ATM 316 - Why is $\vec{\Omega} \times(\vec{\Omega} \times \vec{r})$ centripetal acceleration?

Fall, 2016 - Fovell
This is a proof of the assertion that $\vec{\Omega} \times(\vec{\Omega} \times \vec{r})=-\Omega^{2} \vec{R}$, which is the centripetal acceleration.
Refer to the picture below, which shows the Earth's rotation vector $\vec{\Omega}$ positioned at a midlatitude location. Also shown are \vec{r} and \vec{R}, vectors to that position from the Earth's center and spin axis, respectively. First, keep in mind that when you use the cross product, you only deal with orthogonal components. Note that the component of \vec{r} perpendicular to $\vec{\Omega}$ is \vec{R} ! So immediately the problem becomes resolving $\vec{\Omega} \times(\vec{\Omega} \times \vec{R})$.

Next, we make use of the vector identity:

$$
\vec{V}_{1} \times\left(\vec{V}_{2} \times \vec{V}_{3}\right)=\left(\vec{V}_{1} \cdot \vec{V}_{3}\right) \vec{V}_{2}-\left(\vec{V}_{1} \cdot \vec{V}_{2}\right) \vec{V}_{3},
$$

resulting in

$$
\vec{\Omega} \times(\vec{\Omega} \times \vec{R})=(\vec{\Omega} \cdot \vec{R}) \vec{\Omega}-(\vec{\Omega} \cdot \vec{\Omega}) \vec{R}
$$

Since $\vec{\Omega}$ is perpendicular to $\vec{R}, \vec{\Omega} \cdot \vec{R}=0$! Since $\vec{\Omega} \cdot \vec{\Omega}=\Omega^{2}$, we have established that

$$
\vec{\Omega} \times(\vec{\Omega} \times \vec{r})=-\Omega^{2} \vec{R}
$$

directed inward, towards the center of spin. This is the centripetal acceleration.

