
ATM 562 – Some Fortran programming pointers
Fall, 2018 – Fovell

Some quick pointers on Fortran programming and program structure. I make no claim to being

a master programmer (far from it!), but I think these suggestions will help make your program

easier to write, to read. . . and therefore, to debug. These pointers are mainly based on Fortran 77

(F77), and emphasize clarity and readability over “style” and efficiency. Some initial points:

• Fortran is NOT case sensitive.

• Variables are assumed real, unless the first letter of the variable name starts with the letters

I-N inclusive. Then they’re integers by default. (Mnemonic device: I-N are INtegers.)

• Array indices must be integers, so use index variable names like “i”, “j”, and “k”.

• Comment lines start with “C” or “c” in the first column, or “!” anywhere, and comments

can be appended to statements following the “!” character.

• Fortran statements start in column 7. Column 6 is for continuation markers. Columns 1-5

are for statement labels.

A sample program:

program example ! this is optional, actually

! non-executable statements go first: this includes parameter, common,

! dimension, data statements and statement functions

! parameter statements make array bookkeeping easy

parameter(nx=100,nz=40)

! common blocks hold arrays, constants you want to use in

! multiple program modules

common/base/uinit(nz),tinit(nz),qinit(nz),pk(nz),rhou(nz),rhow(nz)

common/uwind/up(nx,nz),u(nx,nz),um(nx,nz) ! horiz wind at 3 times

common/ptemp/thp(nx,nz),th(nx,nz),thm(nx,nz) ! theta pert at 3 times

common/grids/dx,dz,dt,d2t,time ! grid setup, etc

common/grid2/zw(nz),zu(nz) ! height of W and U points on grid

common/consts/rd,g,cp,psl ! physical constants

! dimension statements for local arrays - used only in this program unit

dimension crap(nx,nz)

! initialize constant values you will not change during execution

data g/9.8/,dx/400./,dz/400./,dt/2.0/,cp/1004./,rd/287./

!--

! executable statements go here

!--

! a neat way of getting trigonometric ‘‘PI’’ to machine precision

trigpi=4.0*atan(1.0)

! frequent divisions should be converted to multiplications where possible

! ex: I need to divide rd by cp a lot, and also (dx**2) and (dz**2)

xk=rd/cp

rdx2=1./(dx*dx)

rdz2=1./(dz**2)

! block DOs are easy to read when indented.

! every DO has an ENDDO

! float turns an integer into a real before multiplication

do k=2,nz

zw=(float(k-1)*dz)

enddo

! block IFs may be simple or compound

iflag=0

do k=2,nz-1

ztp = (float(k)-1.5)*dz

if(k.eq.2) iflag=1

if(ztp.gt.ztr)then

tinit(k)=thetatr*exp(9.8*(ztp-ztr)/(cp*ttr)

else

tinit(k)=300.+43.*(ztp/ztr)**1.25

endif

if(k.le.20)then

[do something here]

else if(k.lt.nz-5)then

[do something here]

else

[do something here]

endif

enddo

! continuation marker is most any symbol placed in column 6

! for multiline statements

! **line up** your statements for easy debugging and reading

do k=2,nz-1

do i=2,nx-1

thp(i,k)=thm(i,k)

1 -0.5*dtx*(u(i+1,k)*(th(i+1,k)+th(i,k))

2 -u(i ,k)*(th(i-1,k)+th(i,k)))

enddo

enddo

! subroutine calls make program neater, more modular

! try to avoid passing unnecessary arguments -- use common statements

call setup

call runmodel

call cleanup

! write statement: unit 6 is the screen

! here: a real is written with format F5.2, an integer with I6,

! and a real in exponential notation with E15.6)

write(6,1000) real,integer,real

1000 format(1x,f5.2,i6,e15.6)

! you can avoid format statements when you don’t need them

write(6,*) ’ the real number is ’,real

! write to the screen with print, which is the same as write(6,*)

print *,’ the real number is ’,real

print 1000, real, integer, real

! open a file before you write to it

! this opens a NEW formatted file called output at unit number 12

! if this file exists, it will cause an error

! avoid unit numbers 5 and 6; those are standard input and output

open(12,file=’output’,status=’new’,form=’formatted’)

! or open the file with status UNKNOWN which will overwrite any old

! file of same name

open(13,file=’output2’,status=’unknown’,form=’formatted’)

! write to the file using the designated unit number

write(12,*) rd,g,cp

! close the file when you are done

close(12)

close(13)

! program ends with ‘‘stop’’ and ‘‘end’’ statements

stop

end

! then your subroutines go here. they terminate with ‘‘return’’ and

! ‘‘end’’ statements

subroutine setup

[your parameter and common blocks repeated here]

return

end

Using global include files presents both a great bookkeeping advantage and a problem. Since

you have to use the same parameter, common statements in the main program and each applicable

subroutine, if you change these statements in any program unit, you have to make sure they’re also

altered in all other units. (Example, you change NX; need to do that in all program modules.)

Failing to do this can cause errors that can be hard to track down.

Alternative is to use an external file called “global” or “storage” or similar. The name does not

matter. Define your parameter and common statements (but not data statements, typically) in the

global file, and then use INCLUDE to insert them into your program modules at the appropriate

places. For example:

program example2

include ’global’

[etc.]

stop

end

subroutine setup

include ’global’

[etc.]

return

end

The potential difficulty with this is if you change your global file, you need to recompile the

program. If you use a Makefile to compile your program, the compiler may not realize the global

file has changed. So, to work around this, whenever you alter the contents of the global file, then

use the Unix command “touch” to update the date/time associated with the fortran program (type

touch yourprogram.f at the command prompt).

Recent versions of Fortran permit arrays to be manipulated “as a whole”, so long as computa-

tions are done on arrays sharing the same shape. Example:

parameter(nx=50,nz=40)

dimension pi(nx,nz),temp(nx,nz),theta(nx,nz)

! This

do k=1,nz

do i=1,nx

temp(i,k)=theta(i,k)*pi(i,k)

enddo

enddo

! is equivalent to this

temp=theta*pi

One avoidable problem is the mixing of real and integers in arithmetic expressions, as the results

may differ from expected depending on the order of operations. You can convert reals to integers

using ifix and integers to reals using float.

A great disadvantage of F77 was the need to identify continuation markers in column 6 (making

columns 1-5 unavailable to your statement) and the 72 column limit. Modern Fortran (i.e., Fortran

90/95, or F90) is not so limited. Continuation markers in F90 use the ampersand, as illustrated in

this poor (because it could be very easily misread) example:

! Fortran 77 style (file name using .f suffix usually defaults to F77)

trigpi2 = 4.0*atan(1.0)

1 /2

! Fortran 90+ style (file name using .f90 suffix indicates F90)

trigpi2 = 4.0*atan(1.0) &

/2

! ...which is the same as

trigpi2 = 4.0*atan(1.0) &

& /2

Two ampersands can be used to mark continued statements, but one suffices.

Here are some compiler options specific to gfortran.

• -fbounds-check checks on array boundaries during execution. Really slows down execution,

so use for debugging.

• -ffpe-trap=zero will cause program to terminate if there is a divide by zero.

• -ffpe-trap=overflow will cause program to terminate if there is an overflow.

• -g enables extra debugging information. -g3 enables even more debugging information.

• -Wall -Wextra asks compiler to warn about all detected issues.

• -O2 requests optimization level 2. -O0 (no optimization) is default. -O3 is aggressive.

