ATM 316 Midterm Exam \#2 SAMPLE EQUATION SHEET

Fall, 2020 - Fovell

Some useful information

- Show work and draw pictures whenever possible. Show your steps. I can't give partial credit unless I can figure out what you were doing. Answers without work or justification have no value.
- If you cannot answer a particular question owing to insufficient information, state what information you need to answer it. If you cannot answer it for any other reason, give me something I can use to possibly justify some partial credit.
- The ideal gas law always applies.
- Some equations:

$$
\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta
$$

$$
\vec{A} \times \vec{B}=|\vec{A}||\vec{B}| \sin \theta \hat{n}(\text { where } \hat{n} \text { perpendicular to } \vec{A} \text { and } \vec{B})
$$

$$
\frac{\partial f\left(x_{0}\right)}{\partial x} \approx \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}-\Delta x\right)}{2 \Delta x}
$$

$\nabla A=\frac{\partial A}{\partial x} \hat{i}+\frac{\partial A}{\partial y} \hat{j}+\frac{\partial A}{\partial z} \hat{k}$
$\vec{U}=u \hat{i}+v \hat{j}+w \hat{k}, \nabla \cdot \vec{U}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}, \nabla \times \vec{U}=\left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}\right) \hat{i}-\left(\frac{\partial w}{\partial x}-\frac{\partial u}{\partial z}\right) \hat{j}+\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \hat{k}$
$\frac{d B}{d t}=\frac{\partial B}{\partial t} \frac{d t}{d t}+\frac{\partial B}{\partial x} \frac{d x}{d t}+\frac{\partial B}{\partial y} \frac{d y}{d t}+\frac{\partial B}{\partial z} \frac{d z}{d t}=\frac{\partial B}{\partial t}+\vec{U} \cdot \nabla B$
PGF (per unit mass): $-\frac{1}{\rho} \nabla p$
$p=\rho R T=\rho R_{d} T_{v}$
$F_{\text {gravity }}=-\frac{G M m}{|\vec{r}|^{2}}\left[\frac{\vec{r}}{|\vec{r}|}\right]$
$\vec{V}_{t a n}=\omega \vec{R}$
$f=2 \Omega \sin \phi, \vec{\Omega}=\Omega \cos \phi \hat{j}+\Omega \sin \phi \hat{k}$
$\left(\frac{d \vec{U}}{d t}\right)_{\text {Coriolis }}=-2 \vec{\Omega} \times \vec{U}$
$\frac{\partial p}{\partial z}=-\rho g$
$R_{o}=\frac{U}{f_{0} L}$
$u_{g}=-\frac{1}{f \rho} \frac{\partial p}{\partial y}, v_{g}=\frac{1}{f \rho} \frac{\partial p}{\partial x}$
$\Delta Z=\frac{R_{d} \bar{T}_{v}}{g_{0}} \ln \left[\frac{p_{0}}{p_{1}}\right]$
$d \Phi=g d z$
$\frac{V^{2}}{R}+f V=-\frac{1}{\rho} \frac{\partial p}{\partial n}$
$\frac{V^{2}}{R}+f V-f V_{g}=0$

- Some constants and conversions:
$R_{d}=287 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1} ; g_{0}=g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$ (Using $10 \mathrm{~m} \mathrm{~s}^{-2}$ is OK.) $; \Omega=7.292 \times$ $10^{-5} \mathrm{~s}^{-1}, \epsilon=0.622$
$1 \mathrm{mb}=100 \mathrm{~Pa}$. Earth radius $=6371 \mathrm{~km}$.

