init__(self, lon, lat):

5 self.lon = N.array(lon)

6 self.lat = N.array(lat)

7

8 shape2d = (N.size(self.lat), N.size(self.lon))

9 self._lonall = N.zeros(shape2d, dtype=’f’)

10 self._latall = N.zeros(shape2d, dtype=’f’)

11 for i in xrange(shape2d[0]):

12 for j in xrange(shape2d[1]):

13 self._lonall[i,j] = self.lon[j]

14 self._latall[i,j] = self.lat[i]

Lines 5–6 guarantee that lon and lat are NumPy arrays, in case lists or
tuples are passed in.

And here’s a simpler and faster solution using the meshgrid function in
Using
meshgrid.NumPy instead of the for loops:

117

Robert Fovell

Robert Fovell

7.10. CASE STUDY 2: CREATING A CLASS FOR GEOSCIENCES
WORK—SURFACE DOMAIN MANAGEMENT

1 import numpy as N

2

3 class SurfaceDomain(object):

4 def __init__(self, lon, lat):

5 self.lon = N.array(lon)

6 self.lat = N.array(lat)

7 [xall, yall] = N.meshgrid(self.lon, self.lat)

8 self._lonall = xall

9 self._latall = yall

10 del xall, yall

So, what does this SurfaceDomain class illustrate about OOP applied to
the geosciences? Pretend you have multiple SurfaceDomain instances that
you want to communicate to each other, where the bounds of one are taken
from (or interpolated with) the bounds of another, e.g., calculations for each
domain instance are farmed out to a separate processor, and you’re stitching
domains together:

In the above schematic, gray areas are SurfaceDomain instances and the
thick, dark lines are the overlapping boundaries between the domain in-
stances.

In procedural programming, to manage this set of overlapping domains,
Comparing

OOP vs.
procedural for

a subdomain
management

example.

you might create a grand domain encompassing all points in all the domains
to make an index that keeps track of which domains abut one another. The
index records who contributes data to these boundary regions. Alternately,
you might create a function that processes only the neighboring domains, but
this function will be called from a scope that has access to all the domains
(e.g., via a common block).

But, to manage this set of overlapping domains, you don’t really need
such a global view nor access to all domains. In fact, a global index or a
common block means that if you change your domain layout, you have to
hand-code a change to your index/common block. Rather, what you actually
need is only to be able to interact with your neighbor. So why not just write a
method that takes your neighboring SurfaceDomain instances as arguments

118

7.11. SUMMARY

and alters the boundaries accordingly? That is, why not add the following to
the SurfaceDomain class definition:2

class SurfaceDomain(object):
[...]
def syncbounds(self, northobj, southobj,

eastobj, westobj):
[...]

Such a method will propagate to all SurfaceDomain instances automat-
ically, once written in the class definition. Thus, you only have to write one
(relatively) small piece of code that can then a↵ect any number of layouts
of SurfaceDomain instances. Again, object-oriented programming enables
you to push the level at which you code to solve a problem down to a lower-
level than procedural programming easily allows. As a result, you can write
smaller, better tested bit of code; this makes your code more robust and flex-
ible.

7.11 Summary
You could, I think, fairly summarize this chapter as addressing one big ques-
tion: Why should an atmospheric or oceanic scientist bother with object-
oriented programming? In answer, I suggest two reasons. First, code writ-
ten using OOP is less prone to error. OOP enables you to mostly eliminate
lengthy argument lists, and it is much more di�cult for a function to acciden-
tally process data it should not process. Additionally, OOP deals with long
series of conditional tests much more compactly; there is no need to duplicate
if tests in multiple places. Finally, objects enable you to test smaller pieces
of your program (e.g., individual attributes and methods), which makes your
tests more productive and e↵ective.

Second, programs written using OOP are more easily extended. New
cases are easily added by creating new classes that have the interface meth-
ods defined for them. Additional functionality is also easily added by just
adding new methods/attributes. Finally, any changes to class definitions au-
tomatically propagate to all instances of the class.

For short, quick-and-dirty programs, procedural programming is still the
Procedural
for short
programs;
OOP for
everything
else.

better option; there is no reason to spend the time coding the additional OOP
infrastructure. But for many atmospheric and oceanic sciences applications,

2Christian Dieterich’s PyOM pythonized OM3 ocean model does a similar kind of
domain-splitting handling in Python.

119

7.11. SUMMARY

things can very quickly become complex. As soon as that happens, the object
decomposition can really help. Here’s the rule-of-thumb I use: For a one-
o↵, short program, I write it procedurally, but for any program I may extend
someday (even if it is a tentative “may”), I write it using objects.

120

Chapter 8

An Introduction to OOP Using
Python: Part II—Application to
Atmospheric Sciences Problems

Ch. 7, introduced us to the syntax of object-oriented programming (OOP), as
well as an understanding of how we can use OOP to write AOS programs that
are more flexible, extensible, and less error prone. In this chapter, we look at
a few applications of OOP to AOS problems. In particular, we will examine
how objects can be used to manage dataset metadata (including missing val-
ues), related but unknown data, and dynamically change subroutine execu-
tion order. Of these three topics, the first is addressed by two well-developed
packages, NumPy and the Climate Data Management System (cdms). The
second and third topics are implemented in two experimental packages, but
they provide useful illustrations of how we can apply OOP to AOS problems.

8.1 Managing metadata and missing values
All datasets of real-world phenomena will have missing data: instruments
will malfunction, people will make measurement errors, etc. Traditionally,
missing data has been handled by assigning a value as the “missing value”
and setting all elements of the dataset that are “bad” to that value. (Usually,
the missing value is a value entirely out of the range of the expected values,
e.g., �99999.0.) With OOP, objects enable us to do this in a more robust
way.

Earlier, we saw that Python supports array variables (via NumPy), and
we also described how all variables in Python are not technically variables,
but objects. Objects hold multiple pieces of data as well as functions that

121

8.1. MANAGING METADATA AND MISSING VALUES

operate on that data, and for atmospheric and oceanic sciences (AOS) appli-
cations, this means data and metadata (e.g., grid type, missing values, etc.)
can both be attached to the “variable.” Using this capability, we can de-
fine not only arrays, but two more array-like variables: masked arrays and
masked variables. These array-like variables incorporate metadata attached
to the arrays and define how that metadata can be used as part of analysis,
visualization, etc.

8.1.1 What are masked arrays and masked variables?
Recall that arrays are n-dimensional vectors or grids that hold numbers (or
characters). Masked arrays, then, are arrays that also have a “mask” attribute
which tells you which elements are bad, and masked variables are masked
arrays that also give domain information and other metadata information.
Let’s look at each type of variable in detail.

In an array, every element has a value, and operations using the array are
Review of

arrays. defined accordingly. Thus, for the following array:

>>> import numpy as N
>>> a = N.array([[1,2,3],[4,5,6]])
>>> a
array([[1, 2, 3],

[4, 5, 6]])

122

8.1. MANAGING METADATA AND MISSING VALUES

the contents of the array are numbers, and operations such as addition, mul-
tiplication, etc. are defined as operating on those array elements, as we saw
in Ch. 4.

Masked arrays are arrays with something extra. That something extra is
Masked
arrays.a mask of bad values; this mask is an attribute of the array and thus auto-

matically travels with the numerical (or character) values of the elements of
the array. Elements of the array, whose corresponding elements in the mask
are set to “bad,” are treated as if they did not exist, and operations using the
array automatically utilize the mask of bad values. Consider the array a and
the masked array b:

>>> import numpy as N
>>> import numpy.ma as ma
>>> a = N.array([[1,2,3],[4,5,6]])
>>> b = ma.masked_greater(a, 4)
>>> b
masked_array(data =
[[1 2 3]
[4 -- --]],

mask =
[[False False False]
[False True True]],

fill_value = 999999)
>>> print a*b
[[1 4 9]
[16 -- --]]

The mask is a boolean array whose elements are set to True if the value
Masked array
masks.in the corresponding array is considered “bad.” Thus, in the masked array b,

the last two elements of the second row have mask values set to True, and
when the data for the masked array is printed out for a human viewer, those
elements display “--” instead of a number.

We also note that the masked array b has an attribute called fill value
Masked array
fill values.that is set to 999999. As we’ll see in Example 52, this is the value used to

fill-in all the “bad” elements when we “deconstruct” the masked array. That
is to say, when we convert a masked array to a normal NumPy array, we need
to put something in for all the “bad” elements (i.e., where the mask is True):
the value of fill value is what we put in for the “bad” elements.

Just as operators have been defined to operate in a special way when the
operands are arrays (i.e., the + operator adds element-wise for arrays), oper-
ators have also been defined to operate in a special way for masked arrays.

123

8.1. MANAGING METADATA AND MISSING VALUES

Figure 8.1: Example of information attached to a masked variable. Adapted
from a figure by Bob Drach, Dean Williams, and Charles Doutriaux. Used
by permission.

For masked arrays, operations using elements whose mask value is set to
True will create results that also have a mask value set to True. Thus, in the

Operations
using masked

arrays.

example above, the product of array a and masked array b yields an array
whose last two elements of the second row are also “bad,” since those corre-
sponding elements in masked array b are bad: a good value times a bad value
gives a bad value. Thus, masked arrays transparently deal with missing data
in real-world datasets.

A masked variable is like a masked array but with additional informa-
Masked

variables. tion, such as axes and domain information, metadata, etc. Figure 8.1 shows
an example of the additional information that can be attached to a masked
variable.

The domain information and other metadata attached to a masked vari-
able can be used in analysis and visualization routines. UV-CDAT functions,
for instance, are pre-built to do just this. As an example, consider Figure 8.2
which shows the use of UV-CDAT’s cdms2 module to read in the total cloudi-
ness (clt) variable from a netCDF file and UV-CDAT’s vcs module to render
the plot using a single command. This is possible because the vcs boxfill
method uses the information attached to the masked variable to properly title
the graph, label the units, etc.

As a summary, Figure 8.3 gives a schematic that shows how each of
these three types of “arrays” relate to each other. Arrays and masked arrays
are both part of NumPy whereas masked variables are part of UV-CDAT.

124

8.1. MANAGING METADATA AND MISSING VALUES

is made by:
>>> v =
vcs.init()
>>>
v.boxfill(clt)

Figure 8.2: Example showing plot of the total cloudiness (clt) variable read
from a netCDF file and the code used to generate the plot, using UV-CDAT
masked variables.

Figure 8.3: Schematic of arrays, masked arrays, and masked variables.
Adapted from a drawing by Bob Drach, Dean Williams, and Charles Doutri-
aux. Used by permission.

125

8.1. MANAGING METADATA AND MISSING VALUES

(See Section 10.2 for more information on UV-CDAT.)

8.1.2 Constructing and deconstructing masked arrays
We covered construction of normal NumPy arrays in Ch. 4, so we won’t re-
visit that topic here. Construction of masked variables is normally not some-
thing you would do in a program; if you already have the metadata available
to you in the program, it may not make much sense to attach it to a masked
variable instead of using it directly later on in the program. Many times, for
most common uses, masked variables will be automatically constructed for
you upon read from a self-describing input file format like netCDF. As a re-
sult, in this section, I will only cover the construction and deconstruction of
masked arrays. For details on the construction and deconstruction of masked
variables, please see the CDAT documentation.1

NumPy provides a number of masked array constructors. I’ll illustrate
Masked array

submodule
and

constructors.

the use of a few of these constructors through examples. Details of these
functions, as well as information on other masked array constructors, are
found in the NumPy documentation.2 In the examples below, all functions
are part of the numpy.ma submodule and I assume I’ve already imported
that submodule with import numpy.ma as MA and that NumPy is already
imported as import numpy as N. Before you type in the example, try to
guess what the output will be, based on the command syntax itself. Note that
you can see what a looks like by typing in the array name a by itself, which
will reveal the data, mask, and fill value.

Example 50 (Make a masked array by explicitly specifying a mask and
fill value):

Type in the following in the Python interpreter:

a = MA.masked_array(data=[1,2,3],
mask=[True, True, False], fill_value=1e20)

What does the variable a look like?

Solution and discussion: As expected, the first two array elements are
now considered “bad.” Here is the result of an array inquiry done in the
Python interpreter:

1http://www2-pcmdi.llnl.gov/cdat/manuals (accessed August 17, 2012).
2http://docs.scipy.org/doc/numpy/reference/maskedarray.html (accessed August 17,

2012).

126

8.1. MANAGING METADATA AND MISSING VALUES

>>> a
masked_array(data = [-- -- 3],

mask = [True True False],
fill_value = 999999)

Often times, we determine which data values should be masked on the
basis of whether or not the data values are beyond a given acceptable value
or some other similar test. Thus, it makes sense to have functions to cre-
ate masked arrays based on such tests. Here are a few examples of such
functions:

Example 51 (Make a masked array by masking values based on condi-
tions):

Type in the following in the Python interpreter:
Masked array
construction
using
conditions.

a = MA.masked_greater([1,2,3,4], 3)

data = N.array([1,2,3,4,5])

b = MA.masked_where(N.logical_and(data>2, data<5), data)

What do the variables a and b look like?

Solution and discussion: The first line creates a masked array a where
all values greater than 3 have mask values set to True. The third line creates
a masked array b where all values greater than 2 and less than 5 have mask
values set to True. Note that masked where’s first argument is a boolean
array that specifies where the mask will be set to True. An inquiry into
masked arrays a and b should return:

>>> a

masked_array(data = [1 2 3 --],

mask = [False False False True],

fill_value = 999999)

>>> b

masked_array(data = [1 2 -- -- 5],

mask = [False False True True False],

fill_value = 999999)

There are times when we want just a regular NumPy array—perhaps to
output to a file format that does not support object attributes—and so we

127

8.1. MANAGING METADATA AND MISSING VALUES

need a way to convert a masked array into a normal array. In that conversion,
Converting

from a
masked array

to a regular
array with
filled.

the function will fill all “bad” elements with a special value that no “good”
element would have. The masked array submodule function filled does
the job. Let’s look at an example:

Example 52 (Make a regular NumPy array from a masked array):
Type in the following in the Python interpreter:

b = MA.masked_array(data=[1.0, 2.0, 3.0],
mask=[True, True, False], fill_value=-1e23)

a = MA.filled(b)

What do the variables b and a look like?

Solution and discussion: In this example, we start with a masked array
and convert it into a normal NumPy array a. Thus, the variables b and a are:

>>> b
masked_array(data = [-- -- 3.0],

mask = [True True False],
fill_value = -1e+23)

>>> a
array([-1.00000000e+23, -1.00000000e+23,

3.00000000e+00])

(I manually added a line break in the screenshot to make it fit on the page.)
Note that we create our masked array with a fill value di↵erent than the

Customized
fill value for a
masked array.

default of 999999. Thus, the array a that results will have �1 ⇥ 1023 as the
“missing value” value. Also note that if the type of data and the type of
fill value conflict, the default value of fill value will be used despite
the explicit specification of fill value in the function call (if the default
fill value is of the same type as data). Thus:

>>> b = MA.masked_array(data=[1, 2, 3],

mask=[True, True, False], fill_value=-1e23)

>>> b

masked_array(data = [-- -- 3],

mask = [True True False],

fill_value = 999999)

yields a masked array b with a fill value set to the default value, which is
an integer.

128

8.1. MANAGING METADATA AND MISSING VALUES

By the way, the filled function also comes in a masked array method
form, so instead of calling the function filled, i.e:

Filled is
also a masked
array method.a = MA.filled(b)

you can call the method attached to the masked array, i.e.:

a = b.filled()

Remember, bad values (i.e., the missing values) have mask values set to
True in a masked array.

8.1.3 Exercise using masked arrays

⇤ Exercise 25 (Creating and using a masked array of surface air tem-
perature):

Open the example netCDF NCEP/NCAR Reanalysis 1 netCDF dataset
of monthly mean surface/near-surface air temperature (or the netCDF dataset
you brought) and read in the values of the air, lat, and lon variables into
NumPy arrays. Take only the first time slice of the air temperature data. (The
example data is in course files/datasets in the file air.mon.mean.nc.)

Create an array that masks out temperatures in that time slice in all lo-
cations greater than 45�N and less than 45�S. Convert all those temperature
values to K (the dataset temperatures are in �C). Some hints:

• You can use the code in exercise-netcdf.py in course files/code files as
a starting point.

• Use the meshgrid function in NumPy to make it easier to handle the
latitude values in array syntax (you can, of course, always use for
loops).

• The air temperature, directly from the netCDF file, has the shape (755,
73, 144) and thus is dimensioned time, latitude, longitude.

• You can test whether you masked it correctly by printing the values of
your masked array at the poles and equator (i.e., if your masked array
is called ma data, you would print ma data[0,:], ma data[-1,:],
and ma data[36,:]).

129

8.2. MANAGING RELATED BUT UNKNOWN DATA: SEEING IF
ATTRIBUTES ARE DEFINED

Solution and discussion: Here’s my solution:

1 import numpy as N

2 import numpy.ma as MA

3 import Scientific.IO.NetCDF as S

4

5 fileobj = S.NetCDFFile(’air.mon.mean.nc’, mode=’r’)

6 data = fileobj.variables[’air’].getValue()[0,:,:]

7 lat = fileobj.variables[’lat’].getValue()

8 lon = fileobj.variables[’lon’].getValue()

9 fileobj.close()

10

11 [lonall, latall] = N.meshgrid(lon, lat)

12 ma_data = MA.masked_where(\

13 N.logical_or(latall>45,latall<-45), data)

14 ma_data = ma_data + 273.15

15

16 print ’North pole: ’, ma_data[0,:]

17 print ’South pole: ’, ma_data[-1,:]

18 print ’Equator: ’, ma_data[36,:]

The result of line 16 should show that all the points in the zeroth row of
ma data are “bad,” as should the result of line 17 for the last row. All the
points in line 18, which are the Equatorial points, should be “good” values,
and in units of Kelvin.

See the code in exercise-ma.py in course files/code files for the above
solution (with minor changes).

8.2 Managing related but unknown data: Seeing
if attributes are defined

In the atmospheric and oceanic sciences, we are often interested in “sec-
ondary” quantities, for instance, virtual temperature, vorticity, etc., that are
derived from “primary” quantities (like temperature, pressure, etc.) and other
secondary quantities. In other words, final quantities often depend on both
basic and intermediate quantities. For instance, density depends on virtual
temperature which depends on temperature. Thus, many of these quantities
are related to each other.

In traditional procedural programming, to calculate secondary variables,
we would figure out all the quantities we want to calculate (both final and in-
termediate), allocate variables for all those quantities, then calculate our de-
sired variables using the proper sequence of functions. But unless we know

130

8.2. MANAGING RELATED BUT UNKNOWN DATA: SEEING IF
ATTRIBUTES ARE DEFINED

exactly what we want to calculate, we won’t know what variables to allocate
and what functions to call; we often get around that problem by allocating
memory for every conceivable variable of interest. But why should we have
to do this? Put another way, the problem with the procedural method is that
we are limited to static analysis. Since computers are all about automation,
why can’t we have the computer automatically calculate what quantities it
needs when it needs it; in the atmosphere and ocean, all these quantities are
interrelated. This would enable dynamic analysis.

Python, it turns out, can do dynamic variable management. At any time
Using Python
for dynamic
variable
management.

in the program, objects can add and remove attributes and methods and check
if an attribute or method exists. Let’s take advantage of these capabilities and
design a class to manage the multiple atmospheric quantities we’re calculat-
ing: to make sure we have calculated what we need to calculate, when we
need it. We define an object class Atmosphere where the following occurs:

• Atmospheric quantities are assigned to attributes of instances of the
class.

• Methods to calculate atmospheric quantities:

– Check to make sure the required quantity exists as an attribute.

– If it doesn’t exist, the method is executed to calculate that quan-
tity.

– After the quantity is calculated, it is set as an attribute of the
object instance.

What might something with these traits look like in Python code? Here’s
a skeleton class definition:

131

8.2. MANAGING RELATED BUT UNKNOWN DATA: SEEING IF
ATTRIBUTES ARE DEFINED

1 class Atmosphere(object):

2 def __init__(self, **kwds):

3 for ikey in kwds.keys():

4 setattr(self, ikey, kwds[ikey])

5

6 def calc_rho(self):

7 if not hasattr(self, ’T_v’):

8 self.calc_virt_temp()

9 elif not hasattr(self, ’p’):

10 self.calc_press()

11 else:

12 raise ValueError, \

13 "cannot obtain given initial quantities"

14

15 self.rho = \

16 [... find air density from self.T_v and

17 self.p ...]

Before talking about the code in specific, let me briefly describe what
The

setattr,
hasattr,

getattr, and
delattr

functions.

the setattr, hasattr, getattr, and delattr functions do (the last two
are not used in the code above, but I describe them for completeness). As
the names suggest, these functions manipulate or inquire of the attributes of
objects. However, because they are functions, they enable you to interact
with attributes without having to actually type out the name of the attribute.
For instance, consider the act of setting an attribute which we’ve already seen
can be done with assignment . So, if we have the following masked array a
(as in Example 51):

import numpy.ma as MA
a = MA.masked_greater([1,2,3,4], 3)

we can manually change the fill value from its default value 999999 to some-
thing else by assignment:

>>> a.fill_value=-100
>>> a
masked_array(data = [1 -- --],

mask = [False True True],
fill_value = -100)

or we can use the function setattr:

132

Robert Fovell
see errata

8.2. MANAGING RELATED BUT UNKNOWN DATA: SEEING IF
ATTRIBUTES ARE DEFINED

>>> setattr(a, ’fill_value’, 456)
>>> a
masked_array(data = [1 -- --],

mask = [False True True],
fill_value = 456)

The setattr function takes three arguments. The first is the object
whose attribute you wish to set. The second is the name of the attribute
you wish to set (as a string). The third argument is the new value of the at-
tribute you are setting. Because setattr is a function, you can pass in the
arguments as variables. You do not have to type in a period and equal sign,
which the assignment syntax requires you to do. Functions can receive vari-
ables as arguments and so can be automated; typing a period and equal sign
can only be applied to actually defined objects and so cannot be automated.
Normally, methods are tailored for a class of objects and will not be set dur-
ing run-time. However, you can add methods to an instance at run-time, if
you wish, by setting an attribute to a function or method object.

The hasattr function tests whether a given object has an attribute or
method of a given name. It takes two arguments, the first being the ob-
ject under inquiry and the second being the name of the attribute or method
you’re checking for, as a string. True is returned if the object has the attribute
you’re checking for, False otherwise. Thus, for masked array a:

a = MA.masked_greater([1,2,3,4], 3)
print hasattr(a, ’fill_value’)
print hasattr(a, ’foobar’)

the first print line will print True while the second will print False.
The functions getattr and delattr have the same syntax: The first

argument is the object in question while the second argument is the attribute
to either get or delete. getattr returns the attribute or method of interest
while delattr removes the attribute of interest from the given object. (Note
that delattr cannot remove a method that is hard-coded into the class defi-
nition.)

With this as background, let’s see what this code does. We pass in initial
values for our atmospheric variables via the init method, as normal, but
in this case, all our initial values come through keyword parameters as given
in the kwds dictionary (see Example 16 for more on passing a keyword pa-
rameters dictionary into a function, as opposed to referring to every keyword
parameter manually). In our keyword parameters dictionary, we assume that
the keyword names will be the names of the attributes that store those pa-
rameter values. Once passed in we set the keyword parameters to instance

133

8.2. MANAGING RELATED BUT UNKNOWN DATA: SEEING IF
ATTRIBUTES ARE DEFINED

attributes of the same name as the keyword. For instance, if an Atmosphere
object is instantiated by:

myatmos = Atmosphere(T=data1, q=data2)

(where data1 and data2 are the data, most likely arrays), then upon instan-
tiation, myatmos will have the attribute T and the attribute q which refer to
the data variables data1 and data2, respectively. That is to say, myatmos.T
refers to the data1 data while myatmos.q refers to the data2 data.

How does the init code do this? In lines 3–4 in the class definition,
we loop through the keys in kwds, which are strings, and use the built-in
function setattr to set the values of the dictionary entries to attributes of
the instance (i.e., self), with the names given by the corresponding keys
(i.e., ikey). Note how we do not have to type in the variables to set them!
The function setattr does this for us. Thus, in our class definition, we do
not need to know ahead of time which atmospheric quantities will be initially
defined; all that can be determined at runtime, and our code will be the same.

How do methods that calculate quantities work with the attributes that
hold atmospheric data? Lines 6–17 in the class definition define the method
calc rho which calculates air density using an algorithm that requires vir-
tual temperature and pressure be already defined. So, calc rho first checks
if those attributes exist (the built-in hasattr function checks to see if an at-
tribute is defined in the instance self), and if not, calc rho calls the meth-
ods (defined elsewhere in the class) that calculate those atmospheric quan-
tities. Those methods, in turn, are structured just like calc rho and will
do the same thing (check for an atmospheric quantity attribute, and if not
found, calculate that quantity). Eventually, you’ll calculate what you need
given what you have; if not, you’ll get an error (as in the raise statement
of lines 12–13). Once all necessary variables are calculated, lines 16–17 cal-
culates the air density and line 15 sets the result to an instance attribute of
self called rho.

So, let’s step back and think about what we’ve just done. First, be-
cause the class Atmosphere stores all primary and secondary atmospheric
quantities needed to arrive at a quantity of interest, and the algorithms of
Atmosphere are (hopefully) consistent with each other, all of the atmo-
spheric quantities in an Atmosphere instance will be consistent with one
another. Second, by using the hasattr function, the class automatically en-
sures all necessary secondary quantities are available if needed for the cur-
rent calculation. In fact, the class will find a way to calculate what you asked
it to, if the algorithms in the class will allow you to make the calculation you
want using the initial values you gave. Lastly, the class can be used with any
set of initial values that are input. The ability to inquire of and manipulate

134

Robert Fovell

Robert Fovell

Robert Fovell

8.3. EXERCISE TO ADD TO THE ATMOSPHERE CLASS

the attributes and methods of an object through functions enables us to write
code in which the names of the initial atmospheric quantities are not known
ahead of time. Our code is more flexible (and, in this case, concise) as a
result.

8.3 Exercise to add to the Atmosphere class

⇤ Exercise 26 (Adding the method calc virt temp):
Write the skeleton definition for a method calc virt temp (to be added

to the Atmosphere class) that calculates the virtual temperature given mix-
ing ratio (r) and temperature (T). Have this method call a method to calculate
mixing ratio (calc mix ratio) if mixing ratio is not yet an object attribute.
(We’ll assume temperature has to be given.)

Solution and discussion: Here’s the Atmosphere class with the skeleton
definition for calc virt temp added:

135

8.3. EXERCISE TO ADD TO THE ATMOSPHERE CLASS

1 class Atmosphere(object):

2 def __init__(self, **kwds):

3 for ikey in kwds.keys():

4 setattr(self, ikey, kwds[ikey])

5

6 def calc_rho(self):

7 if not hasattr(self, ’T_v’):

8 self.calc_virt_temp()

9 elif not hasattr(self, ’p’):

10 self.calc_press()

11 else:

12 raise ValueError, \

13 "cannot obtain given initial quantities"

14

15 self.rho = \

16 [... find air density using self.T_v and

17 self.p ...]

18

19 def calc_virt_temp(self):

20 if not hasattr(self, ’r’):

21 self.calc_mix_ratio()

22 else:

23 raise ValueError, \

24 "cannot obtain given initial quantities"

25

26 self.T_v = \

27 [... find virtual temperature using

28 self.r and self.T ...]

I once wrote a package atmqty that does what Atmosphere does. It was
one of the earlier things I wrote and needs a major rewrite, but you might find
some of the routines and the structure to be informative.3 Also, the object-
oriented approach Atmosphere uses was essentially the way R. Saravanan
in the late 1990’s (then at NCAR) structured his Hyperslab OPerator Suite
(HOPS) toolkit for manipulating climate model output. Written for the Inter-
active Data Language (IDL) and Yorick, Saravanan’s work was really ahead
of its time in the atmospheric and oceanic sciences community.4

One final note: In this section, we discussed dynamic variable manage-
ment via object attributes and methods. But this may sound familiar to you—

3See http://www.johnny-lin.com/py pkgs/atmqty/doc for details (accessed August 17,
2012.)

4See http://www.cgd.ucar.edu/cdp/svn/hyperslab.html for details (accessed April 5,
2012.)

136

8.4. DYNAMICALLY CHANGING SUBROUTINE EXECUTION
ORDER (OPTIONAL)

aren’t these the same things that a dictionary can do? Through this example,
we’ve stumbled upon a secret in Python. Not only is everything an object
in Python, but (nearly) everything in Python is managed by dictionaries. All

Nearly
everything in
Python is
managed by
dictionaries.

objects have a private attribute dict , a data structure that manages the
attributes and methods namespace just like a dictionary because it is a dic-
tionary! And so, if you really need to, you can access that dictionary like
any other dictionary. (I do not, however, recommend this.)5 This is a nice
illustration of how compact is the definition of Python: a relatively small set
of data structures and principles are repeatedly reused in many aspects of the
language’s definition. This makes the language easier to use, because you
have fewer “special structures” to try and remember.

8.4 Dynamically changing subroutine execution
order (optional)

(This section is a bit more advanced, so if you feel like it’s a little too much,
just skip it. The main idea is that by using lists and an object encapsula-
tion, you can dynamically change subroutine execution order in a Python
program. This opens up AOS models to easily answer whole new classes of
scientific problems.)

In traditional procedural programming, the execution order of subrou-
In procedural
program-
ming,
subroutine
execution
order is fixed.

tines is fixed, because subroutines are called by typing in the subroutine
name (along with a call statement, in Fortran). Even branching (via if
statements) is fixed in that the node cannot move from the place where you
typed it in.

In contrast, we saw that Python’s list structure is an ordered set that is
mutable and can be changed while the program is running. Why, then, don’t

Python lists
are runtime
mutable. Use
them to
manage
subroutine
execution
order.

we use a list to manage subroutine execution order? Then, if we want to alter
execution order, we just reorder, insert, and/or delete elements from the list.

We’ll embed such a list of subroutines—a “runlist”—as an attribute of
the same name in a class Model where each of the subroutines is a method
of the class and a method execute runlist will go through the list of sub-
routines, executing them in order. A skeleton definition for such a class, for
an oceanic general circulation model (GCM), might look like the following

5In general, you would do well to limit your interaction with dict to the built-in
functions (e.g., hasattr) designed for such interactions. I confess, in my earlier days in
using Python, I wrote a lot of code that directly accessed dict , but I now repent of what
I did.

137

8.4. DYNAMICALLY CHANGING SUBROUTINE EXECUTION
ORDER (OPTIONAL)

(note the runlist is not a complete listing of all routines in the model, but I
list just a few to illustrate the idea):

1 class Model(object):

2 def __init__(self, *args, **kwds):

3 [...]

4 self.runlist = [’surface_fluxes’, ’bottom_fluxes’,

5 ’density’, ’advection’,

6 ’vertical_mixing’, ’tracers’]

7 [...]

8 def execute_runlist(self):

9 for imethodname in self.runlist:

10 f = getattr(self, imethodname)

11 f()

12 def surface_fluxes(self):

13 [... calculate surface fluxes ...]

14 def bottom_fluxes(self):

15 [... calculate bottom boundary fluxes ...]

16 [...]

Most of this code are placeholders (denoted by the square bracketed el-
lipses), but the execute runlist method definition (lines 9–11) is com-
plete (barring error checking) and bears comment. That method iterates
through the runlist attribute list of subroutine (i.e., method) names, uses
each name to retrieve the method itself, then executes the method. The vari-
able f in the code is the actual method given by a string in the runlist
attribute; the getattr function will give you the item attached to an ob-
ject, regardless of whether it is an attribute or method (thus, getattr is
somewhat misnamed). In this sense, objects actually only have attributes;
it’s just some attributes are data while others are functions that act on data.
Once f is assigned to a method, the syntax f() calls the function, just like
any other function call. (As we saw in Section 6.5, functions are objects
in Python like any other object, and they can be stored, assigned, etc. So
the f() call is no di↵erent than if I had typed self.surface fluxes(),
self.bottom fluxes, etc.)

There are a variety of possible ways to use flexibility in subroutine exe-
cution order; here’s one. Sometimes, the execution order of climate model
subroutines a↵ects model results. Thus, you might want to do a series of
runs where subroutine execution order is shu✏ed. To do this using tradi-
tionally procedural languages, you would have to create separate versions of
the source code and manually change the order of subroutine calling in each
version of the code (then recompile, run, etc.). Using the Model class above,

138

8.4. DYNAMICALLY CHANGING SUBROUTINE EXECUTION
ORDER (OPTIONAL)

you would just create multiple instances of Model and create di↵erent ver-
sions of the runlist attribute where the order of the items in the list are
shu✏ed.

How to do the list shu✏ing?6 One way is to make use of the function
permutations (from the itertools module) which will create an iterator that
will step you through all permutations of the argument of permutations.
Thus, this code:

Stepping
through
permutations.a = itertools.permutations([0,1,2])

for i in a:
print i

will print out all the di↵erent orderings of the list [0,1,2]:

(0, 1, 2)
(0, 2, 1)
(1, 0, 2)
(1, 2, 0)
(2, 0, 1)
(2, 1, 0)

(Tuples result, so we will remember to use the list conversion function to
give ourselves a list.)

We can apply this permutation function to the runlist attribute; in-
stead of permuting a list of numbers, we will permute a list of strings. Each
permutation will be set to the runlist attribute of the Model instance and
executed. The code to do this would (basically) be:

1 import itertools
2 mymodel = Model([... input arguments ...])
3 runlist_copy = list(mymodel.runlist)
4 permute = itertools.permutations(runlist_copy)
5 for irunlist in permute:
6 mymodel.runlist = list(irunlist)
7 mymodel.execute_runlist()

Again, what have we done? By using lists and other Python helper func-
tions on a model encapsulated in a class, we’ve created a series of model

6For more on shu✏ing and permutations in Python, see http://stackoverflow.com/
questions/104420/how-to-generate-all-permutations-of-a-list-in-python (accessed August
10, 2012).

139

8.4. DYNAMICALLY CHANGING SUBROUTINE EXECUTION
ORDER (OPTIONAL)

runs each of which executes the model’s subroutines using one of the possi-
ble permutations of subroutine execution order. The lines of code needed to
make this series of model runs is trivial (just 7). OOP, plus Python’s pow-
erful data structures and amazing library of modules, enables AOS users to
easily use atmosphere and ocean models in ways that traditional methods of
programming make di�cult (or even impossible).

An aside on assignment by reference vs. value: In line 3 above, I
create a copy of the runlist attribute to make sure the permutations
function is not acting on a list that will be changing in the loop. I do this

Python
assignment is

usually by
reference

rather than
value.

because Python, for most variable types, including lists, does assignment
by reference rather than value. Thus, the assignment in line 6 will propa-
gate to all references to mymodel.runlist. By using the list function on
mymodel.runlist in line 3, I make sure that runlist copy is separate in
memory from mymodel.runlist. Here’s another example to make clearer
the distinction between assignment by reference vs. value:

Example 53 (Assignment by reference vs. value):
Assignment by reference means that the assignment creates a pointer or

alias to the memory location given by another variable while assignment by
value means that the assignment creates a copy of that other variable and
points to that copy. Consider the following lines of code:

>>> a = [1,2,3]
>>> b = a
>>> b[1] = 6.5

where I create a list a, assign the variable b to a, and then replace the oneth
element of b with another value. Because the assignment of variable b to a
is done by reference, not value, my replacement of the oneth element of b
also changes the corresponding element of a. A print of a and b will show
this:

>>> print b
[1, 6.5, 3]
>>> print a
[1, 6.5, 3]

In other words, the b = a assignment did not create a copy of a but creates
Copying

using
deepcopy.

a pointer to the memory location of a and assigns the name b to that pointer.
If what you wanted was for b to be an actual copy of b, you can use the
deepcopy function of the copy module. Thus, this code:

140

8.5. SUMMARY

>>> import copy
>>> a = [1,2,3]
>>> b = copy.deepcopy(a)
>>> b[1] = 6.5
>>> print b
[1, 6.5, 3]
>>> print a
[1, 2, 3]

as you can see, assigns b to a copy of a so any changes in b are separate from
a, and vice versa.

Most datatypes in Python assign by reference. Simple datatypes like
integers, floats, strings, etc. assign by value. Thus, for an integer scalar:

>>> a = 3
>>> b = a
>>> a = 6
>>> print b
3

we see that a change in a does not propagate to the variable b. (By the way,
if you want to find the memory location of an object, you can use the id
function. Two objects that both point to the same memory location should
have the same id value.)

As a final aside: The use of “runlists” is only one way that an object en-
capsulation of atmosphere and ocean models can make those models more
usable and powerful. I wrote a paper in Geosci. Model Dev. (Lin, 2009) that
described such an object encapsulation for an intermediate-level tropical at-
mospheric circulation model and also demonstrated a hybrid Python-Fortran
implementation of an atmospheric model; see http://www.geosci-model-dev.
net/2/1/2009/gmd-2-1-2009.html if you’re interested.

8.5 Summary
There’s no denying it: object-oriented programming (OOP) is hard to learn.
Anecdotal reports suggest even professional programmers need to work on
around three OOP projects before they become proficient in OOP (Curtis,
1995). The dynamic nature of objects, however, permits one to do analysis

141

8.5. SUMMARY

in ways that would be much harder to do using traditional procedural pro-
gramming. In this chapter, we saw three such AOS examples: Simpler han-
dling of missing values and metadata, dynamic variable management, and
dynamic subroutine execution ordering. OOP is not just a way of reorganiz-
ing data and functions, but a way of making more kinds of analysis possible
for scientists to do. While Python works fine as a procedural language—so
you can write Python programs similar to the way you would write Fortran,
IDL, Matlab, etc. programs—the object-oriented aspects of Python provide
some of the greatest benefit for AOS users. It’s a steep learning curve, but
well worth it.

142

Chapter 9

Visualization: Basic Line and
Contour Plots

With so much of the analysis of AOS problems requiring graphing or visu-
alization of some sort, no scientist’s toolkit is complete without a robust vi-
sualization suite. Because Python is an open-source programming language,
you have not just one visualization suite but several to choose from. For
AOS graphics, NCAR’s PyNGL, UV-CDAT’s Visualization Control System
(vcs), and matplotlib are three powerful packages that can handle most AOS
visualization tasks. While each has its own strengths and weaknesses, in this
chapter we will focus on matplotlib and its 2-D graphics routines to create
line and contour plots.1

(By the way, just a heads-up that in this chapter, the plots and tables
will usually be in figures that float to wherever on the page works best for
optimizing the page. Plots and tables may not immediately follow where
they are first mentioned.)

9.1 What is matplotlib?
Matplotlib, as its name suggests, emulates the Matlab plotting suite: com-
mands look like Matlab commands. It has a function-centric interface ade-
quate for the needs of most users (especially first-time users), but the entire
suite is object-based, so power users have fine-grained control over the de-

1PyNGL implements the graphing resources of the NCAR Command Language (NCL)
into Python (NCL has more “high-level” functions, but PyNGL can draw everything NCL
can). Vcs is the original plotting module for CDAT and UV-CDAT. Its default settings are
not always pretty, but they make use of the masks and metadata attached to masked variables,
so plotting is fast. Section 10.2 tells you where to go to obtain these packages.

143

9.2. BASIC LINE PLOTS

tails of their plots. (In this chapter, I won’t talk much about the object-based
interface.) Matplotlib’s default plots also look uncommonly beautiful, which
was the intention of the package’s primary author, John Hunter. Finally, mat-
plotlib has a broad user community from many disciplines, so a lot of peo-
ple contribute to it and templates/examples exist for many di↵erent kinds of
plots.

The submodule pyplot defines the functional interface for matplotlib. Py-
plot is often imported by:

import matplotlib.pyplot as plt

Unless otherwise stated, you may assume in the examples in this chapter that
the above import has been done prior to any matplotlib calls being run.

The online pyplot tutorial is very good. In this chapter, we’ll cover
Do the online

pyplot
tutorial. It’s
very good!

only a few of the topics found in there; I encourage you to go through it
all on your own: http://matplotlib.sourceforge.net/users/pyplot tutorial.html.
The online gallery of examples is also very illuminating: http://matplotlib.
sourceforge.net/gallery.html.

9.2 Basic line plots
Line plots are created by the pyplot plot function. Once created, matplotlib

Plot makes
plots and
show

visualizes
them.

keeps track of what plot is the “current” plot. Subsequent commands (e.g.,
to make a label) are applied to the current plot.

The show function visualizes (i.e., displays) the plot to screen. If you
have more than one figure, call show after all plots are defined to visualize
all the plots at once. Consider the following example:

Example 54 (Your first line plot):
Type in this example into a file and run it in the Python interpreter:

1 import matplotlib.pyplot as plt
2 plt.plot([1, 2, 3, 4], [1, 2.1, 1.8, 4.3])
3 plt.axis([0, 8, -2, 7])
4 plt.xlabel(’Automatic Range’)
5 plt.ylabel(’Made-up Numbers’)
6 plt.show()

What did you get? Based on what’s output, what do you think each of the
commands do?

144

9.2. BASIC LINE PLOTS

Figure 9.1: Graph created by the code in Example 54.

Solution and discussion: You should have obtained a plot like the one
shown in Figure 9.1.

Line 2 of the code creates the plot, and the two list input arguments pro-
vide the x- and y-values, respectively. (I could have used NumPy arrays
instead of lists as inputs.) The axis function in line 3 gives the range for the
x- and y-axes, with the first two elements of the input parameter list giving
the lower and upper bounds of the x-axis and the last two elements giving the
lower and upper bounds of the y-axis. Lines 4 and 5 label the x- and y-axes,
respectively, and the show function displays the graph on the screen.

9.2.1 Controlling line and marker formatting
To control line and marker features, you can use the appropriate keyword

Controlling
linestyle,
markers, etc.

input parameters with the plot function, e.g.:

plt.plot([1, 2, 3, 4], [1, 2.1, 1.8, 4.3],
linestyle=’--’, linewidth=5.0,
marker=’*’, markersize=20.0,
markeredgewidth=2.0,
markerfacecolor=’w’)

145

9.2. BASIC LINE PLOTS

Note how linestyle, marker, and markerfacecolor use special string
codes to specify the line and marker type and formatting. The plot call
above uses a dashed line and a white star for the marker. Linewidth, marker
size, and marker edge width are in points.

Instead of using keyword input parameters, you can also specify line
color and type and marker color and type as a string third argument, e.g.:

plt.plot([1, 2, 3, 4], [1, 2.1, 1.8, 4.3], ’r*--’)

Notice that this third argument contains all the codes to specify line color,
line type, marker color, and marker type. That is to say, all these codes can
be specified in one string. In the above example, the color of the marker and
connecting line is set to red, the marker is set to star, and the linestyle is set
to dashed. (The marker edge color is still the default, black, however.)

Tables 9.1 and 9.2 list some of the basic linestyles and marker codes. For
Line and

marker
property
listings.

a more complete list of linestyles, marker codes, and basically all the line
and marker properties that can possibly be set, see the following web pages:

• Linestyles: http://matplotlib.sourceforge.net/api/artist api.html#matpl
otlib.lines.Line2D.set linestyle

• Marker symbol types: http://matplotlib.sourceforge.net/api/artist api
.html#matplotlib.lines.Line2D.set marker.

• Line and marker properties: http://matplotlib.sourceforge.net/api/artis
t api.html#matplotlib.lines.Line2D.

Table 9.3 lists some of the color codes available in pyplot.

9.2.2 Annotation and adjusting the font size of labels
We introduced the xlabel and ylabel functions in Example 54 to annotate

Annotation
and font size. the x- and y-axes, respectively. To place a title at the top of the plot, use

the title function, whose basic syntax is the same as xlabel and ylabel.
General annotation uses the text function, whose syntax is:

plt.text(<x-location>,<y-location>,<string to write>)

The x- and y-locations are, by default, in terms of data coordinates. For all
four functions (xlabel, ylabel, title, and text), font size is controlled
by the size keyword input parameter. When set to a floating point value,
size specifies the size of the text in points.

Here’s one cool feature: matplotlib gives you the ability to use LATEX to
Using LATEX
to annotate

plots.

render text! See http://matplotlib.sourceforge.net/users/usetex.html for de-
tails.

146

9.2. BASIC LINE PLOTS

Linestyle String Code
Solid line -
Single dashed line --
Single dashed-dot line -.
Dotted line :

1 import numpy as N

2 import matplotlib.pyplot as plt

3 plt.figure(1, figsize=(3,1))

4 plt.plot(N.arange(4), N.arange(4), ’-’, \

5 N.arange(4)+1, N.arange(4), ’--’, \

6 N.arange(4)+2, N.arange(4), ’-.’, \

7 N.arange(4)+3, N.arange(4), ’:’)

8 plt.gca().axes.get_xaxis().set_visible(False)

9 plt.gca().axes.get_yaxis().set_visible(False)

10 plt.savefig(’pyplot_linestyles.png’, dpi=300)

Table 9.1: Some linestyle codes in pyplot, a high-resolution line plot show-
ing the lines generated by the linestyle codes, and the code to generate the
plot. Lines 8–9 turn-o↵ the x- and y-axis tick marks and labels (see “mat-
plotlib.pyplot.gca,” http://matplotlib.sourceforge.net/api/pyplot api.html and
http://stackoverflow.com/a/2176591, both accessed August 13, 2012). A full
explanation of these lines is beyond the scope of this book; please see the
sources for more information. Note show is not called since I only want a
file version of the plot.

147

9.2. BASIC LINE PLOTS

Marker String Code
Circle o
Diamond D
Point .
Plus +
Square s
Star *
Up Triangle ˆ
X x

1 import numpy as N

2 import matplotlib.pyplot as plt

3 plt.figure(1, figsize=(3,1))

4 plt.plot(1, 1, ’o’, \

5 2, 1, ’D’, \

6 3, 1, ’.’, \

7 4, 1, ’+’, \

8 5, 1, ’s’, \

9 6, 1, ’*’, \

10 7, 1, ’ˆ’, \

11 8, 1, ’x’)

12 plt.axis([0, 9, 0, 2])

13 plt.gca().axes.get_xaxis().set_visible(False)

14 plt.gca().axes.get_yaxis().set_visible(False)

15 plt.savefig(’pyplot_markers.png’, dpi=300)

Table 9.2: Some marker codes in pyplot, a high-resolution line plot showing
the markers generated by the marker codes, and the code to generate the plot.
Lines 12–13 turn-o↵ the x- and y-axis tick marks and labels. See Table 9.1
for sources and more information.

148

9.2. BASIC LINE PLOTS

Color String Code
Black k
Blue b
Green g
Red r
White w

Table 9.3: Some color codes in pyplot. See http://matplotlib.sourceforge.
net/api/colors api.html for a full list of the built-in colors codes as well as
for ways to access other colors.

149

9.2. BASIC LINE PLOTS

Example 55 (Annotation and font size):
Consider this code:

plt.plot([1, 2, 3, 4], [1, 2.1, 1.8, 4.3])
plt.xlabel(’Automatic Range’)
plt.ylabel(’Made-up Numbers’)
plt.title(’Zeroth Plot’, size=36.0)
plt.text(2.5, 2.0, ’My cool label’, size=18.0)
plt.show()

What does this code do?

Solution and discussion: The above code produces a graph like the one
in Figure 9.2. (Note that I resized that graph to fit it nicely on the page, so
the text sizes as shown may not be equal to the values given in size.)

9.2.3 Plotting multiple figures and curves
If you have have multiple independent figures (not multiple curves on one

Multiple
independent

figures.

plot), call the figure function before you call plot to label the figure ac-
cordingly. A subsequent call to that figure’s number makes that figure cur-
rent. For instance:

Example 56 (Line plots of multiple independent figures):
Consider this code:

1 plt.figure(3)
2 plt.plot([5, 6, 7, 8], [1, 1.8, -0.4, 4.3],
3 marker=’o’)
4 plt.figure(4)
5 plt.plot([0.1, 0.2, 0.3, 0.4], [8, -2, 5.3, 4.2],
6 linestyle=’-.’)
7 plt.figure(3)
8 plt.title(’First Plot’)

What does this code do?

150

9.2. BASIC LINE PLOTS

Figure 9.2: Graph created by the code in Example 55.

Solution and discussion: Line 1 creates a figure and gives it the name
“3”. Lines 2–3 (which is a single logical line to the interpreter) makes a line
plot with a circle as the marker to the figure named “3”. Line 4 creates a
figure named “4”, and lines 5–6 make a line plot with a dash-dot linestyle to
that figure. Line 7 makes figure “3” the current plot again, and the final line
adds a title to figure “3”.

To plot multiple curves on a single plot, you can string the set of three
Multiple
curves on one
plot.

arguments (x-locations, y-locations, and line/marker properties) for each plot
one right after the other. For instance:

Example 57 (Line plot of multiple curves on one figure):
Consider this code:

plt.plot([0, 1, 2, 3], [1, 2, 3, 4], ’--o’,
[1, 3, 5, 9], [8, -2, 5.3, 4.2], ’-D’)

What does it do?

151

9.2. BASIC LINE PLOTS

Solution and discussion: The first three arguments specify the x- and y-
locations of the first curve, which will be plot using a dashed line and a circle
as the marker. The second three arguments specify the x- and y-locations of
the second curve, which will be plot with a solid line and a diamond as the
marker. Both curves will be on the same figure.

9.2.4 Adjusting the plot size
One easy way of adjusting the plot size is to set the figsize and dpi key-

Adjusting
plot size. word input parameters in the figure command.2 For instance, this call to

figure:

plt.figure(1, figsize=(3,1), dpi=300)

before the call to the plot command, will make figure “1” three inches wide
and one inch high, with a resolution of 300 dots per inch (dpi). The plot asso-
ciated with Table 9.1 shows a code and plot example that explicitly specifies
the figsize keyword.

9.2.5 Saving figures to a file
To write the plot out to a file, you can use the savefig function. For ex-

Save figure.
ample, to write out the current figure to a PNG file called testplot.png, at
300 dpi, type:

plt.savefig(’testplot.png’, dpi=300)

Here we specify an output resolution using the optional dpi keyword param-
eter; if left out, the matplotlib default resolution will be used. Note that it

Resolution
and figure

size in
figure vs.
savefig.

is not enough for you to set dpi in your figure command to get an output
file at a specific resolution. The dpi setting in figure will control what res-
olution show displays at while the dpi setting in savefig will control the
output file’s resolution; however, the figsize parameter in figure controls
the figure size for both show and savefig.

You can also save figures to a file using the GUI save button that is part
of the plot window displayed on the screen when you execute the show func-
tion. If you save the plot using the save button, it will save at the default

2http://stackoverflow.com/a/638443 (accessed August 13, 2012).

152

9.3. EXERCISE ON BASIC LINE PLOTS

resolution, even if you specify a di↵erent resolution in your figure com-
mand; use savefig if you want to write out your file at a specific resolution.

Most of the code for the examples in this section (9.2) are found in the
file example-viz-line.py in course files/code files.

9.3 Exercise on basic line plots

⇤ Exercise 27 (Line plot of a surface air temperature timeseries):
Read in the monthly mean surface/near-surface air temperature and the

time axis from the provided NCEP/NCAR Reanalysis 1 netCDF dataset.
(The example data is in course files/datasets in the file air.mon.mean.nc.)
Extract a timeseries at one location (any location) on the Earth and plot the
first 100 data points of air temperature vs. time. Annotate appropriately.
Write the plot out to a PNG file.

Solution and discussion: Here’s my solution. The plotting section using
matplotlib starts with line 11:

1 import Scientific.IO.NetCDF as S

2 import matplotlib.pyplot as plt

3

4 fileobj = S.NetCDFFile(’air.mon.mean.nc’, mode=’r’)

5 T_arctic = fileobj.variables[’air’].getValue()[0:100,0,0]

6 T_units = fileobj.variables[’air’].units

7 time = fileobj.variables[’time’].getValue()[0:100]

8 time_units = fileobj.variables[’time’].units

9 fileobj.close()

10

11 plt.plot(time, T_arctic)

12 plt.xlabel(’Time [’ + time_units + ’]’)

13 plt.ylabel(’Temperature [’ + T_units + ’]’)

14

15 plt.savefig(’exercise-T-line.png’)

16 plt.show()

This code makes a plot like the one in Figure 9.3. Note how string concate-
nation, coupled with each variable’s units metadata values in the netCDF
file, make it easy to annotate the plot with the units.

On some installations, if you call show before savefig, things do not
Call savefig
before show.always write correctly to the file, so in my code I call savefig first, just

153

9.4. BASIC CONTOUR PLOTS

Figure 9.3: Graph created by the solution code to Exercise 27.

to be safe. Of course, if you only want the plot as a file, just use savefig
without calling show.

This code is in the file exercise-viz-line.py in the course files/code files
subdirectory.

9.4 Basic contour plots
A number of the aspects of plotting (e.g., saving a figure to a file, etc.) work
for contour plots exactly the same as for line plots. In this section, we won’t
rehash those common aspects.

Contour plots are created by matplotlib’s contour function. A basic
Contour plots

using
contour.

contour plot is generated by:

plt.contour(X, Y, Z, nlevels)

where Z is a 2-D array of the values to contour with and X and Y are the x-
and y-locations, respectively, of the Z values (X and Y can be 2-D arrays or 1-
D vectors, the latter if the grid is regular). The optional nlevels parameter
tells how many automatically generated contour levels to make.

The nlevels
parameter. The levels keyword controls exactly which levels to draw contours at,

e.g.:

plt.contour(X, Y, Z, levels=[-2, -1, 0, 1, 2])

154

9.4. BASIC CONTOUR PLOTS

To make dashed negative contours, set the colors keyword to ’k’:

plt.contour(X, Y, Z, colors=’k’)
Making
negative
contours
dashed.

This setting makes the all the contours black. Matplotlib then renders the
negative contours using the value of an “rc setting” that defaults to dashed.3

While you can do nice default contour maps just by calling the contour
Saving the
contour map
to a variable
so you can
pass it into
other
formatting
functions.

function, a number of contour map functions take a contour map object as
input. Thus, it’s better to save the map to a variable:

mymap = plt.contour(X, Y, Z)

Then, to add contour labels, for instance, use the clabel function (this is a
function that asks for a contour map object as input):

mymap = plt.contour(X, Y, Z)
plt.clabel(mymap, fontsize=12)

The optional keyword fontsize sets the font size (in points).
For filled contours, use the contourf function. The color maps available

Making filled
contour maps.for filled contour maps are attributes of the pyplotmodule attribute cm. You

specify which color map to use via the cmap keyword:

mymap = plt.contourf(X, Y, Z, cmap=plt.cm.RdBu)

A list of predefined color maps is located at http://www.scipy.org/Cookb
List of
predefined
color maps
and adding
color bars.

ook/Matplotlib/Show colormaps. To add a color bar that shows the scale of
the plot, make a call to colorbar that uses the filled contour plot object as
input:

plt.colorbar(mymap, orientation=’horizontal’,
levels=[-2, -1, 0, 1, 2])

The orientation keyword specifies the orientation of the color bar, as
you’d expect ,. The levels keyword is set to a list that specifies what
levels to label on the color bar.

To make a contour map that’s both lined and filled, make a filled contour
map call then a line contour map call (or vice versa), e.g.:

3The rc setting is contour.negative linestyle and can be changed in the matplot-
librc file. See http://matplotlib.sourceforge.net/users/customizing.html for details (accessed
August 17, 2012).

155

9.5. EXERCISE ON BASIC CONTOUR PLOTS

plt.contourf(lonall, latall, T_time0, 10,
cmap=plt.cm.Reds)

plt.contour(lonall, latall, T_time0, 10,
colors=’k’)

Both contour maps will be placed on the same figure.
Lastly, atmospheric scientists are often interested in wind barbs: these

Making wind
barbs. are generated with the barbs method of objects generated by the matplotlib

subplot function. See http://matplotlib.sourceforge.net/examples/pylab e
xamples/barb demo.html for an example.

9.5 Exercise on basic contour plots

⇤ Exercise 28 (Contour plot of surface air temperature):
Read in the monthly mean surface/near-surface air temperature from the

NCEP/NCAR Reanalysis 1 netCDF dataset provided. Also read in the lati-
tude and longitude vectors from the dataset. Extract a single timeslice of the
temperature and plot a contour map. Annotate appropriately. Write the plot
out to a PNG file. Hint: The NumPy function meshgrid can be your friend
(see Example 32), though it may not be necessary.

156

9.5. EXERCISE ON BASIC CONTOUR PLOTS

Solution and discussion: Here’s my solution:

1 import numpy as N
2 import Scientific.IO.NetCDF as S
3 import matplotlib.pyplot as plt
4

5 fileobj = S.NetCDFFile(’air.mon.mean.nc’, mode=’r’)
6 T_time0 = fileobj.variables[’air’].getValue()[0,:,:]
7 T_units = fileobj.variables[’air’].units
8 lon = fileobj.variables[’lon’].getValue()
9 lon_units = fileobj.variables[’lon’].units

10 lat = fileobj.variables[’lat’].getValue()
11 lat_units = fileobj.variables[’lat’].units
12 fileobj.close()
13

14 [lonall, latall] = N.meshgrid(lon, lat)
15

16 mymapf = plt.contourf(lonall, latall, T_time0, 10,
17 cmap=plt.cm.Reds)
18 mymap = plt.contour(lonall, latall, T_time0, 10,
19 colors=’k’)
20 plt.clabel(mymap, fontsize=12)
21 plt.axis([0, 360, -90, 90])
22 plt.xlabel(’Longitude [’ + lon_units + ’]’)
23 plt.ylabel(’Latitude [’ + lat_units + ’]’)
24 plt.colorbar(mymapf, orientation=’horizontal’)
25

26 plt.savefig(’exercise-T-contour.png’)
27 plt.show()

Lines 5–12 read in the data from the netCDF file. In line 6, we obtain
the 2-D slab of surface air temperature at time zero and assign it to the array
variable T time0. The lon and lat variables, created in lines 8 and 10,
are 1-D vectors. To be on the safe side, we want 2-D versions of these
vectors, which we create in line 14 using meshgrid and assign as lonall
and latall. Line 16 specifies that we plot the contour plot with 10 contour
intervals, and in line 17, we specify a red gradient color map to use for the
contour interval filling.

In lines 18–19, we create a contour map of lines only, to superimpose on
top of the filled contour plot. We assign the result of the contour call to
mymap, which we’ll use with the clabel function in line 20 (that generates

157

9.6. SUPERIMPOSING A MAP

Figure 9.4: Graph created by the solution code to Exercise 28.

the contour labels). Line 21 specifies the axes range using the axis function,
labeling occurs in lines 22–23, the color map in line 24, and the last two lines
save the figure to a file and display the figure on the screen.

Note how the results of both the contourf and contour calls need to be
assigned to objects which are used by the colorbar and clabel functions as
input (in lines 24 and 20, respectively). Also note that on some installations,
if you call show before savefig, things do not always write correctly to the
file, so in my code I call savefig first, just to be safe.

The code generates a plot like the one in Figure 9.4. This code is in the
file exercise-viz-contour.py in the code files subdirectory of the course files
directory.

9.6 Superimposing a map

Often, AOS users will want to superimpose a map of some sort (e.g., conti-
The Basemap

package and
map

projections.

nental outlines) onto a contour plot. To do so, you need to use the Basemap
package, which handles map projection setup for matplotlib. Note, however,
that Basemap is a separate package from matplotlib, is distributed under a

158

9.6. SUPERIMPOSING A MAP

di↵erent license, and often has to be installed separately.4 For many oper-
ating system environments, you need to build Basemap from source. (It is,
however, a Debian package in Ubuntu 12.04.)5 If you have the full version
of the Enthought Python Distribution (EPD), Basemap is installed for you;
Basemap, however, is not part of EPD Free.

To create a map and then superimpose a contour plot on the map, follow
Steps to
creating a
contour plot
on a map.

these steps:

• Instantiate an instance of the Basemap class.

• Use methods of that instance to draw continents, etc.

• Map the 2-D latitude and longitude coordinates of your dataset to the
coordinates in the map projection by calling your Basemap instance
with the dataset coordinates as input arguments.

• Make your contour plot using regular matplotlib commands.

This will become much clearer with an example:

Example 58 (Contour plot on a cylindrical projection map limited to the
global Tropics):

Assume you have three 2-D arrays as input: data, which is the data being
contoured, and lonall and latall, which give the longitudes and latitudes
(in degrees), respectively, of the elements of data. The code to create the
contour plot and the map is:

1 import numpy as N

2 import matplotlib.pyplot as plt

3 import mpl_toolkits.basemap as bm

4 mapproj = bm.Basemap(projection=’cyl’,

5 llcrnrlat=-20.0, llcrnrlon=-180.0,

6 urcrnrlat=20.0, urcrnrlon=180.0)

7 mapproj.drawcoastlines()

8 mapproj.drawparallels(N.array([-20, -10, 0, 10, 20]),

9 labels=[1,0,0,0])

10 mapproj.drawmeridians(N.array([-180, -90, 0, 90, 180]),

11 labels=[0,0,0,1])

12 lonproj, latproj = mapproj(lonall, latall)

13 plt.contour(lonproj, latproj, data)

4See http://sourceforge.net/projects/matplotlib/files/matplotlib-toolkits for the down-
loads (accessed August 16, 2012).

5See http://packages.ubuntu.com/en/precise/python-mpltoolkits.basemap for a descrip-
tion of the package (accessed August 16, 2012).

159

9.6. SUPERIMPOSING A MAP

In lines 4–6, what do you think the keywords do? The labels keywords in
lines 9 and 11?

Solution and discussion: The first three lines of the code imports the
needed packages. Notice that Basemap is normally found as a subpackage
of the mpl toolkits package. Lines 4–6 create mapproj, a Basemap instance.
The keyword input parameters set the projection (cylindrical) and give the

Basemap map
projection

parameters.

“corner” latitude and longitude values of the map: llcrnrlat is the lower-
left corner’s latitude, urcrnrlon is the upper-right corner’s longitude, etc.

Once the mapprojBasemap instance is created, we use methods attached
to the instance to draw coastlines (line 7), latitude lines (lines 8–9), and longi-
tude lines (lines 10–11). The positional input argument for drawparallels

Basemap
instance
methods

create
coastlines,

etc.

and drawmeridians specifies the locations at which to draw the latitude
and longitude lines. The labels keyword is set to a 4-element list of in-
tegers that specify where to draw the labels. If the first element is set to 1,
labels are drawn to the left of the plot, if the second element is set to 1, labels
are drawn to the right of the plot, and the third and fourth elements control
the top and bottom labels, respectively. Thus, line 9 specifies latitude line
labels on the left side of the plot (only) and line 11 specifies longitude line
labels at the bottom of the plot (only).

Line 12 calls the mapproj instance as if it were a function. The 2-D
longitude and latitude arrays are passed into the call. Two 2-D arrays are
returned that specify the longitude and latitude values, but altered to account
for the projection, that can then be passed into a contour plot call, along with
the data to contour, as is done in line 13.

We haven’t really talked about calling object instances, but indeed, we
Calling object

instances. can define a special method call in a class that will be executed when
you call an instance (that is, treat the instance like it were a function). That’s
essentially what is happening in line 12. Note that calling an instance is not
the same as instantiating the instance!

Basemap supports many di↵erent types of projections, and the input pa-
rameters when instantiating a Basemap object will change depending on the
projection you specify. The SciPy Cookbook entry for Basemap gives a
nice introduction: http://www.scipy.org/Cookbook/Matplotlib/Maps. Also
see the Basemap documentation: http://matplotlib.github.com/basemap.

160

9.7. EXERCISE ON SUPERIMPOSING A MAP

9.7 Exercise on superimposing a map

⇤ Exercise 29 (Contour plot of surface air temperature with continental
outlines):

Redo Exercise 28 but superimpose a map with continental outlines on it.

Solution and discussion: To save space, I only provide the core of my
solution here. The full code is in the file exercise-viz-basemap.py in the
code files subdirectory of the course files directory:

1 mapproj = bm.Basemap(projection=’cyl’,
2 llcrnrlat=-90.0, llcrnrlon=0.0,
3 urcrnrlat=90.0, urcrnrlon=360.0)
4 mapproj.drawcoastlines()
5 mapproj.drawparallels(N.array([-90, -45, 0, 45, 90]),
6 labels=[1,0,0,0])
7 mapproj.drawmeridians(N.array([0, 90, 180, 270, 360]),
8 labels=[0,0,0,1])
9 lonall, latall = mapproj(lon2d, lat2d)

10

11 mymapf = plt.contourf(lonall, latall, T_time0, 10,
12 cmap=plt.cm.Reds)
13 mymap = plt.contour(lonall, latall, T_time0, 10,
14 colors=’k’)
15 plt.clabel(mymap, fontsize=12)
16 plt.title(’Air Temperature [’ + T_units + ’]’)
17 plt.colorbar(mymapf, orientation=’horizontal’)
18

19 plt.savefig(’exercise-T-basemap.png’)
20 plt.show()

This code makes a plot like the one in Figure 9.5.
This code is essentially a combination of Exercise 28 and Example 58.

The one di↵erence is in lines 2–3 of this exercise, where I specify the longi-
tude corner keywords by the range 0 to 360 degrees instead of �180 to 180
degrees (as in Example 58). Since the data starts with 0 degrees longitude,
I decided to put that in the lower-left corner. But referencing longitude by
negative longitude values works fine in Basemap.

161

9.8. SUMMARY

Figure 9.5: Graph created by the solution code to Exercise 29.

9.8 Summary
Basic Python visualization using matplotlib is very much like what you’re
probably used to using in Matlab and IDL. Coupled with the Basemap mod-
ule, matplotlib enables you to do the basic line and contour plots that form
the bread-and-butter of AOS visualization. Details on matplotlib are found
at http://matplotlib.sourceforge.net.

This chapter, of course, only scratches the surface regarding Python visu-
Other Python

AOS
visualization

packages.

alization. The PyAOS website keeps a list of packages that may be of interest
to AOS users (http://pyaos.johnny-lin.com/?page id=117). Some packages
of note include:

• ParaView: Analysis and visualization package for very large datasets.

• PyGrADS: Python interface to GrADS.

• PyNGL: All of the basic functionality of NCAR Graphics in a Python
interface.

• UV-CDAT: Ultrascale Visualization-Climate Data Analysis Tools.

• VisTrails: Visualization tool with workflow management that tracks
the provenance of the visualization and data.

162

9.8. SUMMARY

• VPython: An easy-to-use 3-D visualization and animation environ-
ment.

Unlike proprietary languages which have only one visualization engine
integrated with the language, Python’s open-source nature permits radical
experimentation with di↵erent methods of implementing visualization tools.
This does create some confusion, and can make installation a bear, but it
also provides you the right visualization tool for your specific needs. Have a
very large dataset? Try ParaView. Is workflow provenance integration vital
to you? Give VisTrails and UV-CDAT a shot. Want to do really simple 3-
D animation for educational modeling? VPython is a snap. But for many
everyday visualization tasks, matplotlib works fine.

163

9.8. SUMMARY

164

Chapter 10

What Next?

Congratulations! You’ve taken the first step into an amazing and exciting
new world. Python, with its modern computer science methods, enormous
diversity of packages, and clear syntax, will enable you to write programs
you never would have dreamed of before, to investigate science questions
that would have been nearly impossible to address using traditional tools.
As we wrap up this book and course, your intrepid tour guide of the Python
world bids you a fond farewell, but not before suggesting some Python topics
to address next, point out some Python packages that will be of interest to
AOS users, and provide a list of references that you will find helpful as you
continue to build-up your Python chops.

10.1 What Python topics would be good to cover
next?

As you’ve gone through the book, you probably have come up with a per-
sonal list of topics you’d like to do more study on. Here is my list of topics
for you to study next. See the references listed in Section 10.3 for more on
most of these topics.

More NumPy routines and SciPy: We’ve only touched the surface of
the calculations you can make with NumPy, and the SciPy package (im-
ported by the import scipy command) o↵ers even more mathematical and
scientific packages.

Exception handling: We introduced exception handling in Section 3.16,
but the real power and flexibility of exception handling is unleashed when
you create your own special exception classes. This requires using inheri-
tance (a topic outside the scope of this book), but enables you to test for and
gracefully handle error conditions specific to your application.

165

10.1. WHAT PYTHON TOPICS WOULD BE GOOD TO COVER NEXT?

Documentation: We briefly discussed the most basic Python element
to code documentation (aside from comment lines), the docstring, on p. 62.
Besides docstrings, however, a number of packages exist to generate user
guides, manuals, and API documentation. Two I like are Epydoc (http://
epydoc.sourceforge.net) and Sphinx (http://sphinx.pocoo.org).

Unit testing: Many of the programs AOS users write are quick-and-
dirty programs written by one individual with little to no documentation and
testing. Unfortunately, as decades of software engineering experience has
shown, this results in fragile, buggy code, and a lot of reinventing the wheel.
Software testing is a proven way of increasing code quality and reliability
(e.g., Basili and Selby, 1987). Python makes it easy for us to write unit tests,
i.e., tests of small portions of code, through the unittest and pytest packages.
The unittest package comes standard with every Python installation; pytest
is available at http://pytest.org.

Platform-independent operating system commands: Python has been
ported to nearly every operating system imaginable and through it o↵ers the
possibility of “write once, run anywhere” code. The os module (imported
by import os) enables such platform independence by wrapping operating
system commands in a Python interface. A submodule of os called path
enables platform-independent handling of directory paths (it is imported by
the import os.path command).

Environment customization: The sys module gives you access to vari-
ables that interact with the Python interpreter, such as the search path for
Python modules (which, if you import sys by import sys is stored in the
module attribute sys.path).

Wrapping Fortran routines: As cool as Python is, there is no way we
can do our work without Fortran. There are too many lines of legacy code,
and sometimes we need the speed of compiled code. Wouldn’t it be nice
if we could use Fortran routines from within Python? With f2py, this is not
only possible but easy-peasy! And, if you have NumPy installed, you already
have f2py. See http://www.scipy.org/F2py for more information.

Class inheritance: I mentioned this above when talking about exception
handling, but this OOP concept has much more applicability than just in
dealing with exceptions. Inheritance enables you to even more easily push
functionality to the lowest appropriate level.

Advanced visualization: As I said in the end of Ch. 9, Python does not
have only one visualization package but many, each with their own domains
of competence. Check out PyNGL, vcs, VPython, etc.

166

10.2. SOME PACKAGES OF INTEREST TO AOS USERS

10.2 Some packages of interest to AOS users

There is no possible way for me to list all the packages available for Python
(as of August 2012, PyPI listed over 23,000 packages),1 nor even all the
packages of possible interest to AOS users. Here I mention just a few, orga-
nized by tasks AOS users conduct.

Data analysis: UV-CDAT is a veritable Swiss Army knife for climate
data analysis. It includes specialized routines to deal with dates and times,
spatial domains and regridding, climate model history files, OpenDAP, visu-
alization, etc.; see http://uv-cdat.llnl.gov. UV-CDAT is an outgrowth of an
older application CDAT; the CDAT pages have more documentation and are
at http://www2-pcmdi.llnl.gov/cdat. (A lighter version that only has the core
CDAT packages, Cdat-lite, is also available: see http://proj.badc.rl.ac.uk/
cedaservices/wiki/CdatLite.) Finally, pandas is an interface on top of NumPy
that enables you to reference subarrays using string labels (like dictionaries)
and easily deal with missing values: see http://pandas.pydata.org.

PyGrADS provides a Python interface to the gridded data analysis and
visualization system GrADS (http://opengrads.org/wiki/index.php?title=Py
thon Interface to GrADS).2 PyNIO provides Python bindings to file i/o rou-
tines for formats of interest to AOS users; see http://www.pyngl.ucar.edu.

Visualization: PyNGL provides Python bindings to the NCAR Graph-
ics Language; see http://www.pyngl.ucar.edu. PyGrADS, mentioned earlier,
also helps AOS users visualize their data.

Mathematical and scientific functions: As I mentioned in Section 10.1,
SciPy provides numerous mathematical and scientific routines (http://www.
scipy.org). SAGE is another set of mathematical and scientific libraries (http:
//www.sagemath.org). Finally, RPy gives a Python interface to the powerful
statistical language R (http://rpy.sourceforge.net).

GIS: ArcGIS scripting can be done in Python; see http://www.esri.com/
software/arcgis. Other packages using Python that enable GIS manipula-
tion include: PyKML (http://pypi.python.org/pypi/pykml), OpenClimateGIS
(https://github.com/tylere/OpenClimateGIS), and GDAL (http://trac.osgeo.
org/gdal/wiki/GdalOgrInPython).

Webservices: Python has a number of packages that enable you to do
webservices. One of the most comprehensive is the Twisted package (http:
//twistedmatrix.com/trac). CherryPy is another, more accessible, package
(http://cherrypy.org).

1http://pypi.python.org/pypi (accessed August 17, 2012).
2PyGrADS is part of the OpenGrADS project.

167

10.3. ADDITIONAL REFERENCES

The PyAOS website maintains a list of packages of interest to AOS users.
See: http://pyaos.johnny-lin.com/?page id=20.

10.3 Additional references
Throughout the book, especially in this chapter, I’ve referenced a variety of
resources, most of them online. In this section, I list places to look for more
general help in using Python or resources that address specific topics that
don’t fit anywhere else. The Bibliography gives the full citation for books
mentioned in this section.

Transitioning from Matlab/IDL to Python: Thankfully, you can find
a number of equivalence sheets online for Matlab to Python and IDL to
Python.3 Of course, the languages aren’t one-to-one identical to Python,
but these sheets can still help with the transition.

Tutorials: There are a bunch of great Python tutorials, both online as
well as in print. Perhaps the place to start is the standard Python Tutorial
(http://docs.python.org/tutorial), though it is written more for a computer sci-
ence audience rather than an AOS audience. Michael Williams’s Handbook
of the Physics Computing Course (http://pentangle.net/python/handbook) is
a nice tutorial. Though it does not cover i/o and is geared for an audience of
physicists, it is accessible to new Python users of all kinds. We’ve also listed
a number of tutorials at PyAOS, both those that address Python for general
science users (http://pyaos.johnny-lin.com/?page id=215) and AOS-specific
tutorials (http://pyaos.johnny-lin.com/?page id=217).

Reference manuals: I really like Python in a Nutshell (Martelli, 2006).
It’s perhaps best known for providing a handy (but long) list of functions and
options, but its explanations of key Python concepts, while terse, nonetheless
are clear and illuminating. However, Nutshell is not a good resource for
newbies; it assumes a formidable level of prior knowledge about computer
science concepts.

The Python Language Reference (http://docs.python.org/reference) is the
definitive guide to Python syntax, but I think its language and explanations
are even farther removed from the world of non-computer scientists. I’ve
found Martelli’s descriptions and organization to be more helpful and under-
standable, as a result. The Python Standard Library (http://docs.python.org/
library) documentation describes all the built-in functions and modules that

3For Matlab to Python, see http://www.scipy.org/NumPy for Matlab Users. For IDL to
Python, see https://www.cfa.harvard.edu/⇠jbattat/computer/python/science/idl-numpy.html.
Both are accessed August 17, 2012.

168

10.4. A PARTING INVITATION

come with Python. The os, sys, and unittest modules mentioned earlier are
described here.

Finally, the NumPy and SciPy online documentation (http://docs.scipy.
org/doc) is a must-bookmark site. Keep the NumPy list of functions in easy
reach: http://www.scipy.org/Numpy Functions by Category.

Other texts: It seems like everyday brings a new crop of books on
Python, geared generally for data analysts and scientists. I haven’t had the
chance to look through most of these resources, so my recommendation to
you would be to search a phrase like “python scientific programming” in
your favorite bookseller’s search engine.

10.4 A parting invitation
Throughout this book, I’ve mentioned the PyAOS website. As we end our

Come join
PyAOS!time together, let me extend an invitation to you, gentle reader, to come and

join PyAOS. Through our website, blog, and mailing list, we aim to support
atmospheric and oceanic science users of Python: to help new users learn
the language and experienced users to share with one other the cutting-edge
work going on with the language. We’re online at: http://pyaos.johnny-lin.
com. Hope to see you there, soon! Lunch is on us ,!

169

10.4. A PARTING INVITATION

170

Glossary

attribute data bound to an object that are designed to be acted on by meth-
ods also bound to that object.

calling execute or run a function.

class the template or “pattern” all instances of that class follow.

data coordinates a coordinate system for a plot where locations are speci-
fied by the values of the x- and y-axes data ranges.

delimit show where a sequence or collection begins and ends.

development environment an application that facilitates software develop-
ment, often by providing coding, documentation, debugging, and exe-
cution tools in one place.

docstring a triple-quote delimited string that goes right after the def state-
ment (or similar construct) and which provides a “help”-like descrip-
tion of the function.

dynamically typed variables take on the type of whatever value they are set
to when they are assigned.

exception an error state in the program that cannot be processed by the cur-
rent scope.

immutable a variable/object that cannot be changed.

import compile a module or package and make what is in the module or
package accessible to the Python program that is doing the importing.

inherit incorporate the attribute and method definitions of another class into
a definition of a new class of objects.

171

Glossary

inheritance dealing with inheriting attribute and method definitions of an-
other class into a definition of a new class of objects.

instance an object that is the specific realization of a class of objects.

instantiate create an instance of a class.

instantiating creating an instance of a class.

instantiation the act of creating an instance of a class.

interpreter the execution environment for Python commands.

iterable a data structure that one can go through, one element at a time; in
such a structure, after you’ve looked at one element of it, it will move
you on to the next element.

iterator used nearly interchangably with the noun form of “iterable”.

method functions bound to an object that are designed to act on the data
also bound to that object.

module an importable Python source code file that typically contains func-
tion, class, and variable object definitions.

multi-paradigm language a computer language that supports multiple pro-
gramming methodologies, for instance, object-oriented programming
and procedural programming.

mutable a variable/object that can be changed.

namespace a set of function, variable, class, etc. names; these names can be
stored inside an object variable and referenced via that variable.

newline character a special text code that specifies a new line; the specific
code is operating system dependent.

object a “variable” that has attached to it both data (attributes) and functions
designed to act on that data (methods).

object file for a compiled language, this is a file produced by the compiler
after compiling the source code file; this is not an object in the sense
of object-oriented programming.

172

Glossary

package a directory of importable Python source code files (and, potentially,
subpackages) that typically contains function, class, and variable ob-
ject definitions.

package manager a program that streamlines the installation of tools and
applications as part of an operating system or distribution; this is not
to be confused with a Python package, which is not, in general, an
operating system or distribution package.

procedural programming a programming paradigm where a program is
broken up into discrete procedures or subroutines, each of which do
a specified task and communicate with the rest of the program solely
(ideally) through input and output variables that are passed in argu-
ment lists and/or return values..

PyAOS a web community whose goal is to support the use of Python in the
atmospheric and oceanic sciences; see http://pyaos.johnny-lin.com.

rank the number of dimensions in an array; thus, a 2-D array has rank 2.

runtime when some code or a program is actually executing.

shape a tuple whose elements are the number of elements in each dimension
of an array; in Python, the elements are arranged so the fastest vary-
ing dimension is the last element in the tuple and the slowest varying
dimension is the first element in the tuple.

terminal window a text window in which you can directly type in operating
system and other commands.

typecode a single character string that specifies the type of the elements of
a NumPy array.

173

Glossary

174

Acronyms

AMS American Meteorological Society.

AOS atmospheric and oceanic sciences.

API application programming interface.

CDAT Climate Data Analysis Tools.

cdms Climate Data Management System.

CISL Computational Information Systems Laboratory.

dpi dots per inch.

EPD Enthought Python Distribution.

GCM general circulation model.

GUI graphical user interface.

HOPS Hyperslab OPerator Suite.

i/o input/output.

IDL Interactive Data Language.

LLNL Lawrence Livermore National Laboratory.

NCAR National Center for Atmospheric Research.

NGL NCAR Graphics Language.

NRCC Northeast Regional Climate Center.

175

Acronyms

OO object-oriented.

OOP object-oriented programming.

PCMDI Program for Coupled Model Diagnostics and Intercomparison.

UV-CDAT Ultrascale Visualization-Climate Data Analysis Tools.

vcs Visualization Control System.

176

Bibliography

Basili, V. R. and Selby, R. W. (1987). Comparing the e↵ectiveness of soft-
ware testing strategies. IEEE Trans. Software Eng., SE-13(12):1278–
1296.

Curtis, B. (1995). Objects of our desire: Empirical research on object-
oriented development. Human-Computer Interaction, 10:337–344.

Lin, J. W.-B. (2009). qtcm 0.1.2: a Python implementation of the Neelin-
Zeng Quasi-Equilibrium Tropical Circulation Model. Geosci. Model Dev.,
2:1–11, doi:10.5194/gmd–2–1–2009.

Lin, J. W.-B. (2012). Why Python is the next wave in earth sciences com-
puting. Bull. Amer. Meteor. Soc., (submitted).

Martelli, A. (2006). Python in a Nutshell. O’Reilly Media, Sebastopol, CA,
2nd edition.

177

BIBLIOGRAPHY

178

Index

allclose, 19
append, 24
arange, 49, 50
ArcGIS, 167
arguments, see parameters
array, 40, 48
arrays, 47

array syntax, 59, 60
boolean, 65
comparisons, 59, 64–71
compatibility checking, 60
converting types, 55
creating, 47, 50, 55
data types, 48, 53, 55
element ordering, 51
flexible code, 54, 64
help, 72
indices, 50
inquiry, 53
line continuation, 52
looping through, 58
loops vs. array syntax, 59
multi-dimensional, 51
operations, 58, 60, 69
operators as functions, 60
rank, 53, 60
reshape, 54
shape, 53
size, 53, 54
slicing, see slicing, 84
subarrays, 53
typecodes, see arrays, data types

assignment, 17, 74, 132, 140

dictionary elements, 95
list elements, 23, 26
reference vs. value, 140
using dictionaries for, 93

assignValue, 84
astype, 55, 77, 91, 102
attrgetter, 111
attributes, 41, 98, 138

delete, 133
get, 133
inquiry, 133
listing, 42
private, 101
public, 102
setting, 133

axis, 158

backslash
line continuation, 26
string character, 19

barbs, 156
Basemap, 158

coastlines, 160
contour plots on a map, 159
cylindrical projection, 160
installing, 159
latitude lines, 160
longitude lines, 160

boxfill, 124

calculator, 14
call , 160

Callahan, Steven, 5
CapWords, 105

179

INDEX

case sensitivity, 18
CDAT, 78, 80, 167
cdms2, 124
clabel, 155, 157
clarity, 2
class, 98, 104
close, 74
cm, 155
cmap, 155
colons, 34
colorbar, 155, 158
colors, 155
command history, 12, 13
comment character, 62
commercial software, 7
common blocks, 118
concatenate, 55
continuation character, see backslash,

line continuation
contour, 154, 158
contour plots, see matplotlib, contour

plots
contourf, 155, 158
copy, 140
correlate, 71
count, 100
course files, viii, 9
createDimension, 84
createVariable, 84, 85
Ctrl-d, 10
cumsum, 103

data analysis, 89
dynamic, 131
missing values, 121

deepcopy, 140
def, 29, 63, 104
delattr, 132
delimiting code blocks, 30
development environments, 11
dict , 137

dictionaries, 26, 93, 94, 137
dynamically filling, 95
flexible code, 95, 134
keys, 27, 29
methods, 27
values, 27

dir, 11, 42, 99
directory listing, 93
doc , 101

docstrings, see documenting code
documenting code, 62, 166

docstrings, 63
Doutriaux, Charles, 124, 125
Drach, Bob, 124, 125
dtype, 48, 53, 103
dynamically typed, see types, dynamic

elif, 34
else, 34
Enthought Python Distribution, 8
Epoch, 70
Epydoc, 166
except, 44
exceptions

exception classes, 43, 45
handling, 44, 165
throwing, 43

exp, 71

f2py, 166
False, 20
fft, 71
figure, 150, 152
file input/output, 90

close file objects, 74
file objects, 74
multiple-column text, 79
netCDF, see netCDF
open to append, 74
open to read, 74
open to write, 74

180

INDEX

reading a text file, 75
single-column text, 77
writing to a text file, 75

filled, 128, 129
fill value, 123, 128
Fiorino, Michael, 5
float, 76, 78
fontsize, 155
for, 34
free gift, ix
functional programming, 1
functions, 29, 138

as objects, 94
calling, 138
parameters, see parameters
return values, 29, 62

getattr, 132, 138
getValue, 81
glob, 93
GNU/Linux, 8, 9
GRIB, 87

hamming, 71
hasattr, 132
has key, 28
HDF, 87
hello world, 10, 12
help, 11, 72
histogram, 71
Hunter, John, 144

id, 141
IDL to Python, 168
IDLE, 12
if, 33, 64
import, 39
importing

aliasing, 41
data, 41
functions, 41

indentation, 29

inheritance, 106, 165, 166
init , 104, 106, 111
insert, 24
installing, 7
int, 76, 95
interp, 71
interpreter, 10–11

exit, 10, 12
IPython, 11
is, 21
isupper, 100

join, 76

keys, 28
kurtosis, 96

len, 22, 38
levels, 154, 155
line plots, see matplotlib, line plots
linesep, 77
Linux, see GNU/Linux
lists, 22, 137

complex references, 23
indices, 22, 23
initialize, 38
lengths, 22
looping through, 34
methods, 24
shu✏ing, 139
slicing, see slicing

logical testing, 33
compound tests, 33

logical and, 65
logical not, 69
logical or, 65
looping, 34

by indices, 35
iterators, 35

ma, 40, 126
Mac OS X, 9

181

INDEX

main , 112
map projections, see Basemap
masked arrays, 40, 122, 126–130

converting to an array, 128
creating, 126, 127
fill values, 123, 128
masks, 123, 129
operations, 123, 130

masked variables, 122, 124
creating, 126

masked array, 126
masked greater, 127
masked where, 127
Matlab to Python, 168
matplotlib, 143

axis labeling, 153
Basemap, see Basemap
color bars, 155
color maps, 155
colors, 145, 149
contour levels, 154
contour plots, 154
contour plots on a map, 159
displaying vs. saving figures, 152
filled contour plots, 155
line and marker property listings,

146
line plots, 144
lined and filled contour plot, 155
linestyle, 145, 147
linewidth, 145
map projections, see Basemap
markers, 145, 148
multiple curves on one figure, 151
multiple independent figures, 150
negative contours dashed, 155
pyplot, 144
save figure, 152, 154
save figure then visualize, 154

save figure without displaying, 147,
154

using LATEX to annotate plots, 146
visualizing plots, 144
wind barbs, 156

max, 42
mean, 90
median, 90
meshgrid, 56, 117, 156
methods, 41, 98, 99, 138

calling, 100, 102
defining, 104, 109
delete, 133
get, 133
inquiry, 133
listing, 42
private, 101
public, 102
setting, 133

min, 42
missing values, see data analysis, miss-

ing values; masked arrays
modeling, 137, 141
modules, 39

importing, 39, 40
submodules, 40

name , 112
namespaces, 2, 40

module names vs. namespaces, 41
preventing collisions, 41, 94

netCDF
creating dimensions, 84
creating variable objects, 84
dimensions, 80, 81
file objects, 81
filling array variables, 84
filling scalar variables, 84
global attributes, 80, 83
metadata, 82
reading a variable, 81

182

INDEX

structure, 80
unlimited dimension, 83
variables, 80, 81

newline character, 19, 75, 77, 78
nlevels, 154
None, 21
Noon, William, 6
NumPy, see also arrays, 40, 47, 126

importing, 47, 49, 126

object, 106
object-oriented programming, 97–99

vs. procedural, 113, 115, 119, 120,
137

objects, 110
attributes, see attributes
calling, 160
classes, 98, 104, 110
inheritance, see inheritance
instances, 98, 106, 110
instantiation, 104, 116, 134
listing attributes and methods, 42,

99
methods, see methods
programming, see object-oriented

programming
syntax, 41, 100

open, 74, 90
OpenDAP, 167
operators

addition, 18
defining, 101
division, 15, 18, 19
equal, 18, 21
exponentiation, 18
greater than, 18
greater than or equal to, 18
is, 21
less than, 18
less than or equal to, 18
logical, 20

multiplication, 18
not equal, 18
subtraction, 18

ordinal value, 22
orientation, 155
os, 77, 166

paths, 166

package manager, 8
packages, see modules
pandas, 167
parameters

functions, 29, 30
initialize, 22, 31, 134
keyword, 30
passing in lists of arguments, 32
positional, 30

ParaView, 162
pass, 64
permutations, 139
platform independence, 1, 77, 166
plot, 144
potential temperature, 62
print, 14, 19, 102
procedural programming, 98

vs. object-oriented, 113, 115, 119,
120

programming
dynamic subroutine management,

137
dynamic variable management, 131,

133
provenance management, 3
PyAOS, 169
PyGrADS, 162, 167
PyNGL, 78, 143, 162, 167
PyNIO, 80, 87, 167
pyplot, see matplotlib, pyplot
pysclint, 80, 87
PyTables, 73, 80, 87
pytest, 166

183

INDEX

Python(x,y), 11
PYTHONPATH, 41
PyUnit, see unittest

raise, 43
range, 35
rank, 53
ravel, 55, 103
readline, 75
readlines, 75, 79
reference manuals, 168
remove, 24
repeat, 55
reshape, 54, 103
resize, 103
reStructuredText, 63
return, 29, 62
reverse, 42
round, 103
RPy, 167
runlist, 137

SAGE, 167
Saravanan, R., 136
savefig, 152, 154, 158
ScientificPython, 80

importing, 80
SciPy, 160, 165, 167

importing, 165
scripting, 1
self, 104, 107, 110
setattr, 107, 132
shape, 53, 102
show, 144, 158
sin, 40, 71
size, 53
skew, 96
slicing

arrays, 50, 53
lists, 23
strings, 25

sorted, 28, 111, 112
sorting, 93, 112
Sphinx, 63, 166
split, 76
Spyder, 11
std, 90
strings, 19

attributes, 99
concatenation, 20, 76, 114
converting, 76
methods, 99
splitting, 76
triple quotes, 20

style guide, 46
subplot, 156
sys, 166

search path, 166

T, 102, 103
tab character, 19, 76, 79
terminal window, 11
testing, 112, 166
time, 70
timings, 70
title, 99
Tk, 12
transpose, 103
transpose, 55, 102
True, 20
try, 44
tutorials, 168
typecodes, see arrays, data types
types

arrays, see arrays
basic, 17
booleans, 20
dictionaries, see dictionaries
dynamic, 17, 22, 35, 92
floating, 19
integers, 19
lists, see lists

184

INDEX

NoneType, 21
strings, see strings
tuples, 25
upcasting, 19

underscore, see attributes, private; meth-
ods, private

unittest, 112, 166
upper, 99, 100
UV-CDAT, see also CDAT; cdms2, 80,

87, 124, 162, 167

ValueError, 43, 44
values, 28
vcs, 124, 143
VisTrails, 162
visualization, 143, 162
VPython, 163

weather maps, 3
where, 66, 67
while, 36
widgets, 12
Williams, Dean, 124, 125
Windows, 8
write, 75
writelines, 75
WxMAP2, 3

xrange, 59

zeros, 49

185

Robert Fovell

INDEX

186

About the Author

Johnny Wei-Bing Lin graduated from Stanford University
with a B.S. in Mechanical Engineering and an M.S. in Civil
Engineering-Water Resources. After working as an environ-
mental engineer, he returned to school and received his Ph.D.
in Atmospheric Sciences from UCLA. His atmospheric sci-
ences research is focused on stochastic convective param-
eterizations, ice-atmosphere interactions in the Arctic, and
simple frameworks for modularizing climate models. He
has chaired the AMS Python Symposiums and has taught or
co-taught some of the AMS Python short courses. Johnny
also helps coordinate the PyAOS mailing list and blog (http:
//pyaos.johnny-lin.com), an e↵ort at building up the atmo-
spheric and oceanic sciences Python community. Currently,
he is a Professor of Physics at North Park University in
Chicago.

Colophon

This book was written using PDFLATEX (PDFTEX 3.1415926-
1.40.10-2.2) and the Vim editor, running on an Ubuntu 12.04
GNU/Linux system. Times-like fonts are provided by the TX
Fonts package (http://www.ctan.org/pkg/txfonts). The title
page and examples environment are based on the “titleTMB”
example from Peter Wilson’s July 13, 2010 work Some Ex-
amples of Title Pages (http://www.ctan.org/tex-archive/info/
latex-samples/TitlePages).

	front
	ch01
	ch02
	ch03
	ch04
	ch05
	ch06
	ch07
	ch08
	ch09
	ch10
	back

