
ATM 316 - The “thermal wind”
Fall, 2016 – Fovell

Recap and isobaric coordinates

We have seen that for the synoptic time and space scales, the three leading terms in the horizontal

equations of motion are

du

dt
− fv = −1

ρ

∂p

∂x
(1)

dv

dt
+ fu = −1

ρ

∂p

∂y
, (2)

where f = 2Ω sinφ. The two largest terms are the Coriolis and pressure gradient forces (PGF)

which combined represent geostrophic balance. We can define geostrophic winds ug and vg that

exactly satisfy geostrophic balance, as

−fvg ≡ −1

ρ

∂p

∂x
(3)

fug ≡ −1

ρ

∂p

∂y
, (4)

and thus we can also write

du

dt
= f(v − vg) (5)

dv

dt
= −f(u− ug). (6)

In other words, on the synoptic scale, accelerations result from departures from geostrophic balance.
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Figure 1: Isobaric coordinates.

It is convenient to shift into an isobaric coordinate system, replacing height z by pressure p.

Remember that pressure gradients on constant height surfaces are height gradients on constant

pressure surfaces (such as the 500 mb chart). In Fig. 1, the points Q and R reside on the same

isobar p. Ignoring the y direction for simplicity, then p = p(x, z) and the chain rule says

δp =
∂p

∂x
δx+

∂p

∂z
δz.
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Here, since the points reside on the same isobar, δp = 0. Therefore, we can rearrange the remainder

to find
δz

δx
= −

∂p
∂x
∂p
∂z

.

Using the hydrostatic equation on the denominator of the RHS, and cleaning up the notation, we

find

−1

ρ

∂p

∂x
= −g ∂z

∂x
. (7)

In other words, we have related the PGF (per unit mass) on constant height surfaces to a “height

gradient force” (again per unit mass) on constant pressure surfaces. We will persist in calling

this height gradient force a “PGF” or, more specifically, the isobaric PGF. Recalling geopotential

dΦ = gdz, we can also get

−1

ρ

∂p

∂x
= −∂Φ

∂x
. (8)

Similarly,

−1

ρ

∂p

∂y
= −∂Φ

∂y
. (9)

Note density does not appear in the isobaric PGF. This is the principal advantage of isobaric

coordinates.

Further, we can write an equation like (8) as

−1

ρ

∂p

∂x
= −

(
∂Φ

∂x

)
p

(10)

to remind ourselves that the height gradients are computed on isobaric surfaces. Therefore, the

geostrophic wind equations on isobaric surfaces are

ug = − 1

f

(
∂Φ

∂y

)
p

(11)

vg = − 1

f

(
∂Φ

∂x

)
p
. (12)

The hydrostatic equation in isobaric coordinates is

dΦ

dp
= −RT

p
. (13)

The thermal wind

Consider the familar situation shown in Fig. 2, in which the poles are colder than the equator.

Suppose isobaric surface p tilts down towards the north. On a constant pressure surface, pressure

value p resides closer to the surface, and represents a locale of lower geopotential height. Figure

3 depicts this situation. PGF points towards lower geopotential heights, Coriolis acts to the right

following the motion (in the Northern Hemisphere), and thus the geostrophic wind blows parallel

to isoheights with lower height to the left. It is a westerly wind in this example.
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Figure 2: Pole colder than equator.
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Figure 3: Geostrophic wind on isobaric surface p.

Also note thickness ∆z1 < ∆z2, since the average layer temperature of the former is lower.

As a consequence, isobaric surfaces located farther aloft will slope progressively more strongly

down towards the pole with height. This means the geopotential height gradient also increases,

making the geostrophic wind stronger. (Note we don’t have to consider density anymore; that’s

already implicitly factored in.) Thus, not only does the geostrophic wind continue blowing

from the west, there is also a westerly vertical wind shear. Choosing a latitude residing

somewhere in between pole and equator, this simple example gives us a vertical wind profile like

this:

z,
-p

x

Figure 4: Westerly vertical shear of the geostrophic wind.
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Therefore,we can relate the vertical shear of the zonal (west-east) geostrophic wind to the merid-

ional (north-south) temperature gradient . Similarly, temperature gradients in the east-west direc-

tion imply vertical shear of the northerly component of the geostrophic wind. I am sticking with

the north-south ∇T scenario merely because it’s slightly easier to picture.

The “thermal wind” refers to the vertical shear of the geostrophic wind. In pressure

coordinates, the vertical shear is
∂ug
∂p

and
∂vg
∂p

.

Since pressure decreases with height,
∂ug

∂p < 0 means ug increases with height. Take (11) and

differentiate it with respect to pressure. Thus

∂ug
∂p

=
1

f

[
∂

∂p

(
∂Φ

∂y

)
p

]
.

Interchange the order of differentiation on the RHS and use the isobaric hydrostatic equation (13)

and find, after further rearrangement,

∂ug
∂ ln p

=
R

f

(
∂T

∂y

)
p

. (14)

That is, the vertical shear of the westerly geostrophic wind depends on the north-south ∇T . For

the northerly geostrophic wind, we would find

∂vg
∂ ln p

= −R
f

(
∂T

∂x

)
p
. (15)

If we define the vector geostrophic wind as ~Vg = ug î+ vg ĵ, then

∂~Vg
∂ ln p

= −R
f
k̂ ×∇pT, (16)

where ∇p reminds us to compute the temperature gradient on an isobaric surface. This is the

thermal wind equation. It is NOT A WIND. It is a wind shear. Also, it does not involve the “true”

wind, but rather the geostrophic wind. If the wind is not geostrophic, then the thermal

wind equation is not exact, and may even mislead. Finally, it relates geostrophic shear to

temperature gradients on isobaric surfaces – not constant height surfaces.

By the nature of the cross product, (15) also shows the vertical shear is parallel to isotherms,

since it must be orthogonal to ∇T . We can see this more easily if we actually define a vertical

shear vector ~VT (where the subscript T stands for “thermal”) by integrating between two isobaric

surfaces p0 and p1

~VT =

∫ p1

p0

∂~Vg
∂ ln p

d ln p = −R
f

∫ p1

p0
k̂ ×∇pT,

The LHS is simply ~VT = ~Vg(p1) − ~Vg(p0) ≡ uT î + vT ĵ, where uT and vT are the shear vector’s

components. The RHS is messy, but simplifies a lot if we take a layer mean T between the two

pressure levels. So, the thermal wind shear component equations are

uT = −R
f

[
∂T̄

∂y

]
p

ln
p0

p1
(17)

vT =
R

f

[
∂T̄

∂x

]
p

ln
p0

p1
. (18)
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The hypsometric equation permits us to rewrite the RHS of the above as

uT = − 1

f

∂

∂y
[Φ1 − Φ0] (19)

vT =
1

f

∂

∂x
[Φ1 − Φ0] . (20)

There are three elements in the preceding. For the p0 to p1 layer, there is the geostrophic wind

at the layer bottom ~Vg(p0), the geostrophic wind at the layer top ~Vg(p1), and the vertical shear
~VT , itself determined by the horizontal gradient of layer mean temperature. If we know any two of

these, we can get the third. Keep in mind that since uT is proportional to ∂T̄
∂y and vT is proportional

to ∂T̄
∂x that ~VT is parallel to isotherms in the p0 to p1 layer.
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