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“All models are false, but some are useful.” – George E. P. Box
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Preface

These notes support a course in numerical methods and modeling. The course involves both

theory and hands-on practice, the latter leading to a two-dimensional (or better) “cloud

model” capable of simulating some interesting phenomena. It was developed as a 10-week

course offered to undergraduate seniors at UCLA, in part from a need to provide scientific

programming experience, and also to provide opportunities and inspiration for individual

research projects, and included six (now seven) “Model Tasks” that lead to a working model.

The model you will create based on this guidance is not new, and nowhere near the state of

the art with respect to design, formulation, or model physics, but will be new to you, and it

will be enabling, and that’s what matters.

Please feel free to contact me with suggestions and corrections.
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Chapter 1

Introduction and basic tools

1.1 Taylor series

1.1.1 Infinite and truncated series

Taylor expansions of infinite series will be used extensively in this course. Some examples of

infinite series are:

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

The general Taylor expansion form is given below. Note this is an exact relationship, not an

approximate one, because the series has not (yet) been truncated.

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′

2!
(x− x0)2 +

f ′′′

3!
(x− x0)3 + · · ·

This is termed the “Taylor series expansion of the function f(x) about the point x = x0”,

and can be rewritten using summation notation:

f(x) =
∞∑
k=0

f (k)(x0)

k!
(x− x0)k

where f (k) is the k-th derivative of f(x).
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Example. Suppose f(x) = 2x2−5x+1. What is the Taylor series expansion about the point

x0 = 2? Using the definition above, one finds the answer to be f(x) = −1+3(x−2)+2(x−2)2.

This is exact because the derivatives of order three and above are exactly zero. Now evaluate

the function and the Taylor expansion at the point x = 5. One should find they are both

equal to 26.

Many series — like ex and sinx — are truly infinite and this need to be truncated in practice.

Truncating a series leads to error. Fortunately, many series are convergent, which means

that each higher order term makes smaller and smaller contributions to the whole. This is

the justification for truncating the series at some point.

1.1.2 The Mean Value Theorem and definition of the derivative

A special case of the Taylor series is the Mean Value Theorem, one of the fundamental

theorems of calculus. The MVT is based on a Taylor series in which only the first derivative

is retained. Start with:

f(x) ≈ f(x0) + f ′(x0)(x− x0).

This is a truncated series in this instance (assuming at least one higher order derivative is

nonzero), so it is only an approximation. We can replace the ≈ sign with strict equality if

we evaluate the derivative at a different point somewhere between x and x0. Let x∗ be such

a point. Then:

f(x) = f(x0) + f ′(x∗)(x− x0).

This is the MVT. If we had kept still higher order terms, then it would have been the

Extended MVT. No matter how many terms are kept, if the last term’s derivative is evaluated

at an intermediate point, then the relationship is still exact.

Note that the MVT is simply the definition of the derivative in disguise! To see this, rewrite

it as:

f ′(x∗) =
f(x)− f(x0)

(x− x0)
.

The derivative of f(x) with respect to x is simply the difference between the function values

at two locations, x and x0, divided by the distance between those locations. The MVT says

that there is a point x∗ between x and x0 where this is exactly true. At other points between

x and x0, possibly including x and x0, it is an approximation.

1.1.3 The basis of forecasting

The approximated, truncated Taylor series provides the basis of finite differencing , the most

commonly employed method for making forecasts. To see this a bit more easily, make f a
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function of time instead:

f(t2) ≈ f(t1) + f ′(t1)∆t.

Here, times t1 and t2 represent present and future times, respectively, separated by a time

interval ∆t. Note that the derivative on the right hand side is evaluated at the present time;

we don’t know where the intermediate time t∗ should be.

Clearly, if we know f(t1) and f(t2), we can get at least an estimate for the time derivative of

f by rearranging the above equation. For the purposes of forecasting, say instead we have an

estimate for f ′(t1) in addition to knowing f(t1). Then, we can use the above equation to get

a forecast for f(t2), the function value at the future time. This involves not just knowledge

of f ′(t1), but also the assumption that f ′(t1) remains constant over the time interval ∆t.

This is extrapolation, and the danger for error should be obvious.

How do you get f ′(t1)? We need equations that take knowledge of the function now (and

perhaps at past times as well) and uses this to estimate how the function is changing with

time now . The functions we are dealing with include the temperaure, pressure, density and

wind components. The equations for the time rate of change of these functions or variables

are derived below, starting in Section 1.2.

1.1.4 Multivariate Taylor expansions

The Taylor series examples above assumed expansion took place using just one variable. The

multivariate Taylor expansion of f(a + ∆a, b + ∆b) about the point f(a, b) can be written

(in extended and compact notation) as:

f(a+ ∆a, b+ ∆b) = f(a, b) + ∆a
∂f

∂a
+ ∆b

∂f

∂b
+

(∆a)2

2

∂2f

∂a2
+

(∆b)2

2

∂2f

∂b2
+ ∆a∆b

∂2f

∂a∂b
+ · · ·

f(a+ ∆a, b+ ∆b) =
∞∑
k=0

1

k!

[
∆a

∂

∂a
+ ∆b

∂

∂b

]k
f.

The notational changes above remind you of the variety of notations used for such common

objects as variables, derivatives and the like.

1.2 Eulerian and Lagrangian viewpoints

Suppose we identify an air parcel that has a fixed amount of mass (a control mass , or CM)

but is free to move in space. If we track the parcel’s temperature as a function of time,

we can write its temperature tendency as dT
dt

. This is the Lagrangian viewpoint. Suppose

instead we identify a fixed volume in space (a control volume, or CV), through which air

15



parcels may flow freely. We can write the tendency of temperature within this fixed space as
∂T
∂t

. This is the Eulerian viewpoint. Now, finally suppose that temperature varies through

the three spatial dimensions as well as with time. We can relate the two viewpoints through

the chain rule for partial derivatives:

dT

dt
=
∂T

∂t

dt

dt
+
∂T

∂x

dx

dt
+
∂T

∂y

dy

dt
+
∂T

∂z

dz

dt

Of course, dt
dt

= 1, and the other time derivatives on the right hand side are the velocity

components we conventionally designate u, v and w, respectively. Letting the vector velocity

be designated as ~V = uî + vĵ + wk̂ (where î, ĵ, and k̂ are unit vectors in the x, y and z

directions, respectively) then:
dT

dt
=
∂T

∂t
+ ~V · ∇T

where ∇T = ∂T
∂x
î+ ∂T

∂y
ĵ + ∂T

∂z
k̂.

The quantity ~V · ∇T is called temperature advection. In practice, we wish to compute the

temperature tendency at a fixed point, so we rewrite the above in terms of the Eulerian

derivative:
∂T

∂t
=
dT

dt
− ~V · ∇T

This is interpreted as follows: The rate of temperature change at this location (the Eulerian

derivative on the left-hand side) is determined by the temperature of the air that is flowing

into this location (cold or warm advection) plus how that air’s temperature is changing (by

radiation or diabatic heating, for example) as it is being advected (the Lagrangian derivative).

1.3 Ideal gas law and virtual temperature

The ideal gas law (IGL) relates pressure p, temperature T and density ρ:

p = ρRT

where R is the “gas constant”, which varies among the different gases. Air is, of course, a

mixture of gases, each with a different R. The good news is that since the constituents of

dry air vary little in time or space we can specify a gas constant for the dry air mixture as a

weighted average of the consitutent constants. This will be called Rd, and taken to be 287

J kg−1 K−1. The bad news is that water vapor varies tremendously in both space and time,

and so we need to further adjust Rd according to the amount of vapor in the air.

This is an irritant, since the gas “constant” is no longer a constant. We’ll handle this

by taking R = Rd always, and fold the influence of water vapor into another term in the

equation — temperature. (The advantage of this will be mentioned briefly below.) Let the
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water vapor mixing ratio, expressed as grams of water vapor per gram of dry air, be qv.

Then, we can define a virtual temperature as:

Tv = T (1 + 0.61qv).

By folding the water vapor information into temperature, we can employ the dry air constant

Rd in the ideal gas law, and we write this as:

p = ρRdTv.

The virtual temperature is interpreted as follows. Since the vapor gas constant, Rv = 461

J kg−1 K−1, is greater than the dry air mixture constant, an air parcel composed solely of

vapor is less dense at the same temperature and pressure than a parcel made up of dry air.

This is obvious from the IGL itself. Thus, a moist parcel is less dense than a dry one (at the

same T , p).

There are two ways of decreasing a parcel’s density without changing the pressure. One way

is to increase its temperature, since for fixed pressure ρ must decrease as T rises. The other

way is to replace some dry air with water vapor at constant T and p, which effectively forces

the mixture R to increase and thus decreases ρ. The virtual temperature can be thought

of as representing the temperature a perfectly dry air parcel must have to have the same

density as a moist air parcel at the same pressure. However, a better way of employing it

is as a density-weighted measure that is useful in judging the buoyancy of air. Less dense

air parcels want to rise relative to more dense parcels, and parcel density reflects not only

temperature but also vapor content.

1.4 The hydrostatic equation

Hydrostatic balance represents the stalemate between the vertical pressure gradient and

gravity forces. Pressure is force per unit area, and thus dp
dz

is force per unit volume. Newton’s

second law for a mass subjected to gravity tells us the gravity force is object mass (m) times

the acceleration of gravity (g), so the gravity force per unit volume (V ) is mg
V

or ρg. The

balance between these two, then, is:
dp

dz
= −ρg

where the minus sign is needed because p decreases with increasing height z.
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1.5 Potential temperature and nondimensional pres-

sure

The potential temperature, θ, is conserved for isolated, insulated air parcels undergoing

strictly “dry” (subsaturated) adiabatic processes. It is defined as:

θ = T

[
p0

p

] Rd
cpd

,

where p0 ≡ 1000 mb or 100000 N m−2. (There is a very small error involved in applying this

equation to moist, but subsaturated, air parcels.) If we define the nondimensional pressure,

π, as

π =

[
p

p0

] Rd
cpd

then temperature and potential temperature are related as T = θπ.

The advantage of using nondimensional pressure instead of pressure in numerical modeling

will become obvious later. At this point, we need to rework the hydrostatic equation in

terms of π. Apply logarithms to the definition of π and then differentiate it:

ln π =
Rd

cpd
(ln p− ln p0)

d lnπ

dz
=

Rd

cpd

d ln p

dz

1

π

dπ

dz
=

Rd

cpd

1

p

dp

dz

At this point, use both the hydrostatic equation and the IGL to yield:

dπ

dz
= − πg

cpdTv

= − g

cpdθv
.

In the last step, the virtual potential temperature, θv = θ(1.+ 0.61qv), was employed.

1.6 The continuity equation

The continuity equation is a prediction equation for density, but specifically expresses con-

servation of mass. In the Eulerian CV viewpoint, volume is fixed. To increase the density

in the fixed volume, it is necessary to pack more mass into that volume. Thus, an airflow
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CV

area ∆y∆z

∆x

ρu

Figure 1.1: Flow in and out of a control volume.

that results in a net influx of mass is required. In the Lagrangian CM viewpoint, the mass

is fixed and density can be increased by contracting the volume. Thus, if the parcel finds

itself in a converging airflow, one that acts to squeeze the volume, density can increase.

Figure 1 shows a control volume, with volume ∆x∆y∆z. For the x direction, the velocity

component is u and mass flow per unit area in the x-direction at the center of the CV is ρu

(units kg s−1 m−2). For there to be net mass influx (or outflux), there needs to be a mass

flux gradient, ∂ρu
∂x

, across the box. The side walls normal to the flow, with area ∆y∆z, are

located at distances of ∆x
2

from the CV’s center.

We can use Taylor series, truncated to include only the first derivative, to specify the flow

at the volume sides in terms of the flow at the CV’s center and the flow gradient across the

box. The flow in the left side of the box (through area ∆y∆z) is[
ρu− ∂ρu

∂x

∆x

2

]
∆y∆z

while the flow out the right side is[
ρu+

∂ρu

∂x

∆x

2

]
∆y∆z.

Thus, the net flow (in minus out) is

−∂ρu
∂x

∆x∆y∆z.

For all three directions combined, the net flow is

−
[
∂ρu

∂x
+
∂ρu

∂y
+
∂ρu

∂z

]
∆x∆y∆z.

Finally, divide by volume to get the net per unit volume. What remains can be written as

−∇ · ρ~V . Since this net flow is acting to locally increase the density, we can write the result

as:
∂ρ

∂t
= −∇ · ρ~V .
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Alternatively, rearrange the above expression as:

∂ρ

∂t
+∇ · ρ~V = 0.

This is the Eulerian form of the continuity equation. Interpret this equation as follows: in a

CV, you can increase density (mass divided by volume) by packing more mass in the fixed

volume. To do this, mass inflow has to exceed mass outflow. Conservation of mass means

that the net mass inflow goes to change the local density, with nothing missing or left over.

One way to get the Lagrangian form of the continuity equation is by applying a vector

identity to the Eulerian form. First, though, recall that the total and local time tendencies

are related though
dρ

dt
=
∂ρ

∂t
+ ~V · ∇ρ.

The vector identity is simply the chain rule applied to the vector dot product:

∇ · ρ~V = ρ∇ · ~V + ~V · ∇ρ.

Starting with the Eulerian continuity equation and applying both yields:

∂ρ

∂t
+∇ · ρ~V = 0[

∂ρ

∂t
+ ~V · ∇ρ

]
+ ρ∇ · ~V = 0

dρ

dt
+ ρ∇ · ~V = 0

1

ρ

dρ

dt
+∇ · ~V = 0.

That is the Lagrangian continuity equation. Interpret this equation as follows: for a control

mass, you can increase the density by contracting the volume. Do this by placing the CM

into a converging airflow, one that deforms the CM’s shape (and thus volume).
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Chapter 2

Model equations and waves

2.1 Basic equations

Consider first a simple, two-dimensional (2D) model of a completely dry, adiabatic atmo-

sphere. At a minimum, the model has four equations for four variables that need to be

predicted: horizontal velocity u, vertical velocity w, potential temperature θ and density

ρ. Note that because of the ideal gas law, we do not need prediction equations for both ρ

and pressure p. Although we will solve them in the Eulerian reference frame, the equations

are presented in the Lagrangian form for now. Diffusion, Coriolis and friction terms are

neglected. The equations are:

du

dt
= −1

ρ

∂p

∂x
(2.1)

dw

dt
= −1

ρ

∂p

∂z
− g (2.2)

dθ

dt
= 0 (2.3)

dρ

dt
= −ρ

[
∂u

∂x
+
∂w

∂z

]
(2.4)

We will need to modify these equations substantially before they will be ready to put into

the model.

First, however, we need to see what kind of atmospheric waves these equations can sup-

port. The equations involve two distinctly different kinds of phenomena: having advective

and wave-like characteristics. Advective phenomena move with the flow, and always move

downstream. Waves, on the other hand, can move independently of the flow, and can prop-

agate downstream and/or upstream. Two very different kinds of waves are supported in

these equations: sound (acoustic) waves and gravity waves. We shall reveal these waves and

examine their characteristics by employing the perturbation method.
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2.2 Perturbation method

The perturbation method represents a way of simplifying the equations. Each variable in

the model is usually a function of all spatial dimensions, plus time; i.e., p = p(x, z, t) in 2D.

A given variable field can be apportioned into two parts, representing a mean value (p̄) and

a deviation from that mean (the perturbation, p′). Usually, the mean value is taken to be

either constant or a function of height alone. Further, the perturbation is usually assumed

to have but a small magnitude, especially compared to the mean. As an example, consider

surface pressure. Average sea level pressure is ≈ 1000 mb (the mean). Variations about this

average value are usually ±50 mb or so, which is small compared to the mean value.

Because perturbations are usually small compared to the mean, we can reduce the degree of

complexity in the equations by “linearizing” them (i.e., neglecting products of perturbation

values). A useful trick to remember is that, for x small,

ln(1 + x) ≈ x.

[This was obtained by truncating the Taylor series for ln(1 + x)]. So, if ρ′ << ρ̄, then:

ln(ρ̄+ ρ′) = ln

[
ρ̄(1 +

ρ′

ρ̄
)

]
≈ ln ρ̄+

ρ′

ρ̄
(2.5)

Another trick is embodied in the binomial expansion theorem:

1

ρ̄+ ρ′
=

1

ρ̄

[
1 +

ρ′

ρ̄

]−1

≈ 1

ρ̄

[
1− ρ′

ρ̄

]
(2.6)

2.3 Acoustic (sound) waves

Sound waves exist owing to the compressibility (squeezability) of air. You know that air is

compressible because both pressure and density decrease very rapidly with height. Com-

pressibility also can be thought of as “slackness”. Picture an air parcel that undergoes

adiabatic expansion. What does the given parcel’s expansion do to a neighboring parcel?

The neighboring parcel can either get squeezed (compressed) or it can move out of the given

parcel’s way. In a compressible medium like air, both will happen — in sequence. First, the

neighboring parcel will be compressed, and then it will rebound and move. The medium’s

degree of compressibility determines how rapidly the action of getting pushed will result in

motion. In a nearly incompressible fluid, very little of the push results in compression, and

so the neighboring parcel starts getting out of the way very quickly. In a very compressible

medium, the neighboring parcel may not move at all.
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Sound waves represent the adjustment process involved in parcel rebounding after compres-

sion. Picture a set of concentric rings, all centered on a common point. The innermost ring

expands, causing the next ring out to compress. That ring rebounds and expands, causing

the next ring outward to compress, and so on. Note the rings themselves do not experience

any net motion; they merely push one way and then the other. However, the wave that

results propagates outward. That is a sound wave. Further note that the back-and-forth

motion within the rings is parallel to the wave’s propagation direction. Such a wave is termed

“longitudinal”.

To examine sound waves in a simple manner, we take our basic equations but neglect the w

equation and the vertical direction. This is because a horizontally propagating sound wave

does not induce vertical motion (the wave is longitudinal). So we have (revising the ρ and θ

equations a little for convenience):

du

dt
+

1

ρ

∂p

∂x
= 0 (2.7)

d ln ρ

dt
+
∂u

∂x
= 0 (2.8)

d ln θ

dt
= 0 (2.9)

where (because of our simplifications)

d

dt
=

∂

∂t
+ u

∂

∂x
.

This derivation closely follows that presented in Holton’s text.

Potential temperature can be eliminated from the equations in the following fashion: Start

with the definition of θ:

θ = T

[
p0

p

] Rd
cpd

,

and use the ideal gas law to replace T :

θ =
p

ρRd

[
p0

p

] Rd
cpd

.

Then, take the log of both sides, yielding:

ln θ =
cvd
cpd

ln p− ln ρ+ constants. (2.10)

Differentiate with time, and set equal to zero [owing to (2.9)]:

1

γ

d ln p

dt
− d ln ρ

dt
= 0, (2.11)
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where γ =
cpd
cvd

. Use (2.8) to eliminate the time tendency of ρ, resulting in:

1

γ

d ln p

dt
+
∂u

∂x
= 0. (2.12)

This finally leaves us with two equations, which may be written as:

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0 (2.13)

∂p

∂t
+ u

∂p

∂x
+ pγ

∂u

∂x
= 0. (2.14)

Now expand u, p and ρ into mean and perturbation parts, where the mean parts are simply

constants (as there is no vertical direction to worry about here):

u(x, t) = ū+ u′(x, t),

p(x, t) = p̄+ p′(x, t),

ρ(x, t) = ρ̄+ ρ′(x, t).

Substitute these expressions into (2.13) and (2.14), yielding:

∂

∂t
(ū+ u′) + (ū+ u′)

∂

∂x
(ū+ u′) +

1

ρ̄+ ρ′
∂

∂x
(p̄+ p′) = 0 (2.15)

∂

∂t
(p̄+ p′) + (ū+ u′)

∂

∂x
(p̄+ p′) + γ(p̄+ p′)

∂

∂x
(ū+ u′) = 0 (2.16)

Apply (2.6) to (2.15), expand the terms and neglect products of perturbations (like u′u′ and

u′p′). This results in: [
∂

∂t
+ ū

∂

∂x

]
u′ +

1

ρ̄

∂p′

∂x
= 0 (2.17)[

∂

∂t
+ ū

∂

∂x

]
p′ + γp̄

∂u′

∂x
= 0 (2.18)

Finally, (2.17) and (2.18) may be combined into a single equation in p′:[
∂

∂t
+ ū

∂

∂x

]2

p′ − γp̄

ρ̄

∂2p′

∂x2
= 0. (2.19)

At this point, we assume we will find wave-like solutions in p′ in this equation. We further

assume the wave has constant amplitude (“A”) with wavelength Lx in the x-direction and

it propagates with time with speed c. Let the horizontal wavenumber k be related to the

horizontal wavelength by

k =
2π

Lx
.
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Then, we can express the wave-like character as:

p′ = Aeik(x−ct) (2.20)

= AE

where E is merely a convenient shorthand. This expression employs Euler’s relation:

eiφ = cosφ+ i sinφ

so clearly the expression involves wave-like undulations in both space and time. Notice that

the expression is complex; only the real part has any physical significance.

Given (2.20), we thus produce:
∂p′

∂t
= −AikcE,

∂p′

∂x
= AikE,

and
∂2p′

∂x2
= −Ak2E,

where it is recalled that i2 = −1. Put these in (2.19), and one winds up with:

AE(−ikc+ ikū)2 + AE
γp̄

ρ̄
(k)2 = 0, (2.21)

a quadratic equation in the sound wave speed c. Canceling out the AE term (because the

right hand side is zero) and solving for c yields:

c = ū±
[
γp̄

ρ̄

] 1
2

= ū± (γRdT̄ )
1
2 . (2.22)

The last expression employed the ideal gas law.

This derivation has shown that the “adiabatic speed of sound” in a calm atmosphere (ū = 0)

is given by cs ≡ c =
√
γRdT . For T = 273 K, cs ≈ 331 m s−1. Note that (2.22) has two

signs. This is because sound waves will propagate in both directions away from their point of

origin (we’re only considering a single coordinate axis here). The quantity
√
γRdT is called

the intrinsic phase speed, or the sound wave speed relative to the flow. To get the sound

speed relative to the ground, we need to factor in the flow speed relative to the ground.

Finally, it is noted that wave frequency (σ) and phase speed are related through

σ = kc.
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For a sound wave, the wave frequency determines the pitch of the sound we here. It is seen

that when the flow is not calm, and the sound wave is propagating downstream relative to

the flow, cs is effectively increased. This causes the frequency to increase (raising the pitch).

An upstream propagating sound wave, however, has its speed reduced and thus results in a

smaller frequency and lower pitch. This is why the pitch of a car horn is higher when it is

approaching you than when it is moving away, a phenomenon known as “Doppler shifting”.

2.4 Gravity waves (buoyancy oscillations)

The model equations also support “gravity waves”, a rather poor term describing stable

buoyancy oscillations. Picture an insulated, dry air parcel moving vertically in a stable

environment. (The important complication of moisture is ignored for now.) A rising parcel

moves towards lower pressure. The decreasing pressure allows the parcel to expand, and

expanding air cools. A sinking parcel moves towards higher pressure, and heats up as it

compresses. The parcel’s temperature changes according to the dry adiabatic lapse rate Γd,

given by:

Γd =
g

cpd
≈ 9.8 K km−1.

A stable environment is one in which the environmental lapse rate of temperature is less

than the dry adiabatic rate. We can define a property that is conserved during such a

displacement, and we call it the potential temperature θ. Potential temperature increases

with height in a stable environment.

In the derivation of gravity waves, we usually presume the parcel remains in mechanical

equilibrium with its environment, meaning that the pressures inside and outside the parcel

are the same. In other words, p′ = 0. This is not just a derivational convenience, but in

reality, we would like to avoid doing it if at all possible. The implications and motivation

for this assumption will be seen presently.

In a stable environment, a rising parcel soon finds itself cooler than its surroundings. If the

parcel and environmental pressures are the same, being cooler also means being more dense

(owing to the ideal gas law), and it is because of its density excess that the parcel wishes

to sink. Similarly, a sinking parcel finds itself warmer — and thus less dense at the same

pressure — than its surroundings, and as a result wishes to rise. In short, however it is

displaced, the parcel seeks to return to its original location.

However, once it achieves its goal of returning to its original location, the displaced parcel

cannot stop at that location because it still has an acceleration. Think of a pendulum bob

suspended by a string. Its original location is straight down — gravitationally, its most

stable point. If you push the bob either direction, and let it go, it seeks to return to that

original point. Yet the bob keeps missing that point because it still has an acceleration that
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carries it onward. Once initiated, the pendulum bob continues to oscillate about its original,

stable point, until its energy is dissipated in some fashion. Not only is the stably displaced

air parcel similar to the pendulum bob, but also we shall see its motion is governed by the

very same equation, that of simple harmonic motion.

Further, the moving parcel is disturbing its surrounding environment, which will attempt to

adjust back into its original state. This adjustment takes the place of gravity waves which

propagate away from the original point of disturbance. In the simplest limit, the parcel

oscillations are purely vertical and the adjustment waves move only horizontally. Thus,

gravity waves are transverse rather than longitudinal waves like sound waves.

2.4.1 The buoyancy term

Equation (2.2), repeated below, describes the vertical motion of an air parcel when mixing,

diffusion, moisture and friction can be neglected:

dw

dt
= −1

ρ

∂p

∂z
− g (2.23)

The right hand side of (2.23) is the hydrostatic equation, and is exactly equal to zero when

the atmospheric state is precisely hydrostatic. Hydrostatic balance means the air has no

vertical accelerations, which means velocity is constant, and most likely zero. Therein lies

the rub: the average state of any spatially extensive slice of the atmosphere is so close to

hydrostatic balance that (2.23) would be useless for calculating the vertical acceleration of

that area. (This is because the left hand side would be the small difference between two

very large terms, and thus subject to huge relative errors.) However, perturbations from this

state, such as might exist in the interior of narrow cumulus clouds, might well depart from

hydrostatic balance by a large degree, but this merely serves to reinforce the notion that the

mean, hydrostatically balanced state should be removed from this equation.

Therefore, we subject (2.23) to a perturbation analysis, though a somewhat more sophisti-

cated one than we employed for sound waves. We take each variable embodied in (2.1)-(2.4)

and break them into mean and perturbation parts:

u(x, z, t) = ū(z) + u′(x, z, t),

w(x, z, t) = w̄(z) + w′(x, z, t),

p(x, z, t) = p̄(z) + p′(x, z, t),

ρ(x, z, t) = ρ̄(z) + ρ′(x, z, t),

θ(x, z, t) = θ̄(z) + θ′(x, z, t).
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To simplify matters, we can pretend mean density is constant with height, so ρ̄ = ρ0, a

constant. Owing to the exponential dependence of density on height, this approximation

can only be applied to a very shallow atmospheric layer. In addition, we can make the

analysis easier by taking the mean horizontal wind to be calm. A mean flow only Doppler

shifts the gravity waves, and we can add this effect in at the derivation’s end. Finally, the

mean state is a function of height alone, and is further assumed to be in precise hydrostatic

balance and vertically motionless so w̄ = 0 and

dp̄

dz
= −ρ0g.

The perturbation analysis makes the right hand side of (2.23) become:

−1

ρ

∂p

∂z
− g = − 1

ρ0 + ρ′

[
dp̄

dz
+
∂p′

∂z

]
− g.

Using the binomial expansion (2.6), we obtain:

−1

ρ

∂p

∂z
− g = − 1

ρ0

dp̄

dz

[
1− ρ′

ρ0

]
− 1

ρ0

∂p′

∂z
− g.

Applying the hydrostatic equation reduces the buoyancy term further to:

−1

ρ

∂p

∂z
− g = − 1

ρ0

∂p′

∂z
− ρ′

ρ0

g. (2.24)

Now take (2.10) and apply the perturbation method to it:

ln(θ̄ + θ′) = γ−1 ln (p̄+ p′)− ln (ρ0 + ρ′) + constants.

Using (2.5) yields:

ln

[
θ̄{1 +

θ′

θ̄
}
]

= γ−1 ln

[
p̄{1 +

p′

p̄
}
]
− ln

[
ρ0{1 +

ρ′

ρ0

}
]

+ constants. (2.25)

Separating the values within the brackets and applying (2.5) yields:

ln θ̄ +
θ′

θ̄
= γ−1 ln p̄+ γ−1p

′

p̄
− ln ρ0 −

ρ′

ρ0

+ constants. (2.26)

The base state itself satisfies a balance obtained by replacing the variables in (2.10) with

their mean values:

ln θ̄ = γ−1 ln p̄− ln ρ0 + constants.

Subtracting this equation from (2.26) leaves us with:

θ′

θ̄
≈ γ−1p

′

p̄
− ρ′

ρ0

.
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With the ideal gas law, we can see that the first term on the right hand side is the adiabatic

speed of sound, and so (after rearranging a bit):

ρ′

ρ0

≈ 1

c2
s

p′

ρ0

− θ′

θ̄
. (2.27)

Equation (2.27) may be interpreted as follows: A parcel, having properties p, ρ, and θ, is

displaced from its original position. The differences between the parcel’s and environment’s

properties are represented by the perturbation values, p′, ρ′ and θ′. These perturbation

properties are related by (2.27). Of special importance is the parcel’s density perturbation

relative to the environment. If the parcel is less dense (ρ′ < 0), it will wish to rise from its

new position. The equation shows its density perturbation is a function of its pressure and

(potential) temperature discrepancies with respect to its surroundings.

Recall that one of the standard air parcel assumptions is that the parcel is in mechanical

equilibrium with the environment (i.e., p′ = 0). Equation (2.27) suggests the time scale

associated with the attainment of mechanical equilibrium involves the sound wave speed. The

faster the speed of sound is, the more rapidly this equilibrium is brought about. Another way

of saying this is: the more incompressible the medium is, the less “slack” that is permitted

to occur at any instant of time. In the incompressible limit, cs → ∞ and the pressure

perturbation disappears. Even in a very compressible fluid such as air, the adjustment is so

quick that it may be safely neglected.

This is the justification for the air parcel approach. Thus, we can reasonably drop the p′

term, leaving us with:

ρ′

ρ0

≈ −θ
′

θ̄
, (2.28)

and thus an air parcel that is warmer than its surroundings (θ′ > 0) is also less dense (ρ′ < 0).

Therefore, density differences may be determined from temperature properties alone. After

applying (2.28) to (2.24), we can see that we have transformed the right hand side of (2.23),

creating (and neglecting the approximation signs):

dw

dt
= − 1

ρ0

∂p′

∂z
+ g

θ′

θ̄
. (2.29)
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2.4.2 The gravity wave phase speed

At this point, we apply the perturbation method to the remaining equations in the set

(2.1)-(2.4) and, after neglecting products of perturbations, we find:

∂u′

∂t
= − 1

ρ0

∂p′

∂x
(2.30)

∂w′

∂t
= − 1

ρ0

∂p′

∂z
+ g

θ′

θ̄
(2.31)

∂u′

∂x
+
∂w′

∂z
= 0 (2.32)

∂θ′

∂t
+ w′

dθ̄

dz
= 0. (2.33)

Consistent with our previous assumptions, we are taking the atmosphere to be incompressible

(and therefore shallow), and that is why the continuity equation (2.32) has been reduced to

such a simple form. Take the horizontal derivative of (2.31) and subtract from it the vertical

derivative of (2.30) to obtain:

∂

∂t

[
∂w′

∂x
− ∂u′

∂z

]
− g

θ̄

∂θ′

∂x
= 0. (2.34)

Using (2.32) and (2.33), θ′ and u′ can be eliminated from the above equation, leaving an

expression in one variable, w′:

∂2

∂t2

[
∂2w′

∂x2
+
∂2w′

∂z2

]
+N2∂

2w′

∂x2
= 0, (2.35)

where the Brunt-Väisälä frequency, N , has been defined to be

N ≡
√
g
d ln θ̄

dz
.

Note that 2.35 is the equation of a simple harmonic oscillator, having precisely the same

form as the pendulum equation you saw in physics class.

Again, wave-like solutions are assumed, this time in the variable w′, which is presumed to

have a two-dimensional spatial structure:

w′ = Aei(kx+mz−ωt),

where m is the vertical wavenumber, related to the vertical wavelength Lz by:

m =
2π

Lz
,

and ω is the gravity wave frequency, related to the oscillation period P by:

ω =
2π

P
.
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Substituting this into (2.35) yields a quadratic equation in ω:

ω2(k2 +m2)−N2k2 = 0.

Solving for the frequency yields:

ω = ± Nk√
k2 +m2

. (2.36)

Note again there are two frequencies, representing waves that travel outward on either side

of the original disturbance. If we had taken the mean horizontal flow, ū, to be nonzero (and

constant with height) rather than calm, we would have instead ended up with:

ω = ūk ± Nk√
k2 +m2

. (2.37)

Gravity waves propagate both horizontally and vertically. The horizontal phase speed, cx is

simply:

cx =
ω

k
,

while the vertical phase speed is:

cz =
ω

m
.

For the former, then, we can see that the horizontal propagation speed of a gravity wave is:

cx = ū± N√
k2 +m2

. (2.38)

This is interpreted as follows: A parcel is displaced and disturbs the environment. The

environment adjusts to the disturbance by issuing gravity waves that propagate rightward

and leftward relative to the disturbance, with phase speed cx. The disturbance is embedded

in a flow of speed ū relative to the ground, and so the ground-relative propagation speeds of

the gravity wave are cx = ū + N√
k2+m2 and cx = ū− N√

k2+m2 . The downstream moving wave

speed is enhanced and the upstream wave speed is slowed. If the wave speed is equal and

opposite to the flow speed, the gravity wave can be held stationary relative to the ground.

2.4.3 Sound and gravity waves, combined

Backing up a bit, consider again the environment’s response to a vertically displaced parcel,

which is expanding or contracting depending on which direction it was pushed. The envi-

ronment responds in two ways: by locally compressing and expanding horizontally — which

is accomplished by sound waves – and by oscillating upwards and downwards — which is

accomplished by gravity waves. Both take place simultaneously, but the sound wave adjust-

ment is far faster than the gravity wave equilibration.
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One way this can be seen by comparing the sound and gravity wave phase speeds, for typical

conditions. We saw earlier that the sound speed was about 331 m s−1 in an isothermal

atmosphere. It doesn’t vary much from this value, though. If we presume standard tropo-

spheric conditions, the Brunt-Väisälä frequency N is about 0.01 s−1. If we take m = 0 in the

gravity wave equation, and assume the wave has a horizontal wavelength of about 10 km or

so (reasonable assumptions), then the gravity wave phase speed is about 16 m s−1, far, far

slower.

The sound wave adjustment really is just the atmosphere’s ability to avoid having internal

“holes” develop in it. Physically, that is important, but practically it has nothing to do with

the phenomena we usually wish to observe and/or simulate. Instead, we can presume the

atmosphere’s very good at its job and that the acoustic adjustment is virtually instantaneous.

This is always true unless we are considering flow speeds that are close to the speed of sound;

i.e., supersonic or nearly supersonic flows.

Consider an air parcel traveling at about 10 m s−1. As it moves, it is “assaulting” neighboring

parcels, which have to adjust to its presence. They will compress or expand, and the signal

speed associated with this adjustment is very fast — it travels at the speed of sound. Unless

the parcel is also traveling close to the speed of sound, the adjustment is so fast, and of such

a small amplitude, that we can just take it for granted. (The amplitude is small because

the adjustment is rapid; the “slackness” just can’t build up under these conditions.) The

parcel also causes the environment to adjust gravitationally, through gravity waves. Since

the gravity wave phase speed is close in magnitude to the flow speed, however, the process

is relatively slow — and significantly affected by the flow itself. Thus, gravity waves may

have large amplitudes and cannot be neglected in this example.

The problem is, as we shall see, the efficiency of our numerical model is determined by

the speed of the fastest moving signal supported by the equations. To keep the numerical

integration stable, a time step has to be chosen based on this fastest signal speed. Sound

waves are unimportant to the phenomena we wish to simulate, but since they move so quickly,

they are the waves that determine the model time step. This makes solving the equations

as we’ve expressed them so far terribly inefficient. We’ll have to do something about this,

and what we do will be based on the simple fact that sound and gravity wave adjustments

are separate, of very different time scales, and thus don’t interact very much.
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Chapter 3

Derivation of the fully compressible
model framework

In this chapter, we develop the basic equations of the fully compressible model, still assuming

an adiabatic, dry, nondiffusive and frictionless atmosphere on a flat, nonrotating planet.

However, to make the addition of moisture easier, we’ll carry virtual temperature even

though the moisture content of this atmosphere is assumed to be zero. We will start from

scratch using base state environment assumptions and approximations appropriate for a

cloud (convection-scale) model, though we will make use of analyses previously presented.

We start with these equations:

du

dt
= −1

ρ

∂p

∂x
(3.1)

dw

dt
= −1

ρ

∂p

∂z
− g (3.2)

dθ

dt
= 0 (3.3)

dρ

dt
= −ρ∇ · ~V (3.4)

p = ρRdTv (3.5)

along with the definition of nondimensional pressure

π =

[
p

p0

] Rd
cpd

. (3.6)

There are four tasks to perform:

• Get the pressure gradient accelerations in terms of nondimensional pressure π.
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• Perform a perturbation analysis of the pressure accelerations about a reasonable model

mean state.

• Demonstrate the advantages of nondimensional over dimensional pressure.

• Replace the continuity equation with a pressure tendency equation.

Finally, the fully compressible model equations as we’ll solve them are presented.

3.1 The pressure gradient acceleration terms

First, expand (3.6) with logs and work it into an equation relating the vertical derivatives

of dimensional and nondimensional pressure:

cpd
Rd

lnπ = ln p− ln p0

∂ln p

∂z
=

cpd
Rd

∂ lnπ

∂z
. (3.7)

Now we work on the right hand side (RHS) of (3.2). Using the ideal gas law (3.5), we can

write this part of the equation as:

−RdTv
∂ln p

∂z
− g.

Using (3.7) and recalling that T = θπ so that Tv = θvπ, we obtain:

dw

dt
= −cpdθv

∂π

∂z
− g. (3.8)

Similarly, (3.1) becomes

du

dt
= −cpdθv

∂π

∂x
, (3.9)

and our pressure gradient acceleration terms now employ π.

3.2 Perturbation analysis applied to the pressure ac-

celerations

We now assume the mean state is solely a function of height, so that

π(x, z, t) = π̄(z) + π′(x, z, t),
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etc., and further that the mean state is hydrostatically balanced, which means:

dπ̄

dz
= − g

cpdθ̄v
. (3.10)

Perform the perturbation analysis on (3.8), remembering to eliminate products of perturba-

tions as they appear. This yields:

dw

dt
= −cpd(θ̄v + θ′v)

∂

∂z
(π̄ + π′)− g

= −cpdθ̄v
dπ̄

dz
− cpdθ′v

dπ̄

dz
− cpdθ̄v

∂π′

∂z
− g

= −cpdθ̄v
∂π′

∂z
+ g

θ′v
θ̄v
. (3.11)

For the x-direction, we wind up with:

du

dt
= −cpdθ̄v

∂π′

∂x
. (3.12)

It is noted here that Lipps and Hemler (1982) advocated rewriting (3.11) to put the mean

virtual potential temperature inside the vertical derivative; i.e.,

dw

dt
= −cpd

∂θ̄vπ
′

∂z
+ g

θ′v
θ̄v
.

This was done to improve energy conservation, and could be justified by the fact that the

vertical variation of the virtual potential temperature is relatively small. Durran (1989)

discusses why this works (p. 1459).

3.3 Advantage of π over p

In our discussion of gravity waves in Chapter 2, our perturbation analysis yielded:

dw

dt
= −1

ρ̄

∂p′

∂z
− gρ

′

ρ̄
, (3.13)

and we saw we could further expand the buoyancy term as:

−gρ
′

ρ̄
= −g

γ

p′

p̄
+ g

θ′v
θ̄v

(3.14)

= − g

c̄s2

p′

ρ̄
+ g

θ′v
θ̄v

(3.15)

so that our vertical equation of motion could also be written as:

dw

dt
= −1

ρ̄

∂p′

∂z
− g

c̄s2

p′

ρ̄
+ g

θ′v
θ̄v
. (3.16)
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There are a few changes in the above equations from Chapter 2. Virtual temperature has

been used in place of temperature, and the mean density has been assumed to be a function

of height in the equations above. The sound speed is still

c̄s
2 =

cpd
cvd

Rdθ̄vπ̄ (3.17)

but the use of the overbar symbol acknowledges it depends solely on base state values.

Note that the dimensional pressure perturbation p′ shows up not only in the pressure gradient

acceleration term, but also in the buoyancy term. This is a problem because, as we shall see,

it is actually quite difficult to come up with exact predictions of p′ (or π′, for that matter)

in the model. Instead, we get pressure perturbations only to within an unknown, arbitrary

constant. That doesn’t matter if only pressure gradients are required, since then the constant

becomes irrelevant. Recall that by invoking the mechanical equilibrium assumption, we could

eliminate the pressure perturbation from the buoyancy term, and we finally ended up with:

dw

dt
= −1

ρ̄

∂p′

∂z
+ g

θ′v
θ̄v
. (3.18)

Ostensibly, (3.11) is the counterpart of (3.18), based on their similar appearance. However,

we can show that (3.11) is at the same level of approximation as (3.16), which means we

avoided the arguable mechanical equilibrium assumption. Note, then, that using π′ in place

of p′ allows us to eliminate the presence of the pressure perturbation from the buoyancy

term without having to resort to the mechanical equilibrium assumption. This is the advan-

tage of using the nondimensional pressure, since now not having unique values of pressure

perturbation doesn’t cost us so much in terms of accuracy.

The balance of this section is devoted to proving that (3.11) and (3.16) are at the same

level of approximation. If we take the defintion of π, (3.6), take logs, apply the perturbation

method, employ the ln(1 + x) ≈ x approximation and then remove the base state (all things

we’ve done before), we can produce this approximation:

π′

π̄
≈ Rd

cpd

p′

p̄
.

By further using the ideal gas law, and recognizing that T̄v = θ̄vπ̄, we generate

π′ =
p′

cpdρ̄θ̄v
.

Now, take the vertical derivative of this expression, which first gives us:

cpd
∂π′

∂z
=

[
ρ̄θ̄v

∂p′

∂z
− p′ dρ̄θ̄v

dz

ρ̄2θ̄2
v

]
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Multiplying through by θ̄v and expanding the vertical derivative involving density and po-

tential temperature yields:

cpdθ̄v
∂π′

∂z
=

1

ρ̄

∂p′

∂z
− p′

ρ̄

[
d ln θ̄v
dz

+
d ln ρ̄

dz

]
. (3.19)

Note the left hand side (LHS) is the pressure acceleration term in (3.11). So this term is

not equal to the dimensional vertical pressure acceleration alone; there is an extra term,

which looks like something from the buoyancy term in (3.14) prior to the application of the

mechanical equilibration assumption.

To see that this surmise is indeed correct, we set out to manipulate that extra term. Starting

with the ideal gas law for the mean state, which can also be cast as:

p̄ = ρ̄Rdπ̄θ̄v

and first taking logs and then differentiating with respect to height, we find:

d ln p̄

dz
=
d ln ρ̄

dz
+
d ln π̄

dz
+
d ln θ̄v
dz

.

Replace the two vertical pressure gradient terms using the hydrostatic equation forms in-

volving p̄ and π̄. Manipulate what remains into something that can replace the extra term

in (3.19). First, we have:
d ln θ̄v
dz

+
d ln ρ̄

dz
=

1

π̄

g

cpdθ̄v
− ρ̄g

p̄

and finally we wind up with
d ln θ̄v
dz

+
d ln ρ̄

dz
= − g

c̄s2
. (3.20)

Subbing this into (3.19), we see

cpdθ̄v
∂π′

∂z
=

1

ρ̄

∂p′

∂z
+

g

c̄s2

p′

ρ̄
.

Therefore, the entire RHS in (3.11) is:

−cpdθ̄v
∂π′

∂z
+ g

θ′v
θ̄v

= −1

ρ̄

∂p′

∂z
− g

c̄s2

p′

ρ̄
+ g

θ′v
θ̄v
. (3.21)

Thus, it is seen that the right hand sides of (3.11) and (3.16) are at the same level of

approximation.
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3.4 Converting the continuity equation into a pressure

tendency equation

3.4.1 Derivation

As mentioned before, we do not need prognostic equations for both density and pressure,

owing to the ideal gas law. Because perturbation pressure appears in important terms in the

model, and because we’ve already replaced the buoyancy term’s perturbation density with

θ′v, it is convenient to replace our prognostic equation for density [the continuity equation,

(3.4)] with an equation for the nondimensional pressure tendency.

Using the ideal gas law we can manipulate (3.6) into:

π
cvd
Rd =

ρRdθv
p0

. (3.22)

Take the substantial derivative of this expression and manipulate it into this form:

cvd
Rd

π
cvd
Rd
−1dπ

dt
=

ρRdθv
p0

[
1

ρ

dρ

dt
+

1

θv

dθv
dt

]
= π

cvd
Rd

[
1

ρ

dρ

dt
+

1

θv

dθv
dt

]
(3.23)

where the latter expression was obtained through usage of (3.22). Divide through by π
cvd
Rd

and rearranging a little yields this expression:

dπ

dt
=

Rdπ

cvd

[
1

ρ

dρ

dt
+

1

θv

dθv
dt

]
(3.24)

At this point, use the continuity equation (3.4) to replace the density derivative on the RHS.

Recalling that the adiabatic speed of sound is c2
s =

cpd
cvd
Rdθvπ, we see that

Rdπ

cvd
=

c2
s

cpdθv
. (3.25)

Using (3.25), we have:
dπ

dt
= −Rdπ

cvd
∇ · ~V +

c2
s

cpdθv

dθv
dt
. (3.26)

Now subject (3.26) to a perturbation analysis, recalling that the mean state is a function of

height alone, except we’re only going to (explicitly) expand π for now. The LHS of (3.26)
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becomes:

dπ

dt
=

∂π

∂t
+ u

∂π

∂x
+ w

∂π

∂z

=
∂π′

∂t
+ u

∂π′

∂x
+ w

∂π′

∂z
+ w

dπ̄

dz

=
∂π′

∂t
+ ~V · ∇π′ + w

dπ̄

dz
. (3.27)

The RHS of (3.26) becomes:

− Rdπ̄

cvd
∇ · ~V − Rdπ

′

cvd
∇ · ~V +

c2
s

cpdθ2
v

dθv
dt
. (3.28)

One term from each side may be combined in the following fashion:[
−Rdπ̄

cvd
∇ · ~V − wdπ̄

dz

]
⇒ − c̄s

2

ρ̄cpdθ̄2
v

[
∇ · ρ̄θ̄v~V

]
, (3.29)

which accomplishes an important simplification. Note the mean state sound speed defined

in (3.17) has been employed.

It is easier to show (3.29) is true by going backwards. First, apply the vector chain rule to

the RHS of (3.29):
c̄s

2

ρ̄cpdθ̄2
v

[
ρ̄θ̄v∇ · ~V + ~V · ∇ρ̄θ̄v

]
Recognizing the mean fields vary only vertically, we obtain:

c̄s
2

cpdθ̄v
∇ · ~V +

c̄s
2

ρ̄cpdθ̄2
v

w
dρ̄θ̄v
dz

Use (3.25) and split the vertical derivative in the second term to yield:

Rdπ̄

cvd
∇ · ~V︸ ︷︷ ︸
A

+
Rdπ̄

cvdρ̄θ̄v
w

[
ρ̄
dθ̄v
dz

+ θ̄v
dρ̄

dz

]

which can be manipulated into:

A+
Rdπ̄

cvd
w

[
d ln θ̄v
dz

+
d ln ρ̄

dz

]
. (3.30)

Now, the term in square brackets has been seen before, in (3.20). Use (3.20) to replace

the density derivative in (3.30) above. We should find that the two terms with the vertical

temperature derivatives exactly cancel, leaving us with:

A− Rdπ̄

cvd
w
g

c̄s2
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Take this expression, the hydrostatic equation (3.10) and the base state sound speed (3.17),

and we finally end up with

− c̄s
2

ρ̄cpdθ̄2
v

[
∇ · ρ̄θ̄v~V

]
= −Rdπ̄

cvd
∇ · ~V − wdπ̄

dz
,

which concludes the proof.

3.4.2 Interpretation

This is the pressure tendency equation we have derived:

∂π′

∂t
= −~V · ∇π′︸ ︷︷ ︸

[1]

− c̄s
2

ρ̄cpdθ̄2
v

[
∇ · ρ̄θ̄v~V

]
︸ ︷︷ ︸

[2]

−Rdπ
′

cvd
∇ · ~V +

c2
s

cpdθ2
v

dθv
dt︸ ︷︷ ︸

[3]

. (3.31)

The left side, of course, represents the local perturbation pressure rate of change at a single

location. Three terms on the RHS have been highlighted. These terms influence the local

pressure tendency through:

Term 1 Advection of pressure. “The future pressure here depends on the present pressure

there”. The local pressure rises or falls depending on what the wind is carrying with

it. Advection travels with the flow velocity, with a time scale given by L
V

, where L is

some measure of horizontal length (such as the grid spacing) and V is the flow speed.

Since V ≈ 10 m s−1 or so, pressure advection is not rapid.

Term 2 Acoustic adjustment. “The future pressure here depends on the present wind field here

(the dynamics)”. The local pressure rises or falls depending (primarily) on the local

mass convergence. This signal travels at the sound wave speed, so its time scale is L
cs

(i.e., quite short).

Term 3 Diabatic heating. “The future pressure here depends on the thermodynamics.”

Rewrite (3.31), incorporating all terms on the RHS except term [2] into catch-all proxy fπ,

and we have the equation in the form we plan to use in the model:

∂π′

∂t
+

c̄s
2

ρ̄cpdθ̄2
v

[
∇ · ρ̄θ̄v~V

]
= fπ. (3.32)

In their 3D model, Klemp and Wilhelmson (1978, J. Atmos. Sci., p. 1070) argued that the

terms embodied in fπ appear to have little effect on important physical processes operating

in convection, and thus set the term to zero. (They remarked that this would be formally

justified, but the paper they referred to never appeared — at least to my knowledge.) The
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chief consequence of neglecting fπ appears to be that unique values of pressure are no longer

obtained; instead, the field is predicted only to within an unknown constant. Since we have

successfully avoided having to use raw values of π′, this is not a concern. We will follow

Klemp and Wilhelmson and set fπ to zero.

3.5 The fully compressible model equations

These are the equations we’ve developed thusfar (after performing a compatible perturbation

analysis on (3.3):

∂u

∂t
= −~V · ∇u− cpdθ̄v

∂π′

∂x
(3.33)

∂w

∂t
= −~V · ∇w − cpdθ̄v

∂π′

∂z
+ g

θ′v
θ̄v

(3.34)

∂θ′

∂t
= −~V · ∇θ′ − wdθ̄

dz
(3.35)

∂π′

∂t
= − c̄s

2

ρ̄cpdθ̄2
v

[
∇ · ρ̄θ̄v~V

]
(3.36)

This is the fully compressible model framework we will use for our model. While this

framework represents a convenient and relatively easily programmed equation set, it should

be noted it is not optimal from an energy and mass conservation standpoint, especially when

moisture is included. Bryan and Fritsch (2002, MWR) discuss improvements to this set of

equations.
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Chapter 4

Numerical solution of partial
differential equations, Part I: The
basics and the upstream scheme

4.1 Introduction

Partial differential equations (PDEs) may be classified into three types, based on their form

and character: parabolic, hyperbolic and elliptic. The first two will be illustrated with the aid

of Fig. 1, which depicts initial and subsequent fields for an initially bell-shaped perturbation.

Parabolic equations have the basic form

∂u

∂t
= Kx

∂2u

∂x2
(4.1)

(whereKx is a positive constant) and are characterized by diffusion. Figure 1 shows that after

being subjected to diffusion for a long time, the perturbation will be completely smoothed

away. During its amplitude decrease, the original “pile” of material itself did not propagate,

though it did spread horizontally. In addition, the total quantity of material, given by the

area under the curve, has been conserved. In contrast, hyperbolic equations, having the form

∂u

∂t
= −c∂u

∂x
, (4.2)

are characterized by advection, translation without change of amplitude or shape (see Fig.

1). In (4.2), c is a constant propagation velocity, the speed at which the perturbation will

translate (rightward for c > 0.)

Elliptic equations often have forms like

∇2u = F (4.3)
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and are often diagnostic relations (i.e., no time derivatives appear). An example of an elliptic

equation in dynamic meteorology is the relationship between streamfunction and vorticity.

Elliptic equations are straightforward to solve if u is known and F is desired, but what if

we have F and need u? In that case, it can be difficult, if not impossible, to obtain exact

values of u given the F field, since having F does not inform us directly about u, or even

the gradient of u, but rather its second derivatives. Because of this, u anywhere depends (to

a certain degree) on F everywhere, and thus F anywhere affects u everywhere, again to a

degree.
A
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Figure 4.1: Parabolic and hyperbolic (presuming c > 0) type solutions.

Our set of equations are a mixed set of hyperbolic and parabolic equations, but there is

an elliptic equation in the mix as well if the anelastic or incompressible approximations are

made. Even if the problem being simulated is truly inviscid, however, the numerical solution

may not be. The numerical scheme employed may introduce an artificial source of smoothing

into the solution, or we may find the need of intentionally introduce artificial diffusion in

order to keep the solution stable.

In this chapter, we examine the finite difference (FD) approximation to the simple one-

dimensional (1D) inviscid advection equation (4.2), which we’ll rewrite more simply as

ut + cux = 0 (4.4)

We appreciate that in discretizing space and time, creating a grid spacing ∆x and a time

step ∆t, we introduce errors that should increase as ∆x and ∆t get larger. We have to

hope, however, that as ∆x and ∆t go to zero that our numerical solution converges on the

correct solution. The Lax-Richtmyer theorem tells us that such convergence is assured if

the numerical scheme is both consistent and stable. Consistency means we are solving the

correct problem; stability means the solution will not grow unbounded with time.
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4.2 Consistency

At least initially, we’ll examine consistency and stability using the upstream, or upwind

scheme as our practical example, not because the upstream scheme is good (actually, it’s

pretty bad) but owing to its simplicity and pedagogical value. The upstream approximation

to (4.4) is:
un+1
j − unj

∆t
+ c

[
unj − unj−1

∆x

]
= 0, (4.5)

where c must be nonnegative in this example so the wave is moving from left to right. In

the above, unj represents the variable value at grid point j at time n, which we take to be

the current spatial location and the present time.

The upstream scheme is forward-in-time and upstream-in-space. The time derivative is

computed from the present [time n] to the future [time n+ 1], while the spatial derivative is

computed between here [grid point j] upstream to there [grid point j − 1], where the wave

is coming from. If c changes sign, the spatial derivative will have to be revised so that the

derivative is computed upstream. The upstream scheme is “explicit” because (4.5) may be

rewritten leaving the only unknown value — un+1
j — on the LHS. The rest are known.

Is (4.5) a consistent approximation to (4.4)? We assess this with Taylor series expansions,

and the point to be expanded about is the current grid point value at the present time; i.e.,

unj . Therefore, we have:

un+1
j = unj + ut∆t+ utt

(∆t)2

2
+ uttt

(∆t)3

3!
+ · · · ,

and

unj−1 = unj − ux∆x+ uxx
(∆x)2

2
− uxxx

(∆x)3

3!
+ · · · .

(How do you know how many terms to keep in the Taylor series? Generally you don’t know

for certain, so keep enough terms that you don’t run out later when you truncate.)

Substitute these expansions into (4.5), then rearrange in such a way as to reproduce the LHS

of (4.4) so we can see what’s left over. We have

1

∆t

[
unj + ut∆t+ utt

(∆t)2

2
+ uttt

(∆t)3

3!
− unj

]
+

c

∆x

[
unj − ux∆x+ uxx

(∆x)2

2
− uxxx

(∆x)3

3!
− unj

]
.

Simplify and distribute the ∆t and ∆x, moving the terms resembling the original PDE to

the LHS. We end up with:

ut + cux = −∆t

2
utt +

c∆x

2
uxx −

(∆t)2

3!
uttt −

c(∆x)2

3!
uxxx +O[(∆t)3, (∆x)3]︸ ︷︷ ︸

τ

. (4.6)
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The remaining terms of the Taylor series had terms that contained the cubic or higher powers

of the grid spacing and time step, and we concatenated them into the final term.

According to the original PDE, (4.4), the RHS of (4.6) should be zero, but this isn’t

likely to be true, at least for finite values of ∆t and ∆x. What remains there is truncation

error , τ . The scheme is consistent, though, if and only if the truncation error vanishes as

∆t and ∆x go to zero. This is indeed the case for the upstream scheme.

For nonzero ∆t and ∆x, it is seen that we are NOT exactly solving (4.4), because the

truncation error τ is nonzero. We can manipulate the truncation term to gain some physical

insight on the problem we are actually (unavoidably, if not inadvertently) solving. First,

perform ∂
∂t

(4.6) to yield:

utt + cuxt = −∆t

2
uttt +

c∆x

2
uxxt −

(∆t)2

3!
utttt −

c(∆x)2

3!
uxxxt +O[(∆t)3, (∆x)3].

Then take −c ∂
∂x

(4.6), producing

−cutx − c2uxx = +
c∆t

2
uttx −

c2∆x

2
uxxx + c

(∆t)2

3!
utttx +

c2(∆x)2

3!
uxxxx +O[(∆t)3, (∆x)3].

Add these last two expressions together and solve for utt:

utt = c2uxx + ∆t
[
−uttt

2
+
c

2
uttx

]
+ ∆x

[
c

2
uxxt −

c2

2
uxxx

]
+O[(∆t)2, (∆x)2]. (4.7)

Similarly (skipping the gory details and explicitly keeping fewer terms), we can produce:

uttt = −c3uxxx +O[∆t,∆x] (4.8)

uttx = c2uxxx +O[∆t,∆x] (4.9)

uxxt = −cuxxx +O[∆t,∆x]. (4.10)

Substitute (4.8-4.10) into (4.7) and plug the result into (4.6) to get a rewritten expression

for the truncation error on the RHS:

ut + cux =
c∆x

2

[
1− c∆t

∆x

]
uxx +O[(∆t)2, (∆x)2] (4.11)

(for convenience, only the leading term in τ has been explicitly retained). Again, it is seen

that τ → 0 as ∆t and ∆x→ 0, so the scheme is consistent. More importantly, it is seen for

nonzero τ , the equation we are actually solving numerically is

ut + cux = f(uxx).

The leading part of the truncation error is a diffusion term [compare to (4.1)]. Recall

that the advection equation should move the initial disturbance along at constant speed
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without change of shape. It is seen that the fatal flaw of the upstream scheme is that it

contains large implicit diffusion, which is present for numerical reasons owing to the finite

discretization. Integrated for a sufficiently long period, the upstream scheme will diffuse any

initial perturbation away, which makes it useless for long-term integrations.

Figure 2 presents a qualitative look at the performance of the upstream scheme. A single

sine wave has been advected to the right at constant speed c for some period of time. The

“true (analytic) solution” has the wave having moved exactly at speed c without change in

amplitude or shape. Owing to the extreme inherent diffusiveness of the upstream scheme,

the amplitude of the wave has been greatly damped. However, the wave is in about the right

place; that is, it has been advected at about the right speed. The figure also shows how

an alternate method, the leapfrog scheme (to be introduced presently), would fare on this

problem. Note the leapfrog solution has properly preserved the wave’s original amplitude

but tends to advect the wave a bit too slowly. Thus, this scheme has little amplitude error,

but does have some degree of phase error.

true solution

upstream

leapfrog

Figure 4.2: Upstream and leapfrog solutions compared to the true (analytic) solution.

4.3 Stability

4.3.1 The analytic solution

To assess a scheme’s stability, we need to compare the scheme’s solution to the analytic

solution. In (4.4), we assume the analytic result has wave-like solutions of the form:

u(x, t) = Aei(kx−ωat) (4.12)

in the same manner as we did when we examined sound and gravity waves in Chapter 2. In

(4.12), the subscript “a” denotes “analytic”. Recall that, by definition, the phase speed is

defined as

ca =
ωa
k
. (4.13)
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Unlike any previous situation, we recognize that the frequency in (4.12) may be complex. In

that event, the real part of the frequency determines the phase speed; i.e., ca = ωaR

k
.

Substituting (4.12) into (4.4) yields the analytic frequency equation

−iωa + cik = 0.

As c and the horizontal wave number k are real numbers, it is seen that the analytic frequency

ωa is purely real. This expression can be rearranged to show that c = ωa

k
. Since according to

(4.13), the RHS of this expression is the analytic phase speed, we see that for the analytic

solution, ca and the advection speed c from (4.4) are the same. That is, in the analytic

solution, the wave translated to the right at speed c. Note further that the propagation

speed is independent of the wavelength because k cancels out (leaving ca = c).

Equation (4.12) holds at a particular time t, representing the present time. What will the

solution look like at a future time, t+n∆t, being n time steps in advance of the present time?

We want this future solution expressed in terms of the present time’s solution. Substitute

t+ n∆t for t in (4.12), and we find:

u(x, t+ n∆t) = Aei(kx−ωa[t+n∆t])

= Aei(kx−ωat)e−iωan∆t.

Using (4.12) again and defining the change function for the analytic solution, λa, as:

λa = e−iωa∆t (4.14)

then the future solution is related to the present one by:

u(x, t+ n∆t) = u(x, t)λna . (4.15)

Consider the analytic frequency ωa. We’ve already shown the analytic frequency is purely

real. However, in the more general case, the frequency is potentially a complex number. The

true solution can translate and its amplitude can change as a function of time. Translation is

determined by the real part of ωa, while amplitude change (growth or decay) is represented

by the imaginary part of ωa. Because ωa can be complex, λa can be also.

Recognizing that ωa might be complex, we write it as:

ωa = ωaR + iωaI .

Then

λa = e−iωa∆t = e−iωaR∆teωaI∆t

Using Euler’s relation to expand the RHS’ first exponential yields:

λa = eωaI∆t cosωaR∆t︸ ︷︷ ︸
real part

− ieωaI∆t sinωaR∆t︸ ︷︷ ︸
imaginary part

. (4.16)
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We can write the change function λa in polar form; i.e.,

λa = |λa|eiθa

where

|λa| =
√
λ2
aR + λ2

aI

θa = arctan
λaI
λaR

.

The expression θa is termed the analytic phase function. Here,

|λa| =
√
e2ωaI∆t(cos2 ωaR∆t+ sin2 ωaR∆t)

= eωaI∆t,

because the term under the square root sign is merely unity, and

θa = arctan

[
−eωaI∆t sinωaR∆t

eωaI∆t cosωaR∆t

]
= arctan [− tanωaR∆t]

= arctan [tan(−ωaR∆t)]

= −ωaR∆t.

Therefore, the polar form of the change function may be written as:

λa = |λa|e−iωaR∆t = eωaI∆te−iωaR∆t. (4.17)

Now consider at this point (4.15) together with (4.17). We want to know how the future

state of the solution relates to the present one. This is accomplished through the change

function λa. But λa has two parts, as shown by (4.17). The exponential function with the

real part of the analytic frequency, ωaR, merely represents sinusoidal oscillation in space and

translation in time at phase speed ca = ωaR

k
.

In contrast, the exponential with the imaginary frequency component, ωaI , represents am-

plitude change as a function of time. If in fact ωaI > 0, then exponential growth occurs, and

the physical situation is unstable. Thus, we term the absolute value (complex conjugate) of

the change function, |λa|, as the amplification factor.

To see this, substitute (4.17) into (4.15). We find:

u(x, t+ n∆t) = u(x, t)|λa|ne−iωaRn∆t.

Note the amplification factor is raised to the power n, the number of time steps we have

advanced subsequent to the present time. If this factor is greater than one, growth in time

is swift.
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Again, we’ve already showed that for the analytic solution, ωa is purely real, so ωaI = 0

and thus |λa| = 1. The true solution merely translates at speed c = ca without change of

amplitude. The analytic phase function, then, is simply

θa = −ωaR∆t = −kca∆t. (4.18)

The finite difference scheme’s solution, however, may have a different, and complex, fre-

quency. We examine the upstream scheme’s frequency and phase function next.

4.3.2 The finite difference scheme

The finite difference (FD) analogue to the preceeding will be indicated with the subscript

“d”. The finite difference frequency, ωd, may be complex, so:

ωd = ωdR + iωdI .

The FD change function is

λd = e−iωd∆t

and may be complex, so:

λd = λdR + iλdI .

In polar form, the change function is:

λd = |λd|eiθd

where the FD amplification factor is |λd| = eωdI∆t and the FD phase function is θd =

arctan
[
λdI
λdR

]
. Completing the analogy, we write the FD phase function may be rewritten as:

θd = arctan
λdI
λdR

= −ωdR∆t = −kcd∆t (4.19)

where cd is now the translation speed of the numerically simulated wave.

In the analytic solution, we found |λa| = 1. This is not necessarily true for the FD scheme’s

simulated wave. Thus, the case of |λd| 6= 1 represents FD amplitude error. Further, the

FD and analytic phase speeds, cd and ca, are not necessarily the same. The case of cd 6= ca
represents FD phase error, which can be expressed by the ratio:

θd
θa

=
−kcd∆t
−kca∆t

=
cd
ca
. (4.20)

Recall that for the analytic solution, ca was independent of k, so all waves propagated at the

same speed (c), irrespective of wavelength. In general, it will be seen that the phase error
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in the FD solution is a function of wavelength — specifically, that the schemes translate

longer waves better than shorter ones. Consider then an initial condition composed of a

sum of waves of different wavelengths, which combine to produce a composite wave with

a certain shape. In the analytic solution, all waves translate together at the same speed,

so the composite shape is preserved. In the FD scheme, however, since different waves

have different phase errors, the composite wave will start to “unravel” as it propagates,

with the unavoidable result that its shape will not be preserved. Since, in general, different

waves move at different speeds in the FD solution, the numerical result will also suffer from

dispersion error.

We need to find expression for |λd| and θd for the upstream scheme. We’ll do this by

employing the so-called “modified” von Neumann stability analysis. This technique is easier

to apply than the “regular” von Neumann approach but is not as powerful, and can yield

necessary conditions for stability but not sufficient conditions. For what we’re going to

examine, however, the regular and modified techniques yield the same results, so we might

as well do it the easier way.

The upstream scheme FD approximation (4.5), rewritten in terms of the unknown future

forecast un+1
j , is:

un+1
j = unj −

c∆t

∆x

[
unj − unj−1

]
. (4.21)

Assume a wave-like solution representing the FD analogue of (4.12):

unj = Aei(kx−ωdt). (4.22)

Note the frequency ωd in the above. Equation (4.21) also contains un+1
j and unj−1, which may

be gotten from (4.22) by substituting t+ ∆t for t and x−∆x for x, respectively. Then, un+1
j

is:

un+1
j = Aei(kx−ωdt)︸ ︷︷ ︸

unj

e−iωd∆t︸ ︷︷ ︸
λd

= unj λd

and the comparable expression for unj−1 is:

unj−1 = unj e
−ik∆x.

Upon substituting these expressions into (4.21), one finds:

unj λd = unj −
c∆t

∆x

[
unj − unj e−ik∆x

]
.

The common unj cancels. Let c′ = c∆t
∆x

for convenience, and note that owing to Euler’s relation

e−ik∆x = cos k∆x− i sin k∆x.
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Therefore,

λd = 1− c′ + c′ cos k∆x︸ ︷︷ ︸
λdR

−ic′ sin k∆x︸ ︷︷ ︸
λdI

. (4.23)

The square of the FD amplification factor is given by:

|λd|2 =
[
λ2
dR + λ2

dI

]
which using (4.23) above can be shown to be:

|λd|2 = 1 + 2c′(1− c′) [cos k∆x− 1] . (4.24)

Now, if |λd|2 > 1, the solution grows with time, and thus the situation is unstable. Thus,

in order to avoid instability, we require |λd|2 < 1, and (4.24) shows this to be conditioned

upon:

c′ ≡ c∆t

∆x
≤ 1. (4.25)

Equation (4.25) is often termed the Courant-Fredrichs-Lewy (CFL) criterion. Some physical

insight can be gained from turning that expression upside down, producing

s =
∆x

c∆t

This can be thought of as a sampling rate. s = 1 means the wave propagating at speed c

will move one grid point ∆x in one time step ∆t. Our analysis shows that sampling too

slowly (small s or large c′) yields instability; the solution blows up. Intuition tells you that a

higher sampling rate (larger s or smaller c′) should be an improvement — the more rapidly

you sample something, the more smoothly it appears to move between samples. Actually, it

happens that in the FD world, sampling more frequently isn’t always a good idea, and this

will now be seen to be true for the upstream scheme, at least.

Recall that the upstream scheme’s fatal flaw is the presence of implicit diffusion in the scheme

(recall Fig. 2). This diffusion can be seen in |λd|. From (4.24), it is seen that if c′ = 1, then

|λd| = 1, and there is no amplitude error. The solution neither grows nor decays; the FD

scheme does what it is supposed to, at least with respect to the amplitude. However, if a

higher sampling rate is chosen, such that c′ < 1, then (4.24) shows that |λd| < 1 and the

solution decays with time.

Normally, the smaller your time step, the more expensive the computations. Thus, you

typically want to adopt the largest ∆t that yields a stable solution. With the upstream

scheme, this turns out to be the right thing to do, because choosing the largest stable time

step helps alleviate the implicit diffusion problem. This is ostensibly easy to do in this

sample problem; you know c. However, in practice the advection problems one encounters
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are multi-dimensional, having non-constant flow speeds and nonlinear advection terms. In

that event, choosing the “right” time step for a given grid spacing is quite impossible.

For c′ 6= 1, the amplitude will either grow or decay for all waves, because |λd| 6= 1. However,

all waves are not affected equally. Due to the cos k∆x term in (4.24), |λd| varies with

wavenumber k, even for the same c′. It turns out that the shortest waves always handled

worst. Figure 3 (left side) shows the amplitude error |λd| as a function of wavelength and

normalized wavenumber (k∆x
π

, which varies between 0 and 1).

k∆x/π .1 .3 .5 .7 .9
8∆x 4∆x 2∆xwavelength

1.0

2.0

1.5

0.5

c'

.1 .3 .5 .7 .9
8∆x 4∆x 2∆x

1.0

2.0

1.5

0.5

c'

absolute value of θd/θaamplification factor |λd|

upstream scheme

Figure 4.3: Amplitude error (left) and absolute phase error (right), plotted as a function of c′ and
wavelength and normalized wavenumber.

We must appreciate that the smallest resolvable wave has a wavelength of Lx = 2∆x. Since

k is 2π
Lx

, k∆x = π for the 2∆x wave and cos k∆x = cos π = -1. In this situation, (4.24) shows

that

|λd|2 = 1− 4c′(1− c′).

It is clear that if c′ > 1, |λd|2 > 1, and because

u(x, t+ n∆t) = u(x, t)λnd .

[the FD analogue of (4.15)], it is seen the amplitude will grow swiftly with time. Indeed,

one should see that due to the presence of cos k∆x in the equation, it is the shortest waves

that will amplify the fastest. For c′ < 1, amplitudes will decrease because |λd|2 < 1, but the

shortest waves damp the fastest. Interestingly, the damping rate reaches a maximum for all

wavelengths at c′ = 0.5, and then diminishes for decreasing c′. At c′ = 0.5, |λd|2 = 0 for the

2∆x wave; it will vanish in just one time step.

Now we consider the phase error of the upstream scheme. Take (4.18) and, recalling that
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for the analytic solution ca = c, rewrite it as:

θa = −k∆x
c∆t

∆x
= −c′k∆x,

where all we did was to first multiply and divide by ∆x and then employ the definition of

c′. The real and imaginary parts of the FD change function λd were revealed in (4.23); plug

these into (4.19) to yield:

θd = arctan
−c′ sin k∆x

1− c′ + c′ cos k∆x
.

Finally, use these expressions to form the phase error ratio defined in (4.20):

θd
θa

=
arctan −c′ sin k∆x

1−c′+c′ cos k∆x

−c′k∆x
. (4.26)

The phase error for the upstream scheme is shown on the right side of Fig. 3. It turns out

that, in this aspect, the upstream scheme is imperfect even at c′ = 1. At this value, waves

with grid wavelengths Lx < 4∆x are not advected properly. (For c′ = 1, the advection

speeds of these waves are too slow, though that can’t be seen directly in the figure because

the absolute value of the phase error is shown.) For c′ < 0.5, all wavelengths are advected

too slowly compared to the analytic solution. Again, this is contrary to to the intuition that

higher sampling rates are better.

Furthermore, phase error is worst for the shortest waves. At any value of c′, the smallest

resolvable wave, 2∆x, does not move relative to the grid at all. Recall that in the analytic

solution, all waves move at the same speed c so the feature being advected retains its original

shape. In the FD solution, the dependence of phase error on wavelength means that a feature

composed of a superposition of waves with different wavelengths will unravel while being

advected due to dispersion error.

The lesson to be learned from both sources of error is that the shortest waves tend to be

mishandled, which implies: (a) do not invest much importance into these waves (owing to

their poor handling); and (b) make sure you choose your grid spacing to properly resolve

the phenomenon you are trying to advect. For example, if your primary wave of interest is

10 km wide, choose ∆x on the order of 1 km, so your feature is 10∆x.
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Chapter 5

Numerical solution of partial
differential equations, Part II: The
leapfrog scheme

In Chapter 4, it was seen that the upstream scheme was a consistent approximation to the

hyperbolic PDE

ut + cux = 0, (5.1)

but it suffered from considerable amplitude error, making it essentially useless in practice.

A superior alternative is the leapfrog method, in which the time and space derivatives are

replaced with centered approximations. One version of the leapfrog scheme applied to (5.1)

is
un+1
j − un−1

j

2∆t
= −c

[
unj+1 − unj−1

2∆x

]
. (5.2)

Note that this scheme, too, is explicit and involves three time levels (n, n+ 1 and n−1) and

three points in space (j, j+1 and j−1). The time and space derivatives are centered around

the here/now point, unj , and are computed over intervals of 2∆t and 2∆x. As a result, note

that although we wish to create a forecast at the present point at time n + 1 (i.e., un+1
j ),

that forecast does not involve the present value at this point! That is to say, unj does not

appear in the equation — at least not in the advection term.

In finite differencing, it is typically found that centered schemes are superior in accuracy to

one-sided schemes (like the upstream scheme). Generally, the more points that are included

in the approximation of a derivative, the greater the accuracy, but whether the points are

deployed in a centered or one-sided manner also matters. The order of accuracy is determined

by the lowest power of the grid and time spacing in the truncation error term. In equation

(4.6) of Chapter 4, it was seen that the lowest power of ∆t and ∆x for the upstream method

was one. Thus, that scheme was first-order accurate. It will be seen that the truncation
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term for (5.2) has powers of two for both ∆t and ∆x, so it is second-order accurate for both

time and space, even though it also explicitly employs only two points in each derivative.

Other factors being equal, the second-order approximation would be superior to a first-order

scheme because as ∆t and/or ∆x go to zero, ∆t2 and ∆x2 do so faster.

Although often applied to the entire approximation shown in (5.2), the term “leapfrog”

actually refers only to the way the time differencing is handled. Our present value of the

variable being predicted is unj . To make a forecast for time n+1, we’re actually backtracking

to time n − 1 and then leaping over time n all the way to time n + 1. When we wish to

forecast for time n+ 2, we will start at time n and leapfrog over time n+ 1. See Fig. 5.1.

n-1 n n+1 n+2

time

Figure 5.1: “Leapfrog” time stepping.

By using additional points, it is possible to construct still higher order approximations to

the space and/or time derivatives, producing an even higher order version of (5.2). While

this is often done for the spatial derivative, it is very rarely attempted with the leapfrog

time term, for reasons that will become readily apparent! (Higher accuracy in time while

formally retaining two time levels is possible with Runge-Kutta schemes; see Model Task

0B.) A second-order time but fourth-order space leapfrog scheme would look like this:

un+1
j − un−1

j

2∆t
= c

[−unj+2 + unj−2 + 8unj+1 − 8unj−1

12∆x

]
.

This fourth-order spatial derivative requires four points, distributed symmetrically about the

grid point the gradient is being computed for.

As the order of the approximation is increased, it becomes more challenging to implement

these schemes, especially in the vicinity of boundaries. Near a boundary, the fourth-order

approximation cannot be used, because points well outside the domain would be required, so

the second-order scheme is employed there instead. In theory, using a less accurate scheme

at any point within the domain degrades the accuracy of the entire solution, especially if

the feature being simulated is close to the boundary. In practice, however, model domains

are much wider than they are deep, and so the lateral boundaries are usually much farther

from the features of interest than the upper and lower boundaries. Thus, in 2D or 3D prob-

lems, fourth-order spatial differencing, when employed, is usually restricted to the horizontal

derivatives; the vertical gradients are computed using second-order approximations.
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There is a significant downside to using leapfrog time integration. We saw that the analytic

solution for (5.1) consisted of a single feature, translating at speed c, to the right if c > 0.

There was only one solution, befitting the first degree derivative ut. However, an n-level

finite difference scheme has n−1 degrees of freedom and there is one solution for each degree

of freedom. Only one of these convolved solutions can be physically realistic – the “physical

mode” – the others are “computational modes”.

The upstream scheme used a two time level approximation for ut, and so it also yielded only

one (generally not very good) answer. The leapfrog, in contrast, utilizes three time levels,

and thereby results in two solutions. One is potentially the correct answer; the other is most

definitely wrong. So why are we doing this?

We want to use higher order (and especially centered) approximations for spatial derivatives,

because they are more accurate. Generally, they advect features better, especially the small

scale waves. But, as we will demonstrate, enhancing the accuracy of the time integration can

create artificial solutions that are not at all desirable if it is accomplished by including more

time levels into the scheme. Is the solution to use something that is centered and at least

second-order in space but with a two time level integrator like the upstream scheme? This

would seem to be a reasonable compromise. Unfortunately, such schemes are not stable, so

they are useless.

5.1 Consistency and stability of the second-order leapfrog

scheme

We will now show the leapfrog scheme (5.2) is consistent and second-order. We need to take

Taylor series expansions about the here/now point unj . For the time derivative, this becomes:

un+1
j − un−1

j

2∆t
=

1

2∆t

[
2∆tut +

2

3!
∆t3uttt + · · ·

]
= ut +

1

3!
∆t2uttt

= ut +O(∆t2).

Thus, our leapfrog time approximation is equivalent to the derivative we’re trying to solve

(ut), plus truncation error that is proportional to the square of the time step. Note the

truncation error goes to zero as ∆t does, so the time derivative approximation is consistent.

For the space approximation, we can use the same technique to show:

c

[
unj+1 − unj−1

2∆x

]
= cux +O(∆x2),

showing the spatial approximation to also be second-order accurate and consistent.
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Note that, unlike the upstream scheme, the leapfrog truncation error has derivatives with

odd degrees (e.g, uxxx) instead of even degrees. Even degree derivatives constitute diffusion

processes, while odd degrees represent propagation. Thus, we anticipate the leapfrog scheme

will have little or no amplitude error (at least while stable) but may have some problem with

feature phase speeds.

To assess the second-order leapfrog scheme’s stability and error characteristics, we’ll again

employ the modified von Neumann method. First, we write the scheme in explicit form:

un+1
j = un−1

j − c∆t

∆x

[
unj+1 − unj−1

]
. (5.3)

We again assume solutions of the form:

unj = Aei(kx−ωdt)

Using previously employed definitions, we see that:

un+1
j = unj λ

un−1
j = unj λ

−1

unj+1 = unj e
ik∆x

unj−1 = unj e
−ik∆x,

where the subscript “d” has been dropped from λ because it is clear we’re talking about the

FD approximation here.

Substituting these expressions into (5.3) yields the following equation:

λ = λ−1 − c∆t

∆x

[
eik∆x − e−ik∆x

]
.

Multiply through by λ and note that Euler’s relation allows us to simplify the bracketed

term in this way:

eik∆x − e−ik∆x = cos k∆x+ i sin k∆x

= cos k∆x+ i sin k∆x− cos k∆x+ sin k∆x

= 2i sin k∆x

Rearranging the result, we wind up with this quadratic:

λ2 + i2c′ sin k∆xλ− 1 = 0,

where we have again defined c′ = c∆t
∆x

. For convenience, let a = c′ sin k∆x, which results in:

λ2 + i2aλ− 1 = 0. (5.4)
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Now, remember that λ is our change function, how we relate the future state of the solution

to the present state. Note the change function here is a quadratic, meaning there are two

solutions. Thus, there are two future states of the wave, even though the analytic version

admits only one result. These two states are convolved as they are added together.

Solving quadratics containing complex numbers can be a little tricky. As an aside, we provide

below solutions for complex equations like

λ2 + (A+Bi)λ+ (C +Di) = 0,

where A, B, C, and D are real numbers. As shown by Kurihara (1965; see Appendix 2), the

two solutions are:

λ+ =

[
−A
2

+
1

2
√

2

√
R +
√
R2 + I2

]
+ i

[
−B
2

+
1

2
√

2

I√
R +
√
R2 + I2

]

λ− =

[
−A
2
− 1

2
√

2

√
R +
√
R2 + I2

]
+ i

[
−B
2
− 1

2
√

2

I√
R +
√
R2 + I2

]
,

where

R = A2 −B2 − 4C

I = 2AB − 4D.

In our equation, A = D = 0, B = 2a, and C = −1, so R = −4(a2−1) and I = 0. Therefore,

our two change function solutions simplify down to:

λ+ =
√

1− a2 − ia
λ− = −

√
1− a2 − ia,

and so we can write the solutions jointly as:

λ = −ia±
√

1− a2. (5.5)

The interpretation of (5.5) depends upon whether
√

1− a2 is real or imaginary. Recall that

a =
c∆t

∆x
sin k∆x,

and note that the maximum absolute value of sin is 1. Thus, if c∆t
∆x
≤ 1 then a ≤ 1 as well

and as a result
√

1− a2 is real. In that case,

λ = ±
√

1− a2︸ ︷︷ ︸
real

− ia︸︷︷︸
imaginary

, (5.6)
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and

|λ|2 =
[√

1− a2
√

1− a2 + a2
]

= 1− a2 + a2

= 1.

This is true for both change function solutions, λ+,−, for any values of ∆t and ∆x so long

as c∆t
∆x
≤ 1. Therefore, so long as it is stable, the leapfrog scheme has no amplitude error. It

is the advantage of centered schemes in general that they possess no implicit diffusion like

the one-sided methods do. (We know that again c∆t
∆x
≤ 1 is the stability criterion for the

leapfrog scheme, as it was for the upstream method, because if we exceed this value, |λ| > 1

and the solution will blow up).

5.2 Physical and computational modes, and dealing

with “time-splitting”

Before specifically considering the phase error of the leapfrog scheme, we have to see the

consequences of using a three time-level approximation to a first-degree derivative. Again,

we write the change function in polar form:

λ = |λ|eiθ,

where it is recalled that the phase function is defined as:

θ = arctan
λI
λR
. (5.7)

However, we’ve two solutions now, involving roots λ+ and λ−, and phase functions θ+ and

θ−. These solutions are related through polar form (see Appendix A) as:

λ+ = |λ|e−iθ− (5.8)

λ− = |λ|ei(θ−+π). (5.9)

Note the above expressions employed the phase function defined for the negative root. This

was done for convenience since it can be shown that θ− = −θ+ (see Appendix A). From here

on, the subscript on θ will be neglected.

We’re only interested in how the scheme behaves when stable, and while stable |λ| is always

unity, so we can ignore it. Also (again, see Appendix A), θ = arcsin (a). Recall at this point

that we’ve routinely been assuming wave-like solutions of the form

unj = Aei(kx−ωdn∆t) = Aλneikx. (5.10)
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In this version, we are relating the solution at time n, unj , to the solution at time 0, which is

n∆t time steps in the past. The equation for u0
j is simply a version of the above with n =

0, i.e.,

u0
j = Aeikx,

and using the properties of the exponential function we again appreciate that (5.10) can be

expressed as

unj = Aλneikx.

But since we now have two solutions, we need to revise the above expression to:

unj = (A1λ
n
+ + A2λ

n
−)eikx. (5.11)

One of these components may not be right, but the other is definitely wrong, and it remains

to identify the mitigate the bad solution.

Quick recap of the preceding: We’re looking at the how the leapfrog FD scheme handles

waves. The state of the wave at the present time and spatial position is unj . It turns out that

for the leapfrog scheme, the solution consists of two convolved parts, given by the two terms

on the RHS of (5.14), and having combined (total or net) amplitude A. We will identify one

part with the desired solution and call it the physical mode in time. We will see the other

solution, which we will term the computational mode in time, has the very curious habit of

changing sign every time step. This portion of the solution is entirely artificial and we are

going to do our best to get rid of it.

5.2.1 Behavior of the computational mode

The amplitudes A1 and A2 can be determined from the initial condition (IC), and this is

covered in detail in the following subsection. However, we do not have to go through all those

details to recognize which of the two solutions is the undesirable one. So, in this subsection,

we will take a short cut to the answer.

We will start by expanding out (5.11) into

unj = A1λ
n
+e

ikx + A2λ
n
−e

ikx. (5.12)

Now we employ (5.8) and (5.9), recognizing that |λ| = 1. So the above expression becomes

unj = A1e
−iθneikx + A2e

i(θ+π)neikx

after λ+ and λ− are raised to the nth power. Note that ei(θ+π)n = eiθneiπn. Further note

that since eiπ = -1 then eiπn = (-1)n, so that our equation becomes

unj = A1e
−iθneikx + (−1)nA2e

iθneikx. (5.13)
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We can say three things about this equation: First, there are two solutions convolved,

represented by the amplitudes A1 and A2. Second, since the first term has e−iθn and the

other has eθn, and θ is proportional to cd, the two parts are moving in opposite directions.

Finally, owing to (-1)n, the sign of the A2 component is flipping every time step. That is

clearly wrong, so the second term is the computational mode in time, leaving the first to be

the physical mode.

Because of the flipping, the computational mode will manifest itself as 2∆t noise. This is

illustrated in Fig. 5.2. Suppose at some time, we have curvilinear feature in our domain

that looks like that in the top panel. The feature is translating rightward. The bottom

panel illustrates how that feature appears at location j as a function of time as it passes

by. Superimposed on the feature is amplifying 2∆t noise, representing the influence of the

computational mode on the physical solution. This mode itself can be thought of as two

solutions that are in the process of decoupling and diverging away from each other, one

represented by the even time steps, and the other by the odd ones. This is sometimes

known as “time splitting”, a term that is also used in a very different manner, representing

a technique for integrating acoustically-active and inactive terms using different time steps

for efficiency.

5.2.2 Initialization of the computational mode

Now we consider the details of determining the amplitudes of the physical and computational

modes. From the preceding, we appreciate that A = A1 + A2, but we will find it more

convenient to write this as A1 = A− A2. Thus, we can revise (5.13) as

unj = (A− A2)e−iθneikx + (−1)nA2e
iθneikx. (5.14)

We determine the amplitude of the computational mode, A2, by specifying how the time

integration is started. Recall the leapfrog centered time derivative looks like this:

un+1
j − un−1

j

2∆t
.

Usually, we don’t have un−1
j at the initial time, only unj . However, we can start the model

integration out with a forward-time and centered-space scheme instead. This scheme is

unstable, but we’re only going to use it for one time step. Thus, for the first step:

u1
j − u0

j

∆t
= −c

[
u0
j+1 − u0

j−1

2∆x

]
. (5.15)

Solve (5.15) for u1
j and then sub in the IC, u0

j = Aeikx. Then proceed using the modified
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u(t)

t

at point j

u(x)

x

j

Figure 5.2: Top: a wave-like feature present in the domain at some time. Bottom: How the
solution varies at point j identified in the top panel, presuming the feature is translating to the
right. The thin, dashed lines represent the combination of the physical mode in time (the thick red
curve) and the computational mode, which can be thought of as the decoupling of two solutions.
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von Neumann method as before. We find:

u1
j = u0

j −
c∆t

2∆x

[
u0
j+1 − u0

j−1

]
= Aeikx − c∆t

2∆x
Aeikx

[
eik∆x − e−ik∆x

]
= Aeikx − c∆t

∆x
Aeikx(i sin k∆x)

= Aeikx [1− ic′ sin k∆x]

u1
j = Aeikx [1− ia] . (5.16)

We have again used the shorthands c′ = c∆t
∆x

and a = c′ sin k∆x.

Now backtrack to (5.14) to look at the first time step after the initial time (i.e., n = 1). So

u1
j = (A− A2)e−iθeikx + (−1)A2e

iθeikx.

Equate the preceding with (5.16). The common eikx term cancels and what remains can be

written as:

A[1− ia] = Ae−iθ − A2[e−iθ + eiθ].

Note that e−iθ + eiθ = 2 cos θ, and that θ = arcsin (a), so that sin θ = a. Therefore, the

expression can be further simplified to:

A(1− cos θ) = −2A2 cos θ,

which can be solved for A2 to yield:

A2 =
−A(1− cos θ)

2 cos θ
.

Using this expression for A2 in (5.14) first results in:

unj =

[
A+ 〈A(1− cos θ)

2 cos θ
〉
]
e−iθneikx − (−1)n〈A(1− cos θ)

2 cos θ
〉eiθneikx,

which can be rearranged into the following form:

unj = Aeikx
[
〈(1 + cos θ)

2 cos θ
〉e−iθn − (−1)n〈(1− cos θ)

2 cos θ
〉eiθn

]
. (5.17)

This exposition effectively illustrates that the computational mode can exist from the very

initial time. That does not mean that this component will grow to become problematic, but

in practice with complicated, nonlinear problems, the mode does become excited and will

soon grow to consume the physical solution if not mitigated.
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5.2.3 Mitigation of the computational mode

To rid ourselves of the computational mode, we can exploit the tendency of the mode to

alternate sign from time step to time step. In Fig. 5.3, it is presumed we can isolate the

computational mode and show it for two adjacent time steps. The physical mode probably

didn’t change much between these two time levels, but the computational mode flipped over.

So, if we average the two times together in some fashion, creating a new estimate for one

of the times involved, the physical part of the solution won’t be changed much but the

computational part will be nearly eliminated.

computational mode at time n

computational mode at time n+1

Figure 5.3: The computational mode flips every time step.

Thus, we can counteract the computational mode by introducing artificial time diffusion (or

time smoothing) into our solution. Essentially, we are forcing into our system a term like utt.

At a minimum, three time levels will actually be involved. However, if we want to perform

our diffusion centered in time (and we do, for the sake of accuracy), this means that we need

to know the forecast for time n+ 1 before we can apply smoothing centered at time n.

This can be accomplished by mixing pre- and post-smoothed values for our forecast variable,

using the algorithm described below. Each time step contains the following two tasks:

• Use the leapfrog scheme to solve for the future value un+1
j , creating a preliminary,

unsmoothed estimate.

• Revise the present value of unj to adjusted value u̇nj , the adjustment being indicated by

the inclusion of a dot, by applying time smoothing involving the new future estimate

(un+1
j ), the present time’s unsmoothed estimate (unj ), and the value from the past

(u̇n−1
j ), which has already been smoothed.
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This can be implemented in the following manner, termed the Robert-Asselin time filter

(after Robert 1966; Asselin 1972):

un+1
j = u̇n−1

j − c′(unj+1 − unj−1) (5.18)

u̇nj = unj +
ε

2

[
un+1
j − 2unj + u̇n−1

j

]
(5.19)

Equation (5.18) is the regular leapfrog scheme, used to create a temporary estimate for

un+1
j . Then, we go back and revise the present time’s estimate [in (5.19)] by smoothing it

in a time-centered fashion. In (5.19), ε is a small diffusion coefficient, usually taken to be

something like 0.1.

This approach is commonly applied but not without justifiable criticism. One of the most

serious is that the mean of the three time values employed in the filter is not preserved by

the smoothing function. An alternate method for addressing this problem that has been

proposed in recent years (e.g., Williams 2009; Amezcua et al. 2011) can preserve the three

time level mean by smoothing both time n and time n+ 1 in each application. This revised

filter can be represented by the following, where now two dots indicate a value that has been

altered for a second time:

un+1
j = ün−1

j − c′(u̇nj+1 − u̇nj−1) (5.20)

ünj = u̇nj +
εα

2

[
un+1
j − 2u̇nj + ün−1

j

]
(5.21)

u̇n+1
j = un+1

j − ε(1− α)

2

[
un+1
j − 2u̇nj + ün−1

j

]
(5.22)

The new parameter in this strategy, α, takes on a value between 0 and 1, inclusive, with α

= 1 representing the original Robert-Asselin filter. Williams (2009) notes that while α = 0.5

preserves the three time level mean exactly, a slightly higher value (α = 0.53) when ε = 0.2

does the least damage to the accuracy of the physical mode.

5.3 Phase error

Now, finally, we consider the phase error of the leapfrog scheme. Actually, we’re only in-

terested in the error exhibited by the physical mode. In the above, we should have come

to realize that the physical mode was represented by the + root given by (5.8). The phase

function for this root is (see Appendix A):

θd+ = − arcsin [c′ sin(k∆x)] .

The subscript “d” has reappeared since we’re going to compare this to the analytic phase

function, found previously to be:

θa = −c′k∆x.
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Figure 3 plots the ratio of θd+
θa

as a function of normalized wavenumber and c′. It can be seen

that the phase error is not a strong function of c′ but varies tremendously with wavelength.

As in the case of the upstream scheme, the shorter waves are handled worst, and the smallest

resolvable wave (2∆x) does not move at all. As a result, the leapfrog FD solution suffers

from dispersion error.

.1 .3 .5 .7 .9k∆x/π
8∆x 4∆x 2∆xwavelength

0.5

1.0

c'
phase error of 2nd order leapfrog θd/θa

Figure 5.4: Phase error of the second-order leapfrog scheme.

5.4 The 2D leapfrog scheme

In the one-dimensional case, the stability criterion for both the upstream and leapfrog

schemes was c∆t
∆x
≤ 1. The quantity c∆t

∆x
is often termed the Courant number. The “rule” that

the Courant number must be less than one is not set in stone, however. It is dependent on

the order of accuracy of the scheme, the dimensionality of the problem and the grid layout.

Generally, higher order schemes, multi-dimensional geometries and more sophisticated grid

layouts (i.e., grid staggering) result in more restrictive stability conditions.

A case in point is the 2D leapfrog scheme, analyzed below. Let A be the variable being

advected, by a two-dimensional flow field with flow components being u and v in the x and
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y directions, respectively. Then the 2D leapfrog may be written in explicit form as:

An+1
ij = An−1

ij −
u∆t

∆x

[
Ani+1,j − Ani−1,j

]
− v∆t

∆y

[
Ani,j+1 − Ani,j−1

]
. (5.23)

The variables A, u and v are all defined at the same grid points; i.e., the grid is unstaggered.

Since the flow is presumed to vary in speed through the domain, this problem is not easy

to solve. However, we recognize that the stability of the scheme will be challenged most in

that section of the domain where the flow is moving fastest. Thus, we can replace u and

v by their maximum values. For simplicity, take this maximum to be c in both directions.

Further simplification can be realized by forcing the grid spacing to be uniform. Take this

spacing to be ∆.

We assume 2D solutions now of the form:

Anij = Âei(kx+ly−ωt)

where l is the wavenumber in the y direction, related to the y direction wavelength Ly
through

l =
2π

Ly
.

Inserting the assumed solution into the 2D leapfrog scheme results in:

λ =
1

λ
− c∆t

∆

[
(eik∆x − e−ik∆x) + (eil∆y − e−il∆y)

]
Using Euler’s relation and rearranging (after multiplying through by λ) results in:

λ2 + 2i
c∆t

∆
[sin(k∆x) + sin(l∆y)]λ− 1 = 0

If we let a to be c∆t
∆

[sin(k∆x) + sin(l∆y)], our quadratic is

λ2 + 2iaλ− 1 = 0

yet again, with the same roots previously presented in (5.5). Identical also is the fact that if√
1− a2 is real, then |λ| = 1 and the 2D leapfrog scheme has no amplitude error. Therefore,

the stability criterion is a2 ≤ 1 yet again.

However, now that stability criterion implies a more onerous restriction on the time step.

Since

a =
c∆t

∆
[sin(k∆x) + sin(l∆y)]

and we need a2 ≤ 1, then this means:

c2∆t2

∆2
[sin(k∆x) + sin(l∆y)]2 ≤ 1.
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The maximum value of sin is one, so the largest the term in square brackets can be is two.

Thus, we really have:
4c2∆t2

∆2
≤ 1

which implies that
c∆t

∆
≤ 1

2
.

That is, the stability criterion is twice as restrictive. If we had also staggered the grid,

putting u, v and A at different locations, the criterion would be still more restrictive. If we

need to add time smoothing (to control the computational mode) and/or spatial smoothing

(to restrain small-scale computational noise — a future topic), the time step we are allowed

to employ will be smaller still.

The derivation of the phase error for the 2D leapfrog scheme is skipped, but again the scheme

handles the shortest waves the worst. The only major difference is now the smallest resolvable

waves (2∆x and 2∆y) do in fact translate relative to the grid. They are not stationary, as

in the 1D case. Unfortunately, they also move backwards, against the wind, which will be

demonstrated in Model Task 4. That is even more reason to ignore the shortest waves, or

even to remove them from the solution.
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Chapter 6

Dynamical frameworks

In Chapter 3, we derived the fully compressible (FCOM) model framework below

∂u

∂t
= −~V · ∇u− cpdθ̄v

∂π′

∂x
(6.1)

∂w

∂t
= −~V · ∇w − cpdθ̄v

∂π′

∂z
+ g

θ′v
θ̄v

(6.2)

∂θ′

∂t
= −~V · ∇θ′ − wdθ̄

dz
(6.3)

∂π′

∂t
= − c̄s

2

ρ̄cpdθ̄2
v

[
∇ · ρ̄θ̄v~V

]
(6.4)

In this chapter, we consider ways of solving this system of equations. These equations contain

advective processes, sound waves and gravity waves. As noted earlier, sound waves play a

dynamically important role in the atmosphere, but we need not be concerned with the details

of how and when they act, and why. We want them to do their work and stay out of the

way.

However, as noted earlier, the presence of sound waves seriously complicates the efficient

solution of these equations. In Chapter 4 and Chapter 5, we saw that the need to maintain

stability places limits on how large we can choose the model time step to be. For the up-

stream and second-order leapfrog schemes applied to the one-dimensional constant advection

problem, the time step was constrained by the ratio of the grid spacing to the advection ve-

locity. As the complexity of the FD scheme grows — with grid staggering, time smoothing,

multi-dimensions, etc. — the limits on the time step becomes even larger.

It becomes more restrictive still as terms are added to the equations that represent non-

advective phenomena (i.e., waves). In general, this time step is limited by the speed of

the fastest moving signal in the model, regardless whether that signal speed represents the

(advecting) flow or a wave. Indeed, they are additive: if the flow speed is uniform at 30 m
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s−1 and the fastest wave is propagating in the direction of the flow at 50 m s−1, then the

fastest moving signal in the model — the signal that limits the time step — is really 80 m

s−1.

In the FCOM system above, the fastest moving signal is the sound wave (≈ 350 m s−1), and

thus it happens that the greatest expense is being caused by the least important aspect of

the model physical framework. There are three approaches we can take, beyond the simple

“grin and bear it”. These are:

1. Adopt “time-splitting”, a technique that identifies the acoustically active and inactive

terms in the equations and solves them on different time steps, each chosen to maintain

stability1. Time-splitting was suggested in Marchuk (1974), a Russian textbook, and

pioneered by Klemp and Wilhelmson (1978).

• Advantage: Relatively economical.

• Disadvantage: Complex implementation, small impact on the model physics.

2. Artifically slow down the sound waves, by treating the sound wave speed as a free pa-

rameter and discounting it. This is sometimes called the “quasi-compressible” (QCOM)

or “super-compressible” approach and essentially allows the atmosphere to have more

slackness.

• Advantage: Efficient, easiest and most straightforward to code.

• Disadvantage: Does more violence to the model physics.

3. Artificially speed up the sound waves. . . all the way to infinite phase speed. After all,

the acoustic adjustment is already very rapid, why not make it instantaneous? This is

the basis of the anelastic approximation.

• Advantage: Eliminates something you really didn’t want anyway, and has some

desirable properties as well as a simple continuity equation.

• Difficult to implement, as it makes pressure a diagnostic (as opposed to prognostic)

variable. Very inefficient in 3D models.

6.1 Time-splitting

Time-splitting is based on the recognition that sound waves severely constrain the model

time step but also that these waves manifest themselves most prominently in the pressure

1Caution: as noted in Chapter 5, the term “time-splitting” is also often used to describe the odd-even
time step solution separation that occurs in the leapfrog scheme owing to the computational mode.
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and divergence terms. The local time rate of change of velocity (e.g., ut) is driven by

two relatively separate phenomena: rapidly fluctuating acoustic waves, and slower moving

(advective and gravity-driven) features that result in slower local fluctuations. Given that

acoustic waves exist due to the slackness of the atmosphere regarding pressure and density,

it is unsurprising that the “acoustically active” terms are those involving pressure. In time-

splitting, we seek to keep the model stable by integrating the acoustically active terms on a

small time step, while economizing by integrating the (relatively) inactive terms on a larger

time step. Thus, the model contains two separate time steps, a large step ∆t and a small

(sound) time step ∆τ .

When we solve an equation like

ut + cux = 0

with a three time level method like the second-order leapfrog scheme, we can think of the

problem in this way: We want to jump forward from time n − 1 (or t −∆t) to time n + 1

(or t + ∆t), and we do this by holding the advection term (cux) constant at its value at the

center of that time interval (time n or t). This is because the advection term is evaluated

at time n. We’ve a simple advection problem, and our time step ∆t is determined by speed

of the flow accomplishing the advection (c). Thus, the advective time scale is ∆x
c

Now consider a more complicated problem, such as that offered in (6.1). The time tendency

of u is not only a function of advection (the first term on the RHS) but also of the pressure

gradient. The advection term again carries with it an advective time scale (now being ∆x
u

)

that, left to itself, would determine the model time step. But the equation set now also

admits acoustic wave solutions which, owing to their rapid speed, act to place a much more

severe restriction on the time step.

Sound waves move so fast that advection doesn’t affect their propagation very much at all.

Thus, the advection term can still be computed on a relatively long time scale, that scale

given by the flow speed (resulting in ∆t). But the pressure gradient acceleration has to be

computed over a relatively smaller time step, owing to the rapid propagation of sound waves.

The time step chosen to keep sound waves stable is designated as ∆τ .

Note we could very well integrate the advection term on the small time step as well. It’s a

waste of resources since the advection term shouldn’t be changing very much over the small

time step. In fact, it should be changing so little that it could be presumed to be constant

to a reasonable degree of accuracy. In fact, that’s precisely what we will do.

Equation (6.1) can be written in this simple fashion:

ut = −PGA− fu,

where PGA is the pressure gradient acceleration term, and fu represents all remaining terms

(here, it is just the advection term; in a more complete model, fu also would contain Coriolis,
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diffusion and friction terms). We want to step from time t −∆t to time t + ∆t. The term

fu is evaluated at the intermediate (here/now) point, time t, and held constant through the

time inetrval span 2∆t, just as before. However, now we need to solve the PGA term over

a smaller time step. This will be done using a forward stepping scheme, each leap being of

time length ∆τ , starting from time t−∆t.

t-∆t t t+∆t

2∆t

∆τ

fu(t)

Figure 6.1: “Time-splitting”.

It is recalled that the forward-time, center-space approximation is unstable for advection.

Yet, although each small time step is done in the forward fashion, this isn’t unstable for

advection because as far as advection is concerned, it is still centered in time. For each

“now” point (time t) we start ∆t into the past to go to ∆t into the future. This means,

however, that half of the small time stepping is redone each (large) time step. To get from

time t to time t + ∆t, we start at time t − ∆t and do the small time stepping past time t

all the way to time t + ∆t. Then, to get to time t + 2∆t, we start back at time t and do

the small time stepping over yet another time interval of length 2∆t, redoing the stepping

in the interval between times t and t+ ∆t. This isn’t terribly efficient, but needs to be done

to keep advection stable, and (unlike especially some of the advection terms) the PGA is

computationally simple, involving relatively few arithmetic operations.

This time-splitting approach is also applied to the PGA term in the w equation (6.2) and

the pressure equation (6.4). In KW’s original strategy, then, the potential temperature

equation (6.3) was integrated on the large time step, ∆t. As mesoscale and synoptic scale

models became deeper, extending well into the stratosphere, modelers discovered that their

longer time step was being limited by that layer’s great stability. Skamarock and Klemp

(1992) noted that the w equation’s buoyancy term and the θ′ equation’s vertical advection

term could also be easily incorporated into the small time stepping scheme, thereby reliving

another constraint on ∆t.

In a mesoscale model, the vertical grid width ∆z is typically smaller than the horizontal

length ∆x. Sound waves propagate vertically as well as horizontally, so it is the vertical grid

length that really determines the small time step. Recall that we don’t care how the sound

waves move, as long as they do their job and stay out of the way. Further efficiency can be

72



achieved by treating the vertical pressure gradient terms in an implicit fashion.

Up to now, we have only considered explicit schemes, methods that allow us to integrate

the model one grid point at a time. In an explicit scheme, the future solution at a given

point depends only on the present and past values at other points, and not on the future

value at any other grid point. In an implicit scheme, a set of grid points (such as those in a

single model column) have to be solved simultaneously, because the forecast at a given point

also depends on the forecast at other points. This will be elaborated upon later when the

anelastic system is considered.

6.2 Quasi-compressibility

The quasi-compressible approach to solving (6.1)-(6.4) is brutally simple. Since sound waves

serve to limit the time step owing to their great propagation speed, one can adopt a larger

time step by simply choosing to artifically restrain the sound speed. Thus, cs is treated as a

free parameter, and is artifically discounted. As noted above, this is the simplest approach to

implement, because it avoids the complexity inherent in implementing either time-splitting

(in the fully compressible framework) or solving the diagnostic pressure equation (in the

anelastic framework).

How low can cs go? The equations admit both sound and gravity waves, but they don’t

interact much owing to their very different phase speeds. However, as the sound waves get

slower, the possibility for inappropriate interaction becomes larger. Keeping advection and

gravity wave time scales the same, but decreasing the sound speed, is tantamount to making

the system you are simulating closer and closer to the supersonic limit. When the flow goes

supersonic, the entire character of the solution changes, and the equations are no longer

hyperbolic (or mixed hyperbolic/parabolic) in nature. For one thing, shock waves become

possible.

Although the QCOM approach is becoming more popular, I am not aware of any really

detailed examination of the errors associated with its adoption. One thing that can easily be

done is to perform your experiment with a variety of sound speeds, including some relatively

small ones, and watch for the differences that crop up owing to your making the model

atmosphere more compressible and your flow speeds more nearly supersonic.

6.3 The anelastic approximation

In the anelastic approximation, we actually attain some efficiency (with respect to the time

step, anyway) by speeding up the sound waves. . . to infinite speed. Take (6.4) and rewrite it
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as the following:
1

c̄2
s

∂π′

∂t
= − 1

ρ̄cpdθ̄2
v

[
∇ · ρ̄θ̄v~V

]
.

Remember we have already made some approximations, such as presuming that since sound

waves are so fast, advection of pressure has a negligible influence on the local perturbation

pressure tendency. For simplicity, presume an isentropic base state (no gradients of θ̄v),

yielding:
1

c̄2
s

∂π′

∂t
= − 1

ρ̄cpdθ̄v

[
∇ · ρ̄~V

]
.

Interpret this in the following way: local perturbation pressure fluctuations are caused by

local mass convergence (per unit volume), itself driven by gradients in the wind field. When

convergence occurs, ∇ · ρ̄~V < 0 and the pressure tends to rise. In our approximation, there is

a direct cause-effect relationship between convergence/divergence and pressure fluctuations.

However, there is a time lag between the onset of convergence (say) and when the pressure

starts to rise. That lag represents the compressibility of the medium, and its time scale is

determined by the sound speed cs.

Now, perhaps we wish to remove this time lag, by increasing the sound speed. If we force

cs →∞, the pressure tendency term vanishes, and we’re left with:

∇ · ρ̄~V = 0 (6.5)

This is known as the anelastic continuity equation, and was originally derived (at least

formally) by Ogura and Phillips (1962). Before, the quantity shown in (6.5) wasn’t forced

to vanish, and its departure from zero drove the pressure tendency. Now, however, it is

constrained to be zero each and every time step, at each and every location. Increasing the

mass convergence locally now doesn’t cause the future pressure to increase, instead it causes

the pressure to increase now. There is no more slackness.

Viewed in this way, it is seen that pressure is no longer an property independent of the

wind field. Rather, it is entirely dependent upon — and determined by — the wind (and

buoyancy) fields. Pressure is no longer a prognostic variable in its own right.

What’s more, the pressure essentially becomes an implicit quantity. When we perturb the

atmosphere somewhere, the surrounding environment has to adjust to it. As discussed before,

it adjusts in a variety of fashions. One adjustment is carried by acoustic waves, which quickly

spread out away from the source of the perturbation. As time goes on, more and more points,

located farther and farther away, “feel” the impact of the original perturbation; its spread

is limited only by the sound speed.

However, if we cause the sound wave to propagate infinitely fast, that means every point in

the atmosphere feels the perturbation instantaneously. That means, we can’t determine the
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pressure perturbation at any one location without knowing the pressure everywhere else at

the same time. In other words, we can’t solve pressure point-by-point, we have to determine

the pressure simultaneously for all the grid points. It is an implicit problem.

6.3.1 The anelastic pressure equation

So, how do we get pressure, now that we’ve eliminated the pressure tendency? We can derive

a diagnostic relation for pressure in the following way. First, note that (6.5) can be written

as:
∂ρ̄u

∂x
+
∂ρ̄w

∂z
= 0 (6.6)

To simplify the derivation, (6.1) and (6.2) are rewritten as:

∂u

∂t
= −ADV (u)− cpdθ̄v

∂π′

∂x
(6.7)

∂w

∂t
= −ADV (w)− cpdθ̄v

∂π′

∂z
+B, (6.8)

where ADV (u) and ADV (w) represent the advection terms of u and w, respectively, and

B designates the buoyancy term. (In a more complex model, the ADV terms would also

include diffusion, friction, and Coriolis terms.) Multiply (6.7) by ρ̄ and take the horizontal

derivative. Multiply (6.8) by ρ̄ and take the vertical derivative. Upon adding the equations,

we have:

∂

∂t

[
∂ρ̄u

∂x
+
∂ρ̄w

∂z

]
= − ∂

∂x
[ρ̄ADV (u)]− ∂

∂z
[ρ̄ADV (w)]− ρ̄cpdθ̄v

∂2π′

∂x2
− ∂

∂z
ρ̄cpdθ̄v

∂π′

∂z
+
∂ρ̄B

∂z
(6.9)

The LHS of (6.9) was produced by interchanging the order of the time and space derivatives.

Note it yields the time derivative of (6.6), a quantity that should be zero at every time. Thus,

the LHS of (6.9) is zero, at least analytically. In practice, this term will differ from zero by

round-off error, and that would have to be accounted for or such errors would accumulate

with time2

If we rearrange what remains, we get a pressure equation that looks like this:

∂2π′

∂x2
+

1

ρ̄cpdθ̄v

∂

∂z
ρ̄cpdθ̄v

∂π′

∂z
= − 1

ρ̄cpdθ̄v

[
∂ρ̄ADV (u)

∂x
+
∂ρ̄ADV (w)

∂z

]
+

1

ρ̄cpdθ̄v

∂ρ̄B

∂z
. (6.10)

It looks complicated owing to the dependence of ρ̄ and θ̄v on height. (Note that we previously

assumed an isentropic base state in getting the anelastic continuity equation. That said, the

2So, in practice, this term evaluated at time n − 1 is retained and moved to the RHS to account for
truncation errors in making the previous forecast, but is presumed to hold exactly at time n + 1 and thus
vanish. We cannot make the n+1 computation yet anyway, unless we pursue an iterative approach to solving
for the pressure perturbation.
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equation can — and usually is — applied in a nonisentropic atmosphere, because neglect of

the vertical gradient of θv can be justified by scale analysis. This results in some error, of

course.)

6.3.2 Simplification and interpretation

In a constant density and potential temperature atmosphere, the pressure equation has the

simple form of

∇2π′ = F,

where F represents everything on the RHS. Note two things about this equation. First, it

is elliptic, and has no time derivatives. Second, it depends on the gradients of the advection

and buoyancy terms, which are evaluated at the present time. Thus, we use the wind (and

temperature, through buoyancy) information from the present time to compute the pressure

at the present time. In essence, the adjustment is infinitely fast.

If you have π′ at every point, and need to compute F , that is a direct and simple problem,

since you just discretize the Laplacian in FD form and solve it. Here, however, we have F

and need to compute π′. We still discretize the Laplacian in FD form, but now it should

be appreciated that we can’t solve for a given point without also solving for its adjacent

points, and we can’t solve for those adjacent points without also solving for their adjacent

points. . . and so on. Thus, every point depends on every other point, at least to some degree.

To demonstrate how we solve this kind of problem, we can simplify the equation further, to

a single dimension. Consider the equation

∂2π′

∂x2
= F.

Discretize the Laplacian with a centered scheme, resulting in (after dropping the primes):

πi+1 − 2πi + πi−1

∆x2
= Fi.

It is seen that a point i directly depends on points i− 1 and i + 1, but not directly on any

other point. However, every point depends on its neighbors so, ultimately, this will lead us

to the boundaries. As a consequence, we can’t solve this problem for any given grid point

without applying some boundary conditions (BCs); that is, we need to either know π at the

endpoints, or at the very least specify the horizontal gradient of π there. To keep it simple,

we will presume we know the value of π. This is called a Dirichlet BC. If we instead presume

a value for the first derivative of π, that is known as a Neumann BC.
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We can express the above in the form of a matrix:

−2 1
1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −2





π1

π2

π3
...

πN−1

πN


= ∆x2



F1 − π0
∆x2

F2

F3
...

FN−1

FN − πN+1

∆x2


(6.11)

There are a total of N interior points (that is, points that do not involve a boundary value

in the Laplacian, i.e., those with an index between 2 and N−1). Note that there is a regular

set of entries in the leftmost matrix, being values 1, -2 and 1 for all but the points just

inside the boundaries. Even for this simple problem it is seen that most of the entries of

this tridiagonal matrix are zero. The rightmost matrix is the vector of known values of F .

The boundary values π0 and πN+1 have to be prescribed (for Dirichlet conditions) and are

known, and thus these values are moved into the F matrix. The matrix can be solved by

Gaussian elimination. (Actually, the regular nature of the leftmost matrix means there are

also more efficient, direct methods of solution as well.)

Here is a simple little example, involving a total of 5 points, three unknowns and two bound-

ary points (so N=3). Take ∆x=1 and presume the boundary π values to be zero. Thus, we

have:  −2 1 0
1 −2 1
0 1 −2

 π1

π2

π3

 =

 3
1
2


Applying Gaussian elimination on these F values yields these values: π1=-13/4; π2=-7/2;

π3=-11/4. These can be substituted into the original equation to verify that indeed these

values of π, along with the boundary conditions, do indeed generate the given values of F .

The simple example shows that the pressure values have to be obtained all at once, since

each point depends on its neighbors, and also helps to illustrate how important the BCs are.

Changing the BCs slightly would result in a radically different solution (try that).

The simple 1D problem is very easy to solve. In 2D, it is more difficult. Note that for N

unknown points, the π matrix is N by N . In 2D, say we have a domain of NX and NZ

unknown points. Thus, the matrix is NX ·NZ by NX ·NZ. Say our domain is 300 by 30

points. Then the π matrix is 9000 × 9000! In 3D, the array is dimensioned NX ·NY ·NZ
by NX ·NY ·NZ. This is quickly getting out of hand.

However, notice that the π matrix has a very regular structure. That is true in 2D and

3D as well, though of course the structures in those situations are more complicated. For

a large number of unknowns, the matrix is also very sparse; most of the entries are zero.

We can make use of the sparseness and use an algorithm that requires us only to save
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the nonzero matrix values. This saves a lot on storage, but the problem is still becoming

quite cumbersome to solve. In 2D, the anelastic model is pretty competitive with the fully

compressible framework, but in 3D it lags well behind, owing to the number of computations

required to solve the diagnostic pressure equation.

6.3.3 Decomposition of the anelastic pressure perturbation field

The anelastic pressure equation does have one very nice property. (The derivation of this

pressure decomposition is covered in the next subsection.) Since the Laplacian operator is

linear, the pressure can be cleanly separated into components. In general form, we have:

∇2π′ = Fb + Fd,

where Fb is the vertical derivative of the buoyancy term and Fd represents the derivatives

of the advection (and other) terms. The subscripts b and d are chosen because the terms

represent buoyancy and dynamic forcings, respectively. The derivatives of the advection

terms affect pressure dynamically, through convergence and divergence. An example of

this is cyclostrophic balance, where a local circulation generates low pressure inside the

circulation.

The buoyancy term affects pressure through heating and cooling. An example of this: You

know a positively buoyant parcel will rise. To do so, it must push surrounding air out of

the way. Part of the buoyancy provokes a pressure response through the buoyancy term.

The vertical gradient of buoyancy above the parcel’s center is negative, and that in itself

produces high pressure. Below the parcel center, the gradient is positive and low pressure is

produced.

Again, since the Laplacian operator is linear, we can separate the total pressure into its

dynamic and buoyant parts. Thus, we can define dynamic pressure, π′d, as the solution of:

∇2π′d = Fd,

and buoyancy pressure, π′b, as the solution of:

∇2π′b = Fb.

The total pressure π′ is simply the sum of the two component pressures. This can’t be

done without the anelastic pressure equation, and is a very useful property of the anelastic

framework.

6.3.4 Derivation of the anelastic pressure decomposition

While nondimensional pressure π′ has theoretical and computational advantages, perturba-

tion p′ is employed here as it makes for a somewhat more straightforward presentation. The
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perturbation method has already been applied to pressure, temperature θ and density ρ in

the equations of motion listed below and the term in the w equation inversely proportional

to the sound speed squared has already been removed. B ≡ g θ
′

θ̄
is the buoyancy. Equation

6.15 is the traditional anelastic continuity equation.

∂u

∂t
= −u∂u

∂x
− v∂u

∂y
− w∂u

∂z
− 1

ρ̄

∂p′

∂x
(6.12)

∂v

∂t
= −u∂v

∂x
− v∂v

∂y
− w∂v

∂z
− 1

ρ̄

∂p′

∂y
(6.13)

∂w

∂t
= −u∂w

∂x
− v∂w

∂y
− w∂w

∂z
− 1

ρ̄

∂p′

∂z
+B (6.14)

0 =
∂ρ̄u

∂x
+
∂ρ̄v

∂y
+
∂ρ̄w

∂z
(6.15)

Equation 6.15 can also be written as

0 =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
+ w

d ln ρ̄

dz
. (6.16)

The derivation starts with multiplying equations (6.12)-(6.14) by ρ̄, differentiating with

respect to x, y and z, respectively, and adding the result. Recalling that the order of

differentiation can be interchanged, the left hand side (LHS) of the new combined equation

is
∂

∂t

[
∂ρ̄u

∂x
+
∂ρ̄v

∂y
+
∂ρ̄w

∂z

]
,

which is zero owing to (6.15). The right hand side (RHS) expands out to

−∂ρ̄u
∂x

∂u

∂x
− ρ̄u∂

2u

∂x2
− ∂ρ̄v

∂x

∂u

∂y
− ρ̄v ∂

2u

∂x∂y
− ∂ρ̄w

∂x

∂u

∂z
− ρ̄w ∂2u

∂x∂z

−∂ρ̄u
∂y

∂v

∂x
− ρ̄u ∂2v

∂x∂y
− ∂ρ̄v

∂y

∂v

∂y
− ρ̄v ∂

2v

∂y2
− ∂ρ̄w

∂y

∂v

∂z
− ρ̄w ∂2v

∂y∂z

−∂ρ̄u
∂z

∂w

∂x
− ρ̄u ∂

2w

∂x∂z
− ∂ρ̄v

∂z

∂w

∂y
− ρ̄v ∂

2w

∂y∂z
− ∂ρ̄w

∂z

∂w

∂z
− ρ̄w∂

2w

∂z2

+
∂ρ̄B

∂z
−∇2p′.

Using the shorthand of ux ≡ ∂u
∂x

, uxx ≡ ∂2u
∂x2

, etc., further manipulation results in

79



∇2p′ = −ρ̄
[
u2
x + v2

y + w2
z

]
−ρ̄u ∂

∂x

[
∂ρ̄u

∂x
+
∂ρ̄v

∂y
+
∂w

∂z
+ w

d ln ρ̄

dz
− wd ln ρ̄

dz

]
−ρ̄v ∂

∂y

[
∂ρ̄u

∂x
+
∂ρ̄v

∂y
+
∂w

∂z
+ w

d ln ρ̄

dz
− wd ln ρ̄

dz

]
−ρ̄w ∂

∂z

[
∂ρ̄u

∂x
+
∂ρ̄v

∂y
+
∂w

∂z
+ w

d ln ρ̄

dz
− wd ln ρ̄

dz

]
−2ρ̄ [vxuy + wxuz + vzwy]−

dρ̄

dz

[
∂u

∂x
+
∂v

∂y
+
∂w

∂z

]
+
∂ρ̄B

∂z
.

In the above, the expression w d ln ρ̄
dz

was added and subtracted to the second, third and fourth

terms of the RHS. Equation (6.15) can be invoked in those terms and in other places, leaving

us with

∇2p′ = −ρ̄
[
u2
x + v2

y + w2
z

]
− 2ρ̄ [vxuy + wxuz + vzwy] + ρ̄

d2 ln ρ̄

dz2
+
∂ρ̄B

∂z
.

The first three terms on the RHS are the dynamic pressure forcing Fd, the last term in the

buoyancy forcing Fb. Again, since the ∇2 operator is linear, the equation may be separated

into nonoverlapping dynamic and buoyancy pressure perturbations, creating the following

∇2p′ = F = Fd + Fb

∇2p′d = Fd

∇2p′b = Fb

where p′ = p′d + p′b. The dynamic pressure perturbation can be further decomposed into

linear (the term with the squares) and nonlinear (the cross-derivatives) parts. This was

used by Rotunno and Klemp (1982) to explain why supercell storms split, and why the split

members tended to move to the right and left of the mean wind through the cloud-bearing

layer.

Model Task #6 discusses how the anelastic pressure equation can be solved in the model,

and how the dynamic and buoyancy pressure parts can be isolated.
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Chapter 7

Nonlinear computational instability

7.1 Origin of the instability

In Model Task #4, we saw the consequences of the leapfrog scheme’s poor handling of the

shorter waves in solving the simple, 2D linear constant advection problem

ut + cxux + cyuy = 0,

where cx and cy were specified constants. Short waves that were originally hiding in the

initial condition were revealed owing to dispersion error, causing the feature being advected

to change shape (and making the solution look noisy). Otherwise, the fact that the short

waves got exposed did no harm. They did not grow unbounded, at least as long as we

satisfied the stability condition.

The short waves didn’t do any harm because the problem we solved was linear. In a nonlinear

problem, the small scale waves do pose a threat to our solution, and can grow unbounded

(or, at least grow to the point where they dominate — and destroy — the simulation) even

when the stability condition is satisfied. In this situation, they do not grow because their

amplification factors exceed unity. Instead, they grow because they spuriously accumulate

energy through a phenomenon called aliasing.

Aliasing can only occur when the equation being solved contains nonlinear terms, such as

the uux term in

ut + uux = 0,

because such terms can cause the creation of new wavelengths that did not exist in the initial

condition. A simple, 1D example: Suppose the solution for u at the present time consists of

a single sine wave with wavenumber k; i.e.,

u = sin kx.
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The spatial derivative of this is:

ux = k cos kx,

so the nonlinear term can take the original sine wave and produce

uux = k sin kx cos kx =
1

2
k sin 2kx;

i.e., a wave with twice the wavenumber (half the wavelength) of the original wave. In this

way, energy can be transferred to the smaller scales. One could start off with only relatively

large wavelengths, but owing to nonlinear interaction, waves with progressively smaller and

smaller wavelengths (relative to the grid) will be produced.

And this will continue. . . at least until the grid can no longer represent the waves being

generated by the nonlinear terms. In reality, this downscale transfer continues until very,

very small wavelengths are generated that are dissipated via friction. This ditty, attributed to

the numerical weather prediction pioneer, Lewis F. Richardson, expresses this phenomenon:

Big whirls have little whirls that feed on their velocity. Little whirls have lesser

whirls, and so on — to viscosity.

The downscale transfer does not cause problems in reality because there exists a sink for the

energy at the smallest scales — viscous dissipation.

In the finite difference world, however, this downscale transfer is frustrated, and actually

halted, by the fact that the smallest resolvable wave is one with twice the grid interval. (In

terms of wavenumber, the smallest wave — or largest possible wavenumber — is kmax = π
∆x

.)

You can think of this smallest wave situation as a boundary condition, a rigid wall or,

even better, a mirror. If nonlinear interaction results in the generation of a wave that

cannot be resolved on the grid, it will “reflect” back into the resolved wavelengths. This is

aliasing. Instead of continuing down towards viscosity, the wave and its energy remain in

the numerically resolvable wavelengths.

As a specific example, consider a wave with wavelength 8
3
∆x. This is resolvable; there are

three peaks in every eight grid points1 . Two of these waves combine to produce a wave

with half the original wavelength, or 4
3
∆x. This newly created wave is smaller than 2∆x and

cannot be resolved. The grid, however, sees this as a 4∆x wave (see Fig. 1). The wave has

aliased, or reflected, back into the resolvable grid. . . and has been given a wavelength that is

actually longer than the original wave pair had. In reality, this wavelength should have been

much smaller and kept on the path to frictional dissipation. In the model, the wave and

its energy has not been “lost” and instead has been remained in the vicinity of the smallest

resolvable wave.
1This may seem like an odd wavelength, but in a Fourier sense it would appear in any domain with N

being a multiple of 8.
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aliased wave

original wave

Figure 7.1: Aliasing of an unresolvable wave.

The problem isn’t that the energy wasn’t lost as it should have been (though that’s unrealistic

in itself), it’s that owing to aliasing energy will accumulate in the shorter waves. To see

this, we examine a more general case, in which a pair of waves with potentially different

wavenumbers (k1 and k2) interact. The multiplication of two such sine waves can yield

(using standard trigonometric relations):

sin k1x sin k2x =
1

2
[cos (k1 − k2)x− cos (k1 + k2)x] .

Two new wavenumbers, having values k1 − k2 and k1 + k2, are generated.

Note the latter combination yields a wavelength that is shorter than what the original waves

had. Eventually, waves with k > kmax will occur and be misrepresented by the FD grid,

aliasing back onto the resolved grid. Let

k̂ = k1 + k2.

Then:

cos k̂x = cos
[
2kmax − (2kmax − k̂)

]
x.

Recall kmax = π
∆x

and use a trig formula for the cosine of a difference to obtain

cos k̂x = cos(
2π

∆x
x) cos

[(
2π

∆x
− k̂
)
x

]
+ sin(

2π

∆x
x) sin

[(
2π

∆x
− k̂
)
x

]
.

At a given grid point x=j∆x, sin 2π
∆x
j∆x = 0 and cos 2π

∆x
j∆x = 1, so

cos k̂j∆x = cos
[(

2kmax − k̂
)
j∆x

]
.

The above expression shows that we cannot distinguish between a wavenumber k̂ and its

counterpart 2kmax − k̂, because their cosines are the same. This becomes important when
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the wavenumber k̂ > kmax, which is a wave that is too small to resolve on the grid. In this

situation, the wave aliases back onto the grid, and is erroneously seen instead as

k∗ = 2kmax − k̂.

See Fig. 2. The wavenumber kmax is the symmetry point, and acts like a mirror. Nonlinear

interaction produces an unresolvable wave with wavenumber k (henceforth dropping the

hat). The distance (in wavenumber space) that the wave resides on the unresolvable side of

kmax is the same distance to which the wave actually appears to be on the resolvable side.

0 kmax 2kmaxk

LInf. 2∆x ∆x
resolvable unresolvable

kk*

Figure 7.2: How an unresolvable wave reappears on the grid.

Let’s reconsider the 4
3
∆x wave, which we saw earlier to be produced as a result of the

multiplication of two 8
3
∆x waves. This wave’s wavenumber is k = 3π

2∆x
, which is unresolvable.

Thus, it appears on the grid as k∗ = 2kmax− k, or π
2∆x

, which is the same as 2π
4∆x

, i.e., a 4∆x

wave.

Nonlinear instability was first encountered by Norman Phillips, considered the father of

modern numerical weather prediction. In a 1956 experiment, Phillips discretized the vorticity

equation and, starting from an atmosphere at rest, he integrated his model for 30 simulated

days. The simulation came to an end at that point as energy in the smallest resolvable

wavelengths grew unbounded. Thinking he had a problem with truncation error, which he

knew to be controlled by the time step, he repeated the experiment with a smaller ∆t.

However, the simulation still came to a catastrophic end, after about the same number of

time steps. This told Phillips he wasn’t violating any linear stability condition, and that

truncation error wasn’t the culprit.

What had occurred is that nonlinear interaction was generating progressively smaller and

smaller waves, even though small waves weren’t contained in the initial condition. Again,

in reality, these waves — and their energy — should cascade down to the very smallest

scales, where they would be extinguished by friction. In the model, however, the waves and

their energy cannot “escape”, and once they become unresolvable, they alias back into the

resolvable waves and accumulate at the smallest resolvable scales. The growth of energy
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in these waves is completely spurious, but their amplification destroyed the solution and

brought the simulation to an early and miserable end.

Phillips addressed this problem by periodically decomposing his fields into waves via Fourier

analysis and removing those components with wavelengths of 4∆x and shorter (i.e., k >
1
2
kmax). If there is no spectral energy in wavelengths L < 4∆x, the advection term cannot

cause aliasing to occur. With energy precluded from accumulating at the smallest resolvable

scales, Phillips’ simulation did not come to a catastrophic end, confirming his hypothesis

regarding the source of the spurious energy amplification. Later, it became common to

remove energy at small scales via smoothing (see next subsection) instead, and waves of 3∆x

and shorter (i.e., k > 2
3
kmax) were specifically targeted. Interactions involving wavelengths

between 3 and 4∆x will still cause aliasing, but the aliased wave will fall between 2 and 3∆x,

and be subjected to smoothing anyway. It is recalled that the FD schemes typically handle

these small waves very poorly anyway, and now we’ve a very good excuse for removing them

from the solution.

7.2 Controlling nonlinear instability through smooth-

ing

The most common way of eliminating the small scale waves that participate in aliasing is

through the addition of a computational filter — artificial diffusion — to the model equations.

This approach takes advantage of the fact that a diffusion term, like ∂2u
∂x2

, acts most strongly

on the shortest waves. Recall that the even derivatives represent diffusion. In practice, any

even degree derivative can be employed as a short-wave filter (smoother), though the higher

the degree, the more narrowly the smoothing effect is concentrated on the smallw aves you

wish to eradicate. However, higher degree terms get harder to implement.

The simplest diffusion term is zero-degree, as shown on the RHS of this equation:

ut + uux = −au.

The coefficient a controls the rate at which waves are extinguished. When u represents

velocity, it is often termed “Rayleigh friction”; when u is temperature, it is called “Newtonian

cooling”. This diffusion term is totally nonselective: all waves are relaxed back to zero

amplitude at the same rate. Thus, this term is not very useful for controlling small scale

noise.

To see this, we discretize the equation using the leapfrog scheme. We neglect the advection

term and focus on the action of the diffuser. The FD version of the equation is:

un+1
j − un−1

j

2∆t
= −aun−1

j .
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Note the diffusion term is computed at time n-1. This is necessary for stability. Assume the

same solution we’ve done countless times before and perform a stability analysis, solving for

the amplification factor. In this case, we wind up with

|λ|2 = 1− 2a∆t. (7.1)

In this case, |λ| < 1 means the amplitude of the wave is being extinguished. The rate of

damping is controlled by the parameter a. Suppose you take a = 1
2∆t

; in that case |λ| = 0,

and the wave vanishes upon one application of the diffuser.

Note that the amplitude factor is not a function of wavenumber — k does not show up on

the RHS. Thus, this term damps out all wavelengths equally, at the same rate. Greater scale

selectivity is attained by using a higher order even degree derivative. Adding a second-degree

diffuser makes the equation look like:

ut + uux = auxx.

This is discretized (again, neglecting the advection term) as:

un+1
j − un−1

j

2∆t
= a

[
un−1
j+1 − 2un−1

j + un−1
j−1

∆x2

]
.

Again, the diffuser is implemented at time n-1. You may note that the sign on the RHS

is opposite from what it was for the zero-degree term. This sign alternates between (even)

degrees.

Assuming the standard solution again produces the following:

λ =
1

λ
+

[
a2∆t

∆x2

]
1

λ

[
eik∆x − 2 + e−ik∆x

]
(7.2)

|λ|2 = 1 +

[
a2∆t

∆x2

]
[2 cos k∆x− 2] (7.3)

Now the amplification (dissipation) factor is a function of wavelength, though k, and this

diffuser will hit the smaller waves harder than the longer ones. To see this, let’s assume we

want to completely eradicate 2∆x waves in one application. (This is overkill; we are not

usually so desperate.) So, we want |λ| = 0 for k= 2π
2∆x

. Since now k∆x = π, we have

0 = 1 +

[
2a∆t

∆x2

]
[2 cosπ − 2] .

Solving this we find:
2a∆t

∆x2
=

1

4

results in the complete removal of 2∆x waves in one step. In this case, a
∆x2

= 1
8∆t
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How does our hitting the 2∆x waves harm the longer waves we are interested in preserving?

Let’s see how an 8∆x wave would be affected by the same diffuser, using the value of a that

eradicated the 2∆x waves. Now we apply the same equation, but with k∆x = π
4

and set
2a∆t
∆x2

= 1
4
. We find:

|λ|2 = 1 +
2a∆t

∆x2

[
2 cos

π

4
− 2
]

= 1− 1

4
(1.293)

= 0.68,

or λ = 0.83, which is rather serious dissipation of a wave we wish to keep. Each time step,

the wave will lose roughly 20% of its amplitude.

We can attain greater scale selectivity by going to a still higher degree diffuser, such as in:

ut + uux = −auxxxx.

The amplification factor for this diffuser (again, applied at time n-1) is:

|λ|2 = 1− 2a∆t

∆x4
[6− 8 cos(k∆x) + 2 cos(2k∆x)] . (7.4)

The discretization of the fourth-degree diffuser is more complicated still, involving even more

points:

−auxxxx = −a
[
un−1
j+2 − 4un−1

j+1 + 6un−1
j − 4un−1

j−1 + un−1
j−2

]
∆x−4.

This will prove difficult to apply near the boundaries, unless the periodic condition is em-

ployed. Typically, owing to the proximity of the upper and lower boundaries, only second-

degree diffusers are applied in the vertical direction. Assuming non-periodic horizontal

boundaries, if the fourth-degree diffuser is used for the interior grid points, the second-

degree scheme will have to be used at the points located just inside of the boundaries (owing

to the lack of information available outside of the boundaries).

We can visualize the relative performance of the second- and fourth-degree diffusers by

plotting their damping rates [from equations (7.3) and (7.4)] as a function of k∆x. In

Fig. 7.3, the damping rates have been normalized by the values needed to completely remove

2∆x waves in one time step (one application). This is overkill, but it helps us see how more

scale-selective the fourth-order smoother is. A sixth-degree diffuser would be even more

surgical, at the cost of still greater complexity. The WRF model has sixth-order smoothing

available as an option.
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Figure 7.3: Damping rate |λ| vs. k∆x for the second- and fourth-order diffusers, configured for
complete removal of 2∆x waves in one application.
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Chapter 8

Moisture and microphysics

In this chapter, we take the equations in the form we discretized them in Task #5 and modify

them to account for moisture and computational diffusion. First, we’ll discuss how to handle

cloud microphysics in a relatively simple manner. Here, “simple” refers to the many approx-

imations and assumptions we must make; even a “simple” microphysical parameterization

is actually quite complicated.

First, let’s recap and extend the base state. Our initial environment is a function solely of

height. We need column vectors to store ū, θ̄, q̄v, p̄, π̄, and density at the u and w locations,

ρ̄u and ρ̄w. The ū vector is added so we can implement a base state horizontal wind, with

or without vertical shear. To save repetitive calculations, we can also define a mean state

virtual potential temperature as:

θ̄v = θ̄ [1 + .61q̄v] .

We need to modify and augment terms in the original set of equations, and add three new

equations, to account for moisture substances in the model. Let the water vapor mixing ratio

perturbation be termed q′v, representing the departure from the height-dependent mean state.

Now we need to handle condensed water substance. In the simplest approach, condensed

water takes two forms: free-floating cloud droplets and larger rain drops that fall relative to

still air. Let the cloud water mixing ratio be designated qc and the rain water mixing ratio

be qr.

8.1 Cloud and rain water

In our simple microphysical scheme, vapor condenses to form floating cloud droplets, which

are all assumed to be the same size. Condensation of vapor to cloud water is presumed to
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occur instantaneously, in whatever amount deemed necessary to remove any and all super-

saturation. This will be performed using the saturation adjustment technique you used to

compute the CAPE in Model Task #2 (see later). Conversely, when the relative humidity

dips below 100%, any cloud droplets present are presumed to evaporate instantly as well,

at least until the humidity again reaches 100%. Cloud water evaporation is also handled by

the saturation adjustment technique.

The cloud droplets then slowly self-aggregate into larger rain drops in a process called auto-

conversion. In the Kessler (1969) parameterization, one of the very simplest treatments of

cloud microphysics, it is assumed that when the cloud water mixing ratio, qc, locally exceeds

a certain threshhold value, qc0 (usually taken to be something like 1x10−3 g g−1), then the

cloud water mass exceeding that critical concentration converts to rain water at a specified

constant rate k−1
1 . This can be expressed as:

A =

{
k1 [qc − qc0] qc > qc0;
0 otherwise.

where A represents the amount of cloud water autoconverted. The autoconversion rate is

typically presumed to be on the order of 15 min or so, so k1 ≈ 0.001 s−1 is usually adopted.

Rain water represents larger drops that not only evaporate relatively slowly in the presence

of subsaturated air, but also fall relative to still air. The rain drops collect cloud droplets

they encounter in their path; this process is termed accretion. Unlike cloud droplets, we

can’t really assume all rain drops are the same size and fall at the same rate. In any given

grid box that contains rain water, we will have a mix of rain drop sizes, ranging from very

small to huge. The size and mass of a rain drop determines not only how quickly it falls

but also how large an area the drop sweeps out as it falls, which itself determines how many

cloud droplets the rain drop will encounter and accrete.

Yet, we also can’t track all the different possible sizes of rain drops separately. All we really

will have is a value for the rain water mixing ratio at each individual grid point. Knowing

the mass of rain water present in a particular box, we have to assume a relationship between

the rain drop size and number concentration. That is, if we have 10 grams of rain water per

kilogram of dry air (i.e., qr = 10x10−3 g g−1), some fraction of that mass will represent small

drops, some fraction medium size drops, with the balance being large drops, all related in

some simple (but hopefully not completely unrealistic) fashion. Then, we further simplify

the problem by presuming we can treat all the rain drops as being represented by the mass-

weighted average of all the drops that are presumed to exist in the grid box.
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8.1.1 The Marshall-Palmer distribution

Marshall and Palmer (1948) studied the sizes of the rain drops they collected and plotted the

number collected versus the drop diameter. They found that, except for the very smallest

drop diameters, there was an exponential decrease in number concentration as diameter

increased. Most microphysical parameterizations are based on this finding. Let ND be the

number of drops within a volume of given diameter D. The exponential dependence can be

expressed as:

ND = N0e
−λD, (8.1)

where N0 is the distribution’s intercept (the drop number concentration at essentially zero

diameter) and −λ is the slope of the distribution (see Fig. 1). λ is a positive number, so the

number of drops at a given size decreases with increasing size.

The total number of drops of all sizes, N , is obtained by integrating (8.1) over the range of

diameters, from zero to infinity. This, of course, represents the area under the curve depicted

in Fig. 1. Thus:

N =

∫ ∞
0

NDdD

=

∫ ∞
0

N0e
−λDdD

= − N0e
−λD

λ

]∞
0

=
N0

λ
. (8.2)

However, we still need to figure out how to specify N0 and λ.

The mass of an individual raindrop of diameter D [MD] is its density (ρl) times its physical

volume (VD):

MD = ρlVD.

If the raindrop is spherical (not a bad choice), the volume dependence on diameter D or

radius R is:

VD =
π

6
D3 =

4

3
πR3.

The total rain water mass, M , expressed per unit volume of space (as in a grid box) is simply

the mass of a drop of diameter D, multiplied by the number of drops of that diameter present,

91



D
ln

 N
D

λ (small mass)

λ (large mass)N0

Figure 8.1: Exponential size distribution, showing dependence of slope (λ) on total rain water
mass content.

summed over all possible diameters. This is expressed as:

M =

∫ ∞
0

MDNDdD (8.3)

=

∫ ∞
0

ρl
π

6
D3N0e

−λDdD (8.4)

= ρl
π

6
N0

∫ ∞
0

D3e−λDdD.

This can be a nasty integral to solve, but in this case there’s a trick, owing to the integration

limits of zero and infinity. We note that:∫ ∞
0

Dn−1e−λDdD =
Γ(n)

λn
,

where Γ is the “gamma function” which has the property that

Γ(n+ 1) = nΓ(n),

and it is useful to keep in mind that Γ(2)=1.0. Applying this trick results in the total mass

being expressed as:

M =
ρlN0π

λ4
. (8.5)

Now, the total rain water per unit volume in the box is simply our grid point rain water

value, ρ̄qr, which is presumed to be spread equally through the grid box. Using this, we can

solve (8.5) for the slope parameter:

λ =

[
ρlN0π

ρ̄qr

] 1
4

. (8.6)
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In most parameterizations, N0 is taken to be fixed and known, but with different values

for each species (such as raindrops, snow crystals, graupel particles and hailstones) that are

presumed to be exponentially distributed with respect to size1. This means that the slope

parameter directly depends upon the rain water content in the grid box (ρ̄qr), since that’s

the only quantity left to vary in (8.6). As the rain water content increases, the slope increases

(becomes less negative, or closer to horizontal). Note that means incremental increases in

rain content really comes from assumed growth in the number of large drops.

8.1.2 Terminal velocity

Picture a cap cloud sitting astride a mountain peak. These clouds form when stable air is

forced to rise over the mountain barrier and can be remarkably persistent. That the cap

clouds neither fall down upon the mountain nor trail off downstream tells us two important

things. First, if the cloud has a fall, or settling, velocity, it must be very slow. But why

can’t gravity bring the cloud down? Second, we know that air must be flowing through the

cloud, even though the cloud itself does not appear to be moving. This means that both

condensation and evaporation of cloud water must be very rapid processes.

Now picture an isolated cumulus cloud that is heavily precipitating. Beneath the cloud base,

you may be able to observe the precipitation shaft. These raindrops were formed within the

cloud, but then fell out, and many of them will survive to reach the ground, even though

the surrounding air is subsaturated (otherwise, cloud base wouldn’t be above the ground).

This tells us two other important things: that raindrops do have an appreciable fall speed

with respect to still air, and that in contrast to cloud droplets, raindrops evaporate slowly.

Both cloud and raindrops are affected by gravity, which naturally wants to make them fall

towards the ground. However, as an object (drop) starts to fall, it encounters frictional

resistance from the air it has to pass through. The faster the object moves, the greater the

air’s drag on the object. This leads to a maximum possible fall speed, the terminal velocity.

Terminal velocity is achieved when the drag force on the drop equals the opposing gravity

force.

Let us first consider small droplets, like cloud droplets, and see why their final speed is so

small that it is indeed negligible. For spherical droplets with small diameters, Stokes’ drag

law provides an expression for the drag force F :

F = 6πµRv. (8.7)

In the above, µ is the viscosity of air and v is the object’s velocity (in this case, directed

downward). The gravity force acting on an object of mass M is simply Mg, where g ≈ 9.8 m

1As examples, Marshall and Palmer determined N0 = 0.08 cm−4 [8 × 106 m−4] for their raindrops, and
Lin et al. (1983) used 0.03 cm−4 for their snow species.
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s−2. Again, for a sphere of liquid water, the mass is 4
3
πR3ρl. Equating the drag and gravity

forces yields the condition under which the velocity reaches its terminal value (v=VD):

6πµRVD =
4

3
πR3ρlg.

Solving for VD, we find:

VD =
2R2ρlg

9µ
.

Taking air viscosity to be µ ≈ 2x10−5 kg m−1 s−1 and a cloud droplet radius of about 10−5

m, along with ρl = 103 kg m−3, yields a terminal velocity for cloud droplets of about 10−2

m s−1. This is negligible even in still air, and is why we presume the cloud droplets are

free-floating.

Stokes’ law (8.7) above really only applies to small droplets. For larger drops, it has to be

revised into the following:

F = 6πµRv

[
CDRe

24

]
, (8.8)

where CD is the (nondimensional) aerodynamic drag coefficient and Re is the Reynolds

number, a ratio between inertial and viscous forces. At small Re, viscosity is dominant and

CDRe ≈ 24, even though CD itself is not constant. For large Re, viscosity cannot oppose

the motion very effectively, and the drag coefficient CD tends to approach a constant value

of 0.4-0.62.

The Reynolds number may be written as:

Re =
2VDRρ̄

µ

when v has reached VD. Plugging this into (8.8), we find the new balance is

6πµRVD

[
2CDVDRρ̄

24µ

]
=

4

3
πR3ρlg.

Note VD now appears twice on the LHS. Solving for the terminal velocity yields:

V 2
D =

8

3

g

CD

ρl
ρ̄
R.

Thus, the terminal velocity depends on the square root of the drop size. Dropping a few

constants, and replacing radius R with diameter D produces:

VD = kg
1
2

[
ρl
ρ̄

] 1
2

D
1
2 , (8.9)

2Lin et al. (1983) used CD = 0.4 for rain and 0.6 for hail.

94



where k merely aggregates some of the constants. This is the equation we will be using for

a single rain drop.

Equation (8.9) clearly shows that the terminal velocity of a drop is dependent upon the

drop’s diameter. We presume there is an entire range of rain drop diameters represented

within the total mass of rain water in a given grid box. We can’t track them all, so we

hope we can get away with making all the drops fall at a uniform speed. . . determined by the

mass weighted terminal velocity, which we’ll call V̂T . We need to take the terminal velocity

— different for each diameter D — multiply it by the mass associated with drops of that

diameter, multiply again by the number of drops we have for that particular diameter, and

sum that over all the possible diameters. Then, we need to normalize this by the total mass,

given by (8.3). That is to say:

V̂T =

∫∞
0
VDMDNDdD∫∞

0
MDNDdD

.

The demoninator of the above evaluates to (8.5). The numerator reduces down, at first, to:

k

[
g
ρl
ρ̄

] 1
2 π

6
ρlN0

∫ ∞
0

D
7
2 e−λDdD.

We solve the integral with the help of the Gamma function. After dividing by (8.5) and

simplifying, we find:

V̂T = k

[
g
ρl
ρ̄

] 1
2

Γ(4.5)λ−
1
2 , (8.10)

our mass-weighted rain water terminal velocity. Note that it depends on the air density and

the slope parameter (itself a function of rain water content).

The above equation was derived from first principles, and is used to compute the terminal

velocity of some species in microphysics schemes, such as for graupel particles in the South

Dakota scheme (Lin et al. 1983; hereafter “LFO”). Often, however, empirical equations

constructed using curve fitting are also employed. As an example, LFO, among others, used

a relationship like this for for the terminal velocity of a rain drop of diameter D:

VD = aDb

[
ρ̄0

ρ̄

]1/2

,

where a and b are empirically determined constants, and ρ̄0 is the air density at the surface.

A frequently used source for these constants is Locatelli and Hobbs (1974). The air density

ratio is a fallspeed correction introduced by Foote and du Toit (1969), and permits terminal

velocities to increase with altitude, other factors being equal.
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8.1.3 Accretion of cloud droplets by rain water

Because rain drops fall relative to still air and cloud droplets do not, rain drops can encounter

— and collect — cloud particles. Raindrops can encounter cloud droplets even in strong

updrafts, where both kinds of condensed water are actually rising. The key point is that the

difference between settling velocities for a given raindrop and cloud particle is the fall speed

of the raindrop, and this is the encounter velocity for the drop.

A single raindrop with diameter D settling relative to still air (and cloud droplets) at speed

VD sweeps out a volume determined by the drop’s cross-sectional area, which is 1
4
πD2. During

its fall (relative to cloud particles), it encounters cloud droplets which are distributed through

the grid box with content ρ̄qc. Upon colliding with a cloud droplet, the droplet may stick

to the raindrop, or it may not, depending on how sticky or “efficient” the drop is. This is

quantified as the collection efficiency, εD.

Thus, the rate of mass increase for the raindrop of diameter D can be expressed as:

dMD

dt
= εD

πD2

4
VDρ̄qc.

Integrate this expression over all raindrop sizes, and call it B (units kgw kg−1
air s−1) for

convenience. This yields:

B =
d

dt

∫ ∞
0

MDNDdD

= εD
π

4
kg

1
2

[
ρl
ρ̄

] 1
2

ρ̄qcN0

∫ ∞
0

D
5
2 e−λDdD.

In the above, we used our equation for the terminal velocity of a single drop of diameter D.

Using the Gamma function yet again allows us to quickly solve the integral, producing:

B = εD
π

4
kg

1
2

[
ρl
ρ̄

] 1
2

ρ̄qcN0

[
Γ(3.5)

λ
7
2

]
.

This is the way the equation is presented in LFO, and it shows that accretion depends on

the cloud water mass available per unit volume (ρ̄qc). It also, logically, depends on the rain

water content, which is hiding in the slope parameter. Owing to (8.6), we know that

λ
7
2 =

[
ρlN0π

ρ̄qr

] 7
8

.

Using this in the equation for B and rearranging, we see that the accretion of cloud water

by rain is

B ∝ εDN
1
8

0 ρ̄qcq
7
8
r

[
ρl
ρ̄

]− 3
8

.
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The Kessler parameterization involves a simplified version of this expression, often rendered

in models predicting mixing ratios as

B = k2qcq
7
8
r , (8.11)

with the accretion rate, k2, usually taken to be 2.2. It is not clear this is a completely

faithful representation of the Kessler formulation, however. First, note that in Kessler (1967,

1969) and Kessler and Bumgarner (1971), the prognostic equations for condensed water were

written in terms of water content (specifically, gw/m3) instead of mixing ratios. The accretion

rate coefficient (units gw/m3/s) was presented as

k′2mcM
7
8
r , (8.12)

in which mc and Mr are the cloud and rain water contents, and k′2 = k2EN
1/8
0 , with k2

= 6.96E-4 in unspecified units, E is an efficiency taken to be unity, and N0 again is the

intercept of the raindrop size distribution, adopted as 107 m−4.

We need to ascertain the units of k′2 and rewrite Kessler’s expression for condensate expressed

as mixing ratios. Working backwards, we find the units of k′2 have to be m7/8 g
7/8
w s−1, which

with Kessler’s specifications becomes k̂2 = 2.2 m7/8 kg
7/8
w s−1 (note notation change) after

conversion to mks. The prognostic equations for cloud and rain water contents are, in part:

dMr

dt
= −dmc

dt
= k̂2mcM

7/8
r .

Unitwise, we know that mc = ρ̄qc and mr = ρ̄qr. So substituting and also dividing by air

density yields
dqr
dt

= −dqc
dt

= k̂2qc [ρ̄qr]
7/8 . (8.13)

which differs from the usual formulation (8.11) by the ρ̄7/8 term. Using (8.11) with k2 = 2.2

essentially inflates the accretion rate because ρ̄7/8 < 1. Thus, for our model, it appears we

should formulate the accretion rate as

B = k̂2qc [ρ̄qr]
7/8 (8.14)

instead when k̂2 = 2.2. It may suffice to write B = 2.2ρ̄qcq
7/8
r .

8.1.4 Evaporation of rainwater

A raindrop’s mass will increase or decrease depending on whether vapor is diffusing towards

or away from it. The direction in which vapor diffuses depends upon the diffusivity of vapor

and the gradients in the vapor field. We can try to model this using a simple diffusion
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equation, involving the second derivative of the vapor field. Let the vapor density (vapor

mass per unit volume) be ρv, then a simple diffusion equation for vapor is:

∂ρv
∂t

= δv∇2ρv,

where δv is the diffusivity coefficient of vapor in air.

Consider a spherical drop of radius R. The Laplacian in this equation is three-dimensional,

but by recognizing that the raindrop is spherical, and we’re concerned with the vapor gra-

dients radially outward from the drop, some simplification can be attained by casting the

equation in spherical coordinates. Skipping some details, this leads to an expression relating

the vapor density at some point r away from the drop [ρv(r)] in terms of the vapor density

far from the drop [ρv(∞)] and the vapor gradient in the radial direction between the drop’s

outer surface [ρv(R)] and far away. This is:

ρv(r) = ρv(∞)− R

r
[ρv(∞)− ρv(R)] .

The time rate of change of the drop’s mass M will depend upon the drop’s surface area

(4πR2; over which evaporation is taking place), the vapor gradient radially away from the

drop and the vapor diffusivity. This can be written as:

dM

dt
= 4πR2δv

dρv
dr

.

Using the previously obtained result allows us to rewrite this as:

dM

dt
= 4πRδv [ρv(∞)− ρv(R)] .

This does not provide sufficient information to solve the problem. We need to make some

assumptions. First, we presume that air very near the drop is saturated. We know that the

saturation vapor density is a function (and a strong one, at that) of temperature T , which

at the outer edge of the raindrop has the value T (R). So

ρv(R) = ρvs [T (R)] .

If a location farther away is subsaturated, such that ρv(∞) < ρvs(R), vapor will diffuse away

form the drop and the drop’s mass will be decreased as its liquid evaporates to vapor form.

This causes latent cooling — or heat to be extracted from the surrounding air.

If we can assume that the latent cooling is drawn from the air by conduction (diffusion of heat

in air), then we can equate the latent cooling rate owing to evaporation with the diffusion

of heat through the air. The latent cooling is proportional to the drop’s mass change, with
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the proportionality being Lv, the latent heat of vaporization. The diffusivity of heat in air

is quantified by δT , and equating the two yields:

Lv
dM

dt
= 4πRδT [T (R)− T (∞)] .

The RHS of the above was constructed via analogy with vapor diffusion. The left side of

the expression is the cooling rate owing to drop mass loss; the right side shows that the heat

required to evaporate the vapor comes from the surrounding air via diffusion.

The key points in the above analysis are that evaporation depends upon the difference in

vapor density near and away from the drop and the ability of both vapor and heat to diffuse

through the air. By combining all of the above expressions, it can be shown that this analysis

leads to an evaporation rate equation of the form:

dM

dt
=

4πR(S − 1)

fcn(δT ) + fcn(δv)
,

where S is the relative humidity (expressed as a fraction), and S < 1 means subsaturation.

So, in that case S − 1 < 0 and the drop mass decreases.

This equation has to be integrated over all drop sizes, of course. Additional complexity

arises if the drop is evaporating while also falling. The rush of air past an evaporating drop

“ventilates” the drop and increases its mass loss. Kessler expressed the evaporation rate, E,

in the following way:

E =
1

ρ̄

[
(1− qv

qvs
)Cvent(ρ̄qr)

0.525

2.03× 104 + 9.58×106

p̄qvs

]
, (8.15)

where Cvent is the ventilation factor

Cvent = 1.6 + 30.39(ρ̄qr)
0.2046,

and p̄ is the mean pressure in Pa. (The preceding differs from Kessler; I’ve converted the

units into the mks system.)

8.1.5 Reflectivity

In this subsection, we take the opportunity to generalize our discussion to include other

precipitation species other than raindrops (i.e., frozen particles such as snow, graupel and

hail). These will also be presumed to be exponentially distributed, with the distribution for

water species x given by

n(Dx) = N0xe
−λxDx , (8.16)

where n(Dx) is the number of particles of size Dx, and N0x and λx are the intercept and

slope of the particle distribution, respectively. The mass of an individual particle of density
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ρx, presumed spherical, is

m(Dx) =
1

6
πρxD

3
x. (8.17)

As seen before, the total number of particles Nx is obtained by integrating (8.16) over the

entire range of sizes, as in

Nx =

∫ ∞
0

n(Dx)dDx =
N0x

λx
, (8.18)

and total mass Mx is obtained in an analogous fashion as

Mx =

∫ ∞
0

m(Dx)n(Dx)dDx, (8.19)

which yields

Mx =
πρxN0x

λ4
x

. (8.20)

The total mass per unit volume, presumed spread equally through the volume, is Mx = ρ̄qx,

where ρ̄ is the air density and qx is the mixing ratio of species x. Thus, (8.20) may be solved

for the slope parameter

λx =

[
πρxN0x

ρ̄qx

] 1
4

. (8.21)

Often, though not always, the intercept N0x is taken to be constant, making the slope param-

eter specified uniquely by the species mass content. That assumption, though convenient,

is in itself questionable (Cotton and Anthes 1989), and so-called double moment parame-

terizations (e.g., Ferrier 1994) have arisen in part owing to these concerns. Still, in LFO,

the intercept for snow (N0s) was fixed at 0.03 cm−4; many studies followed their lead. Snow

density is often considered to have a very low density, on the order of 0.1 g cm−3.

For frozen water species, the question arises whether the diameters in the foregoing ex-

pressions should represent actual or melted diameters. Unfortunately, there appears to be

considerable confusion between the two in the literature, and this can make a sizable differ-

ence with respect to particles such as low density snow. As an example, LFO’s formulation

employed actual diameters in their derivations of fallspeeds and conversion rates, but they

appear to have directly relied on Gunn and Marshall’s (1958) work that employed melted

diameters without appreciating the distinction. Two papers by Passarelli (1978a,b) discuss

the difference between the two.

Let us consider the issue of melted vs. actual diameters in a little more detail. Let the melted

diameter of a frozen particle be designated as D̂x. The exponential distribution of melted

diameters (8.16) is now written as

n(D̂x) = N̂0xe
−λ̂xD̂x , (8.22)

where intercept and slope parameters for the distribution of melted particles are being used.

An equivalent distribution based on actual diameter Dx should logically be subject to two
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constraints: the distributions contain the same number of particles, and represent the same

total mass. These constraints yield relationships between the actual and melted diameter

distributions’ slopes and intercepts given by

N̂0x

λ̂4
x

ρx =
N0x

λ4
x

ρw (8.23)

N̂0x

λ̂x
=

N0x

λx
, (8.24)

where ρw is the density of liquid water. Two further relationships may be identified. If the

particles are spherical, then ρwD̂
3
x = ρxD

3
x. Also, n(D̂x)dD̂x = n(Dx)dDx. These were also

invoked by Passarelli (1978a).

The preceding results in these relationships between actual and melted particle distribution

parameters:

λx = λ̂x

(
ρx
ρw

) 1
3

, (8.25)

and

N0x = N̂0x

(
ρx
ρw

) 1
3

. (8.26)

Passarelli (1978b) presented these relationships in his equation (14). This means that if the

slope of the melted snow particle exponential distribution was N̂0s = 0.03 cm−4, as often

cited, the slope of the equivalent distribution based on actual particle diameters would be

0.014 cm−4. That difference might not seem like much, but by itself it is sufficient to alter

accretion of cloud water by snow rates by more than 10%.

Additionally, and perhaps more seriously, values for intercepts employed in simulations of

warm season deep convection are largely drawn from observations derived from very different

weather phenomena, such as frontal and mountain wave clouds, and winter weather events.

Samples from deep convection are not all that common, but we note that Musil et al.

(1976) found snow intercept (N0s) values far smaller than what appears to have become the

“standard” value. It might make more sense to adopt the double-moment that effectively

renders the distribution intercept into a prognostic variable. This adds a large amount of

complexity and expense to the problem, however.

Now we turn to the main topic of this subsection. The reflectivity Zx of a particular species

of water is a function of the sixth power of the particle diameter Dx is

Zx =

∫ ∞
0

D6
xn(Dx)dDx. (8.27)

For ice species, the equivalent reflectivity Zex = αZx where α is the ratio of dielectric con-

stants of ice and water. For water, Zex = Zx. After equivalent reflectivities for each species

are summed (forming Ze), total reflectivity in decibels is computed as 10log10(Ze).
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We have not yet specified whether actual or melted particle diameters are being used. Dye

et al. (1974) note that “backscattering is proportional to the mass of the particle so that

the measured diameter must be corrected for the density”. Therefore, we proceed under the

assumption Zx is based on melted diameters. Using D̂x in place of Dx in (8.27) and noting

that n(Dx)dDx = n(D̂x)dD̂x, we have

Zx =

∫ ∞
0

D̂6
xn(D̂x)dD̂x = Γ(7)

N̂0x

λ̂7
x

, (8.28)

where Γ is the Gamma function. Substitution of the actual particle distribution [i.e., em-

ploying (8.25) and (8.26)] results in

Zx =

∫ ∞
0

D6
xn(Dx)dDx = Γ(7)

N0x

λ7
x

(
ρx
ρw

)2

. (8.29)

This functional form was presented by Passarelli (1978a) and used by Fovell and Ogura

(1988), among others.

For compatible slope and intercept values, (8.28) and (8.29) should – and do – result in

the same values. For a given melted diameter intercept N̂0x, the equivalent N0x is smaller,

increasing the magnitude of λ−7
x . However the correction factor

(
ρx
ρw

)2

compensates for this.

Therefore, with identical values of Z, the Ze values are also the same. According to Smith

(1984), the appropriate value of α in this case is 0.224 [from his equation (8)] since the

reflectivity was effectively based on melted diameters3.

Though it may not be obvious at first sight, this strategy for computing ice equivalent

reflectivities is consistent with that advanced by Smith (1984). In that paper, two strategies

for computing Ze from Z were presented [Smith’s equations (8) and (10)], depending on

whether melted or actual particle diameters were employed in the calculation of Z. This

puts the effective correction factor in the dielectric constant rather than in the computation

of Z itself. Smith presumed a value of 0.92 g cm−3 for ice, so his correction term would be

(0.92)2 = 0.846, the ratio between the diaelectric constants for his (8) and (10). The present

treatment is more general as it does not presume a specific value for ice species density ρx.

The density of snow is usually taken to be much smaller than that.

From the preceding it is suggested that reflectivity should be based on melted diameters, and

if actual diameters are used, the correction factor
(
ρx
ρw

)2

should appear. This indicates that

Fovell and Ogura’s (1988) equation (1) [with α=.224] is appropriate when actual particle

diameters are used in the calculation, but not when melted diameters are used. There are

examples in the literature of studies that used the correction term along with the melted

diameters. That combination produces nice (and realistic!) reflectivities, but appears to

3Fovell and Ogura (1988) used 0.213, itself ultimately based on the widely propagated error discussed by
Smith (1984).
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be based on an inconsistency. Improper inclusion of the term results in reflectivities that

are fully 20 dBZ lower (since 10log10

(
ρs
ρw

)2

= -20 when ρs = 0.1 g cm−3). Models tend to

create overly large reflectivities, but there must be something else (such as excessively large

conversion rates and/or inappropriate size distribution intercepts) to blame.

8.2 The equations with moisture and diffusion added

Thus, our equations (in flux form; see Model Task #5) are now:

∂u

∂t
= −∂uu

∂x
− 1

ρ̄

∂ρ̄uw

∂z
− cpdθ̄v

∂π′

∂x
+Kx

∂2u

∂x2
+Kz

∂2(u− ū)

∂z2
(8.30)

∂w

∂t
= −∂uw

∂x
− 1

ρ̄

∂ρ̄ww

∂z
− cpdθ̄v

∂π′

∂z
+ g

[
θ′

θ̄
+ .61q′v − qL

]
+Kx

∂2w

∂x2
+Kz

∂2w

∂z2
(8.31)

∂θ′

∂t
= −∂uθ

′

∂x
− 1

ρ̄

∂ρ̄wθ′

∂z
− wdθ̄

dz
+

Lv
cpdπ̄

[C − E] +Kx
∂2θ′

∂x2
+Kz

∂2θ′

∂z2
(8.32)

∂π′

∂t
= − c̄s

2

ρ̄cpdθ̄2
v

[
ρ̄θ̄v

∂u

∂x
+
∂ρ̄θ̄vw

∂z

]
+Kx

∂2π′

∂x2
+Kz

∂2π′

∂z2
(8.33)

∂q′v
∂t

= −∂uq
′
v

∂x
− 1

ρ̄

∂ρ̄wq′v
∂z

− wdq̄v
dz

+Kx
∂2q′v
∂x2

+Kz
∂2q′v
∂z2
− C + E (8.34)

∂qc
∂t

= −∂uqc
∂x
− 1

ρ̄

∂ρ̄wqc
∂z

+Kx
∂2qc
∂x2

+Kz
∂2qc
∂z2

+ C − A−B (8.35)

∂qr
∂t

= −∂uqr
∂x
− 1

ρ̄

∂ρ̄
[
w − V̂T

]
qr

∂z
+Kx

∂2qr
∂x2

+Kz
∂2qr
∂z2

+ A+B − E, (8.36)

where qL is the total condensed water mixing ratio (qc + qr), and Kx and Kz are the com-

putational diffusion coefficients in the x and z directions, respectively. In the above, we

have:

• Restored virtual temperature to the pressure gradient acceleration terms, the w equa-

tion’s buoyancy term, and to the π′ equation;

• Added an equation for q′v that mimics the handling of θ′;

• Added equations for qc and qr;

• Added a term in the vertical advection of qr to account for the terminal velocity of

rain water (V̂T );

• Revised the w equation’s buoyancy term to make it simpler to calculate (see below);

• Added the buoyancy drag owing to condensed water in the buoyancy term;
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• Added terms governing condensation/evaporation of vapor (C) into the temperature

and moisture substance equations (including simplifications discussed in Appendix A);

• Added terms governing the conversion of cloud water to rain water (A) and accretion

of cloud water by rainwater B into the qc and qr equations;

• Added terms handling the evaporation of rain water (E) into the temperature and qr
equations;

• Added computational diffusion terms to restrain nonlinear instability (see Chapter 7).

8.2.1 Some comments on the above equations

Note that the computational diffusion is applied solely to perturbations from the mean state,

not the mean state itself. That doesn’t matter for horizontal diffusion, since the mean state

is a function only of height. However, since computational diffusion is completely artificial,

we don’t want it to be altering the base state of the atmosphere.

The equations above are written in terms of perturbation potential temperature, vapor and

pressure, but in terms of the full field u. This is an arbitrary choice. Note on the right sides of

the equations, we often have to use perturbations of temperature, pressure and moisture (as

in the pressure gradient and buoyancy terms, for example), but we only need perturbation

u only in the u equation’s vertical diffusion term. If we solved explicitly for u′ instead of full

u, we’d have to constantly add the mean state back in when doing advection. Conversely, if

we solved for full θ or π, for example, we’d have to be constantly subtracting out the mean

state. So, it’s just easier to do it the way shown.

We saw in Model Task # 4 in particular that negative values can be produced in the wake

of an originally positive definite initial condition. In the same way, advection of water

substance can create unphysical negative mixing ratios. These need to be handled somehow,

prior to computing microphysics. There are several ways this can be done (see also Model

Task #6), the simplest being setting negative values of qc, qr and q̄v + q′v to zero. That,

however, represents a spurious source of moisture in the model. Aside from implementing

more sophisticated, strictly positive-definite advection schemes, another way might be to

compute the total domain mass content of negative and positive water substance (for species

x, this would be the sum of ρ̄qx∆x∆z over all real grid points) where qx > and < 0,

respectively, zero all negative qx values, and reducing each positive qx value by the ratio of

the negative and positive mass contents. That way, negative mixing ratios are removed but

the total domain mass content of qx is not changed.

The cloud microphysics is reflected on the equations’ right hand sides by autoconversion

and accretion of cloud water (A and B), which are sinks for cloud water and sources for
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rain water; condensation/evaporation of vapor (C), which is a sink for vapor and a source

for cloud water when C > 0; and rainwater evaporation (E), which is a sink for rain and

a source for vapor. Terms C and E involve latent heat release or absorption, and so these

terms also show up in the θ′ equation.

Recall that raindrops are presumed to fall at their mass-weighted terminal velocity. Thus,

we need an additional mass flux term in the qr equation. This term is shown combined with

vertical advection to try to reduce computational errors. Consider an updraft. If the vertical

advection and fall velocity terms were computed separately, we could have one term forcing

rain water to rise some distance, and then the other term forcing some of the rain to fall back

down some distance. It makes sense to combine these terms, if it is practical (code-wise) to

do so.

Now we need to consider the saturation adjustment. We already utilized the cloud model’s

adjustment technique in computing the CAPE as part of Model Task #2. In the model time

stepping, the vapor-cloud saturation adjustment is performed last, because it is presumed

to operate instantaneously. First, advection of vapor and condensed water, including the

terminal velocity term for rainwater, is computed. The microphysical conversions (autocon-

version and accretion of cloud water, and rain evaporation) are also calculated. This yields

a new forecast at time n+1 for vapor, qc and qr.

This new state may be subsaturated or supersaturated with respect to vapor. As the last

step, the time n+1 forecast for vapor and cloud water are readjusted. If the grid box is

supersaturated with respect to vapor, cloud water is produced. If the grid box is subsaturated

and cloud water is present, some (or all) of the cloud droplets are evaporated. Doing this

last insures that the forecasted field is not thermodynamically inconsistent.

8.2.2 Rewriting the buoyancy term

The w equation’s buoyancy term made use of the following set of approximations. We should

have had θ′v
θ̄v

there. Virtual temperature is:

θv = θ(1 + .61qv)

and thus for the mean state it is

θ̄v = θ̄(1 + .61q̄v).

Apply logs to the former expression, yielding

ln θv = ln θ + ln(1 + .61qv).
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Recall that ln(1 + x) ≈ x when x << 1. Since the vapor mixing ratio is pretty small, .61qv
<< 1 and thus ln(1 + .61qv) ≈ 0.61qv. Therefore,

ln θv ≈ ln θ + .61qv.

Now perform a perturbation analysis on the above equation. In the usual fashion, we first

get

ln

[
θ̄v

[
1 +

θ′v
θ̄v

]]
≈ ln

[
θ̄

[
1 +

θ′

θ̄

]]
+ .61q̄v + .61q′v.

Again using ln(1 + x) ≈ x, we find that

ln θv +
θ′v
θ̄v
≈ ln θ̄ +

θ′

θ̄
+ .61q̄v + .61q′v.

Subtract out the mean state, and we’re left with:

θ′v
θ̄v
≈ θ′

θ̄
+ .61q′v,

which we used in (8.31) above. The condensed water appears in the buoyancy term owing

to the drag law.

8.2.3 The latent heating term in the θ′ equation

The latent heating or cooling due to condensation and evaporation appears in the equation

for perturbation potential temperature (8.32) as

Lv
cpdπ̄

[C − E] ,

where C is the condensation of vapor (C > 0 for vapor to cloud water transformation),

E is the evaporation of rain water and Lv is the latent heat of vaporization. This simple

expression is the end product of a long chain of assumptions and approximations. This term

is derived below.

The first law of thermodynamics may be written as:

δQ = cvd(mT ) + pdV, (8.37)

where cv is the specific heat at constant volume, V is volume, p is the total air pressure and

T is temperature. We recognize that total pressure is the sum of the partial pressures of

dry air, pd, and water vapor, e, and that both dry air and water vapor are ideal gases. The

total mass, m, is the sum of the dry air and vapor masses, md and mv, as well as the mass
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of condensed liquid, ml. Heat exchange is due to a change in the vapor mass, with vapor

decrease resulting in heat release. That is:

δQ = −L′dmv

where L′ is the latent heating factor.

We expand the RHS of (8.37), producing

− L′dmv = cvdd(mdT ) + cvvd(mvT ) + cld(mlT ) + pddV + edV. (8.38)

In the above, cvd and cvv are the constant volume specific heats of dry air and water vapor,

and cl is the specific heat of liquid water. We recognize that the dry air mass, md, is constant.

Also, since both dry air and water vapor are ideal gases, and the dry air and vapor mixture

occupy the same volume and have the same temperature, we can write their respective gas

laws as:

pdV = mdRdT

eV = mvRvT,

where Rd and Rv are the dry air and vapor gas constants. Differentiating these two gas laws

and rearranging them yields:

pddV = −V dpd +mdRddT

edV = −V de+mvRvdT +RvTdmv,

since md is constant.

These expressions are useful in rewriting (8.38) which, after expansion, produces:

−L′dmv = cvdmddT+cvvmvdT + cvvTdmv + clmldT + clTdml

−V dpd +mdRddT − V de+mvRvdT +RvTdmv . (8.39)

Recall that cvd + Rd = cpd for dry air, and cvv + Rv = cpv for vapor. Also, the vapor loss is

the condensed liquid’s gain, so dml = −dmv. This brings us to:

−L′dmv = cpdmddT + cpvmvdT + clmldT + (cpd − cl)Tdmv − V dp.

In the above, we recombined the dry air and vapor partial pressures back into total pressure

in the RHS’ last term.

Now divide the above by the dry air mass, md. We define the mixing ratio for a given

substance as the mass of the substance divided by the dry air mass. Thus, qv, the vapor

mixing ratio, is mv

md
, and the liquid water mixing ratio is ql = ml

md
. After rearrangement, we

have:

− [L′ + (cpv − cl)T ] dqv = cpddT + cpvqvdT + clqldT − αddp (8.40)
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where αd is V m−1
d . Let

Lv = L′ + (cpv − cl)T (8.41)

be defined as the latent heat of vaporization. The factor L′ is nearly constant, but Lv is

obviously a linear function of temperature.

We can perform further rearrangement with the help of the ideal gas law, starting with

pV = mRT

= mdRdT +mvRvT

pαd = RdT + qvRvT

αd =
Rd

p

[
1 +

Rv

Rd

qv

]
T.

We had divided through by md, and produced an expression for αd that may be substituted

into (8.40) above. After also dividing by T and collecting some terms, we come to:

−Lv
T
dqv = cpd

[
1 +

cpv
cpd

qv

]
d lnT

−Rd

[
1 +

Rv

Rd

qv

]
d ln p+ clqld lnT. (8.42)

To use the above in our θ equation, we need to get it in terms of potential temperature. We

recall potential temperature is defined as:

θ ≡ T

[
1000

p

] Rd
cpd

where p is the total pressure. It may not have been obvious that this was the right or best

definition of θ, but actually this particular derivation does show this to be the case. Expand

the above and differentiate to yield:

cpdd ln θ = cpdd lnT +Rdd ln p.

Using this in (8.42), and rearranging yet again, leads us to our final, unapproximated moist

adiabatic thermodynamic equation:

cpdd ln θ = −

1 +
Rv

Rd

qv︸ ︷︷ ︸
I


−1

LvT dqv︸ ︷︷ ︸
A

+

clqld lnT︸ ︷︷ ︸
B

+ cpdqv

[
cpv
cpd
− Rv

Rd

]
d lnT︸ ︷︷ ︸

C


 . (8.43)
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We can do a scale analysis on (8.43), using some reasonable values for the variables involved.

The vapor and dry air gas constants are about 452 and 287 J kg−1 K−1, respectively, and

Lv ≈ 2.5 × 106 J kg−1. Let T be 300 K, and allow 10 g kg−1 of vapor to condense, meaning

-dqv = dql = 10−2 kg kg−1. Take the warming resulting from this to be about 25 K. Then,

we see Term I is about 0.16, making a small but potentially significant contribution to the

first term on the RHS (because it is being added to 1). The dominant term is clearly Term

A, which evaluates to roughly 83. Terms B and C are relatively much smaller, being 3.5

and 0.2 respectively, dwarfed by Term A.

If we elect to neglect Term I as well as Terms B and C, we find, after rearrangement

dθ =
Lvθ

cpdT
dqv.

Using the definition T=θπ, and differentiating with respect to time gives us

dθ

dt
=

Lv
cpdπ

dqv
dt
.

The time rate of change of vapor mass (due to condensation of vapor or evaporation of liquid)

yields latent heating or cooling of approximately the specified amount. In (2.5), the rate of

vapor mass change was written as C − E (where C is now condensation or evaporation of

cloud water), which we obtain from doing the saturation adjustment. It is not uncommon

to take Lv as a constant, neglecting the previously mentioned temperature dependence.

Actually, the term in (2.5) contains one last assumption. π̄ is used in place of π because

we linearized the nondimensional pressure. Hopefully, it is seen that we made quite a few

approximations to reach that simple form used in (8.32).
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Model Tasks
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Chapter 9

Model Task #0: Solving the 1D wave
equation

In this task, we will program the 1D linear wave equation in a domain with periodic bound-

aries. This task will illustrate the basics of model initialization, time stepping, application

of boundary conditions (BCs), amplitude and phase errors and their dependence on wave-

length and time step, and avoidance of roundoff errors. This is called Model Task #0 in part

because it does not directly lead to the cloud model.

For simplicity, the example code developed herein prints out data that is copied into Excel

for plotting. Excel will not be useful for subsequent model tasks.

9.1 The upstream or upwind scheme

9.1.1 The scheme

As discussed in Chapter 4, the 1D wave equation can be written as

ut = −cux, (9.1)

where c is a constant wave speed and the wave translates to the right when c > 0. The

upstream approximation is forward in time and upwind in space:

un+1
i − uni

∆t
− c

[
uni − uni−1

∆x

]
, (9.2)

which in this form is only valid when c is non-negative. As there is only one unknown on

the RHS, (9.2) can be written in explicit form as

un+1
i = uni −

c∆t

∆x

[
uni − uni−1

]
. (9.3)
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9.1.2 Implementation

The upstream method is a two time-level scheme, and we will call the present value u

and forecast value up. We will also create and track the true solution, uexact. All three are

dimensioned NX. At the start of the program, we should initialize parameters and constants

such as NX, current simulation time time, time index n, time step dt (∆t), space index i,

grid spacing dx (∆x), and trigonometric π, etc., and create arrays u, up, and uexact.

Our first case will be initialized with a single, rightward-moving wave of specified wavelength

such that an integral number of waves fits in the domain. The lateral boundaries will be

periodic, so the wave will pass out the right side and enter back in on the left. The exact

solution will perfectly preserve its original shape and return to its initial position within the

domain in a certain number of time steps. We will compare our numerical solution to this

truth.

We will take the initial time as 0 seconds, so the time index n starts at 0. We need to

provide the initial condition for u for all i. As a precaution, future value up should be

initialized with zeroes for all i. In the example below, the space index i runs from

1 to NX, inclusive. This indexing conforms with standard Fortran practice, in which an

array dimensioned NX has array elements numbered 1 ≤ i ≤ NX. Thus, i = 1 and i =

NX will represent boundary points. Languages such as Python and C++ use zero-based

indices, so the NX dimensioned array elements range from 0 ≤ i ≤ NX-1.

Once this is completed, the main program loop consists of these actions:

• Increment the time index n. Thus, the first forecast corresponds to n = 1.

• Use the upstream scheme to create up for interior points 1 < i < NX, overwriting the

previously stored values.

• Apply the boundary conditions on up at i = 1 and i = NX.

• Set for the next time step. This involves transferring the contents of up into u for all

i, and updating the current time. One obvious but poor way of doing the latter is

time = time+ dt (see below).

• Compute the exact solution uexact.

• Write outputs for u and uexact, if appropriate.

• If time < timend, loop; otherwise, exit.

Trigonometric π can be easily computed to machine precision with

trigpi = 4. ∗ arctan(1.0).
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I call this variable trigpi to differentiate it from the model’s nondimensional pressure variable,

π. Simply adding dt to time every time step can cause roundoff errors to accumulate. Over

a long integration, compare the results of these two lines of code:

time1 = time1 + dt

time2 = float(n)*dt

Especially for certain non-integer values of dt, significant differences will emerge.

For periodic boundaries (in Fortran convention), the NX-2 points between 2 and NX-1,

inclusive, will be termed the real points. The remaining (“fake”) points serve to facilitate

handling of the boundary points. After up is computed, the boundary conditions can be

applied like this:

u(1) = u(nx-1)

u(nx) = u(2)

At this point, all entries in up have been supplied with information. When setting for the

next time step, simply transfer the entire contents of up into u. When handled in this

manner, we do not need to treat the real u points closest to the boundaries separately or

specially when computing up for the next time step.

9.1.3 Test problem

For our test problem, set c = 1.0 m/s, dt = 1.0 s, and dx = 1.0 m, so c′ ≡ c∆t
∆x

= 1.0. Let

NX = 52, so there are 50 real points, make the initial wavelength to be L = 50∆x, and

take timend = 50 s. This means we will execute the model for precisely one revolution, and

should obtain the modeled and exact solutions as shown in Fig. 9.1. As revealed by Fig. 4.3,

the upstream scheme has no significant error for this configuration.

We can craft our initial condition for u using code like this

wavelength = 50 ! i.e., 50dx

amp = 1.0 ! amplitude

do i=2,nx-1 ! Loop over real points

xi=float(i-2)

u(i) = amp*sin(2*xi*trigpi/wavelength)

enddo

! enforce periodic boundary conditions

u(1)=u(nx-1)

u(nx)=u(2)
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Figure 9.1: Upstream scheme solution (red curve) for test problem (50∆x wave with c′ = 1.0)
after one revolution, shown with exact solution (black curve).

The exact solution for u at time step n can be computed using

do i=2,nx-1

! exact solution at any time n

xei = float(i-2)-c*n*dt

uexact(i) = amp*sin(2*xei*trigpi/wavelength)

enddo

9.1.4 Errors

The exact solution of the linear wave equation translates precisely at speed c without change

of shape or amplitude. Even if the initial condition consists of a set of waves with different

wavelengths and amplitudes, the combined waveform translates as a coherent unit because

each component’s amplitude is preserved and they share the same phase speed. As discussed

earlier, amplitude error occurs in this case if the wave’s original amplitude is not preserved

and phase error occurs if the simulated wave translates too quickly or slowly. Figure 4.3

showed that, for the upstream scheme, amplitude and phase errors were a function of wave-

length and c′.

Specifically, that figure revealed that simulated wave amplitude decays when c′ < 1 and

grows when c′ > 1, with shorter waves always handled worse than longer ones. Both the

decay and growth are exponential, which means for c′ < 1, the wave is disappearing and for

c′ > 1 the model is unstable. Counterintuitively, sampling the wave propagation better (i.e.,

selecting c′ < 1) actualy makes the scheme worse. For c′ < 1, the poorest performance for
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all wavelengths is at c′ = 0.5. At that c′ value, the amplitude factor for 4∆x waves is 0.7,

which means the wave would lose 30% of its amplitude every time step. That wave would

not persist very long.

The exact solution is nondispersive but the upstream scheme is not since simulated phase

speeds vary with wavelength. Some wavelengths move faster than c while most move more

slowly. For long wavelengths, the phase error is small. For our test problem, we selected

c′ = 1, so there was no amplitude error, and L = 50∆x, so the phase error was very small

and would only emerge from much longer time integrations.

9.1.5 Upstream scheme experiments (Model Task #0A)

We will manipulate c′ by altering the time step. Conduct these experiments:

1. Try values of dt < 1.0 for the 50∆x wave. Observe the amplitude and phase error after

one revolution. Compare your results to Fig. 4.3.

2. Try values of c′ > 1, by increasing dt. How does the wave amplitude change after one

revolution? What happens if you intergrate the model longer? This is linear instability.

3. Change the initial condition’s wavelength to something smaller, like 5∆x (wavelength

= 5), and set c′ = 0.5. From Fig. 4.3, we expect to lose about 20% of the amplitude

per time step. Does that happen? Plot the maximum wave value vs. time1.

4. Compare simulations for the 50∆x wave with c′ = 0.5 and 0.25. Run each simulation

for 50 seconds. According to Fig. 4.3, the amplitude error is supposed to be worse for

c′ = 0.5. Is it? If not, why not? (Note a 50 sec integration requires 100 time steps

with dt = 0.5 second, and 200 time steps for dt = 0.25 sec.)

5. According to Fig. 4.3, the 2∆x wave isn’t supposed to move at all, for any value of c′.

Does it move? If it does, why does it?

6. Now create a initial condition consisting of two combined waves. Specifically, combine a

50 and 10∆x wave, each with initial amplitude of 1.0, and set c′ = 0.5. Anticipate what

the result would look like after 1 revolution before running the model and checking

your guess. (If you wish to explore other wave combinations, keep in mind you need

to have an integral number of waves in the initial condition.)

For #5 above, note that a 2∆x wave is easily “lost” on a grid. You can try this modified

code:

1Because of the periodic BCs, your initial condition has to have an integer number of waves in the domain,
or the BC will mishandle the wave. To explore some wavelengths, it may be necessary to change NX
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xi=float(i-2)

if(wavelength.eq.2) xi=xi+0.5

u(i) = amp*sin(2*xi*trigpi/wavelength)

9.2 The leapfrog and RK3 schemes

The upstream scheme was seen to suffer from substantial amplitude error when c′ 6= 1.

We next examine two alternatives, the second-order leapfrog and third-order Runge-Kutta

(RK3) schemes, which will be added to your code for Model Task #0B. It is noted that the

terms “leapfrog” and “RK” actually refer to how they accomplish time integration. You still

have to specify how the spatial discretization is handled. We will examine versions of these

schemes that are 2nd order in space.

9.2.1 The leapfrog scheme

The second-order leapfrog scheme (see Chapter 5) is centered about the “here/now” point

in both time and space, which means three time levels (n-1, n, and n+1) and three spatial

points (i-1, i, and i+1) are involved:

un+1
i − un−1

i

2∆t
= −c

[
uni+1 − uni−1

2∆x

]
. (9.4)

Note an odd feature of this scheme: the forecast for the present spatial location (un+1
i ) does

not depend on that point’s current value (uni ). Can you imagine that this might induce

some interesting behavior?

un+1
i = un−1

i − c∆t

∆x

[
uni+1 − uni−1

]
. (9.5)

As with the upstream scheme, (9.4) can be written in explicit form:

We will call the future, present, and past values of the prognostic variable up, u, and um,

respectively. The Fortran code for this could look like:

up(i) = um(i) - c*(d2t/d2x)*(u(i+1)-u(i-1))

in which d2x and d2t will be defined presently.

As before, the initial time will be 0 seconds, and the time index n starts at 0, so the first

forecast is for n = 1. Since this is a three time level scheme, we ostensibly need two values,

for n = 0 and n = -1, at the start. Where does the value for n = -1 come from? Usually,
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we fudge it. The easiest (and usually, the only practical) way to start the scheme is to leap

by ∆t instead of 2∆t for the first time step. We can code this efficiently via equating the

values for time indices 0 and -1, as will be seen below. As a consequence, and as illustrated

in Fig. 9.2, the first time step will be handled differently from all remaining steps, using a

forward-time, center-space scheme that is actually unstable. However, it is only used once.

timeu-1i u0i u+1i
∆t

u-1i u0i u+1i
∆t

u+2i

Figure 9.2: Starting off the three time level leapfrog scheme.

The initial condition is provided for both real and fake points and into both u and um (for

convenience, as will be seen). Define d2x = dx + dx. However, define d2t = dt to start.

In this way, the first forecast will appear to use u and um over 2∆t to make the first forecast,

but in fact the scheme just uses u and steps ahead only dt. Then, at the conclusion of the

first time step, redefine d2t = dt + dt. Indeed, you can safely redefine d2t at the conclusion

of every time step, as the code execution is cheap. In this way, the handling of the first time

step can be accomplished without any if statements.

Your programming logic could look like the following. Note d2t is updated at the end of

every time step, and setting for the next time step involves moving u into um and up into u.

! Initialize constants

d2x = dx + dx

d2t = dt

! Initialize u(i,k) over all real and fake points

[code here]

! Fudge um - this loop could be replaced with a single assignment

do i=1,nx

um(i,k) = u(i,k)

enddo
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! In the time stepping loopÉ Since um = u and d2t = dt to start, this

! is really a forward-time step, not a leapfrog step first time through.

do i=2,nx-1

up(i) = um(i)-(c*d2t/d2x)*(u(i+1)-u(i-1))

enddo

! Take care of boundary points

[code here]

! Set for new time step

do i=1,nx

um(i) = u(i) ! Present time becomes past

u(i) = up(i) ! Future time becomes present

up(i) = 0. ! Start with a clean slate

enddo

! Update d2t at end of time step. Can do every time step; does not hurt

d2t = dt + dt

Perform the same test problem as you did for the upstream scheme. With c′ = 1 there should

be no appreciable difference between the simulated and exact solution after one revolution.

9.2.2 Discussion

As discussed in Chapter 5, an advantage of the leapfrog scheme is that it has no amplitude

error as long as it is stable, which for the current problem means c′ ≤ 1. However, as seen

in Fig. 5.4, the scheme has phase error that is wavelength-dependent, and so has dispersion

error. Short waves are again less well handled and, in this case, the 2∆x waves do not move.

Generally, odd-order schemes do better with phase while even-order ones do better with

amplitude.

That being said, the phase error of the leapfrog scheme is not too bad for long waves, while

the amplitude error of the upstream method is unacceptable. You should verify the result

of the experiment shown in Fig. 9.3 with your Model Task #1 code. Again, a single wave

of 50∆x is advected, but now with c′ = 0.5 and for 10 revolutions. You should find a small

phase lag in the leapfrog solution. The phase error in the upstream result is quite small, but

the wave has almost disappeared by this time.

It is noted in passing that in more complex, realistic problems, the computational mode in

time discussed in Chapter 5 is also a concern.
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Figure 9.3: Similar to Fig. 9.3 but with c′ = 0.5 and after 10 revolutions. Upstream (red), leapfrog
(green) and exact (black) solutions shown.

9.2.3 An RK3 scheme

RK is a family of predictor-corrector schemes, including RK2, RK3, and RK4 (2nd through

4th order accurate, respectively). Additionally, there is no single RK scheme of a given

order. As with the leapfrog, the RK label refers to how it integrates in time; you also need

to choose a form of spatial differencing. The leapfrog scheme attained 2nd order accuracy

in time by centering the tendency about time n (leaping from n-1 to n+1), over an interval

of 2∆t. An RK2 scheme attains 2nd order accuracy in time by re-computing the tendency

halfway between times n and n+1. Thus, it is still centered in time, but not around time n.

For this task, we will try out Wicker and Skamarock’s (2002) RK3 scheme, which recomputes

the temporal tendency between times n and n+1 twice, for a total of three estimates of the

forecast. That scheme, which was adopted for the Weather Research and Forecasting (WRF)

model’s Advanced Research WRF core2, was tested with spatial derivatives that were 3rd,

4th, 5th, or 6th order accurate. For simplicity, however, we will match this with spatial

differencing that is only 2nd order accurate, but suffices for the moment as the emphasis is

on the time stepping.

First, we will write the advection term at i for time n with this centered in space formulation:

adv(uni ) = −c
[
uni+1 − uni−1

]
/2∆x. (9.6)

Note the minus sign is incorporated into this definition. We will make three estimates of

the forecast value. For the first (see Fig. 9.4), we combine the advection at time n with the

2The Model for Prediction Across Scales (MPAS) uses RK2 instead of RK3 as the default time integrator.
The loss of accuracy was considered to be small compared to other operations and RK2 permits longer stable
time steps (Bill Skamarock, personal communication, 2021).
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Figure 9.4: Time stepping in our RK3 scheme.

present time, but only jump ahead ∆t/3, creating intermediate estimate u∗i :

u∗i = uni +
∆t

3
adv(uni ). (9.7)

If we had jumped ahead by the full time step, we would have been using a forward time,

center space scheme, which is absolutely unstable. Instead, we will recompute advection

using our new temporary estimate u∗i , valid at time n+ 1
3
, and use that to obtain our second

estimate, u∗∗i :

u∗∗i = uni +
∆t

2
adv(u∗i ). (9.8)

Although advection was computed at time n + 1
3
, we went back to the start time n and

stepped ahead by ∆t/2, which means this time the advection term was not centered. Now,

using this second estimate, we recompute advection a third time, now valid at time n + 1
2
,

and combine that with the present value to obtain the forecast for time n+ 1:

un+1
i = uni + ∆tadv(u∗∗i ). (9.9)

In the end, we end up with a scheme that is centered in time, but between times n and n+1.
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9.2.4 Leapfrog and RK3 scheme experiments (Model Task #0B)

For Model Task #0B, add leapfrog and RK3 options to your code. For this task, the RK3

should be mated with second order spatial differencing, as in the discussion above. You can

add better versions of this scheme later if you wish. Here are some experiments to try. Only

the bolded ones are required.

1. We stated the forward in time, centered in space scheme was absolutely unstable. You

can prove that to yourself by coding and running it.

2. Do an experiment using upstream, LF, and our RK3 schemes with c′ = 1

and L = 50∆x, executed for 10 revolutions. You should find the upstream

and LF solutions are nearly exact, but our RK3 has phase lag even at c′=1.

Send me this plot.

3. The RK3 is more costly to compute compared to the leapfrog, but it also

permits longer time steps, and can stay stable for some c′ > 1. Try runs

with larger ∆t. At what time step value does the RK3 scheme become

unstable? Make a plot of maximum wave amplitude after 20 revolutions

vs. ∆t, for time steps between 1 and 2 sec, and send it to me.

4. What happens when you make the initial condition wavelength smaller, like 25 or

10∆x. How do the leapfrog and RK3 perform?

5. Our RK3 isn’t optimal. What would happen if you adopted a higher order spatial

differencing? (See Wicker and Skamarock, 2002, MWR, p. 2089).

6. Durran’s (2010) text presents two, even more complex RK alternatives (p. 53). How

well do they perform?
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Chapter 10

Model Task #1: Setting up the base
state

10.1 Vertical grid arrangement

Our model will have five prognostic variables: horizontal velocity u, vertical velocity w,

potential temperature θ, water vapor mixing ratio qv, and nondimensional pressure π. First,

we will set up the initial environmental values (“base state”) for each of these variables, plus

air density ρ. The base state will vary only in the vertical direction and will be assumed to

be in hydrostatic balance. MKS values will be used at all times.

In finite differencing, we subdivide the model domain into a set of grid volumes (or grid

areas in 2D). Once accomplished, it remains to specify values of the variables for each grid

volume. Where in space should the variables be defined, or thought of as existing? The

simplest procedure might be to declare all variables to represent points residing at the center

of each grid box. In this arrangement, each variable value is though of as representing a grid

volume average, and the most logical place to think of this average existing is at the center.

Instead, our model will employ a staggered grid arrangement – specifically, Arakawa’s “C”

grid – which is a natural for mesoscale models. The scalar variables (θ, π, qv) are still placed

at the grid center but the velocity components are arrayed along the volume or area edges

(see Fig. 1). In this arrangement, the velocities represent flows across the boundaries.

The grid box width and depth will be called ∆x and ∆z, respectively. Note that u and

the scalar variables are at the same physical height levels, while w is displaced 0.5∆z above

and below. These two height levels will be called the u and w heights, respectively. In this

arrangement, we only really need boundary conditions in the vertical direction on w, and we

will assume the boundaries are rigid, flat plates such that w = 0 there.
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The only density our model will need is base state density — at least explicitly. Density, a

scalar variable, is most naturally defined at the grid box center with the other scalars (the

u height level). However, since density is so important, we will find it useful to also define

density at the w height levels. The base state densities at the u and w height levels will be

called RHOU and RHOW, respectively, for coding purposes. The base states for the other

variables will be called UB (for ū), TB (for θ̄), QB (for q̄v), and PIB (for π̄). Mean w is zero.

The vertical grid index will be termed k, and all base state arrays will be vectors with

dimension NZ, as there are a total of NZ grid points (see Figs. 1 and 2). Since the grid is

staggered, note that a given k-index value, say “k = 5”, refers to different physical heights for

the w and u/scalar variables! . To facilitate coding, we will include one fictitious grid volume

at the top and bottom of each model column. It will be seen that this permits simpler and

more efficient coding of our equations at a small cost of increased storage. (Fictitious grids

will be added along the horizontal boundaries as well, for the same reason.)

In Fortran (Fig. 1), the index for an array dimensioned NZ begins at index 1 and runs to

NZ, inclusive. Thus, the real boundaries for w will be located at k = 2 and NZ, and w will

be zero at both. Therefore, the lowest and highest physical u and scalar points are located

at k = 2 and NZ-1, respectively. The scalar/u grid points at k = 1 and NZ are fictitious,

as is the w point for k=1.

In C++ and other zero-based index languages (Fig. 2), array indices start at 0 and thus

the maximum index for an array dimensioned NZ is actually NZ-1. So, we will enforce w

to be zero at k = 1 and NZ-1 and the lowest and highest u and scalar points are located

at k = 1 and NZ-2. The scalar/u grid points at k = 0 and NZ-1 are fictitious, as is w at

k=0. Note that in an array dimensioned NZ the point k=NZ does not exist – at least, not

within the range of the array under examination. The attempt to access array location NZ

in an array dimensioned NZ is the single most common coding error I’ve seen.

10.2 Base state temperature and moisture

The base state environment described similar to that employed by Weisman and Klemp

(1982, MWR, p. 504) and represents conditions common to the Midwestern United States

during the spring season. Let zTR and TTR be the height level (12000 m) and temperature

(213 K) of the tropopause, with θTR being the potential temperature there (343 K). Let zT
be the distance of a given scalar location above the model surface. In Fortran, the model

surface is the k = 2 w point in Fortran and so the physical height of the first scalar point is

(k − 1.5)∆z. In C++, the model surface is the k = 1 w point and so the physical height

of the first scalar point is (k − 0.5)∆z. The Weisman and Klemp vertical mean potential

temperature (θ̄) is:
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Figure 10.1: Vertical grid arrangement for Fortran code. The first and last real w points are at
k = 2 and NZ, respectively. The first and last real scalar/u points are at k = 2 and NZ-1. Note
presence of two fictitious grid boxes, located just above and below the model’s vertical boundaries.
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Figure 10.2: Vertical grid arrangement for C++ and other zero-based index language code. The
first and last real w points are at k = 1 and NZ-1, respectively. The first and last real scalar/u
points are at k = 1 and NZ-2. Note presence of two fictitious grid boxes, located just above and
below the model’s vertical boundaries.
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θ̄ =

 300 + 43
[
zT
zTR

]1.25

zT ≤ zTR;

θTR exp
[
g(zT−zTR)
cpdTTR

]
zT > zTR.

where g = 9.81 m s−1, and cpd = 1004 J kg−1 K−1. Let the base state mean vapor mixing

ratio, q̄v (kg kg−1), be given by:

q̄v =


0.0161− 0.000003375zT zT ≤ 4000 m;
0.0026− 0.00000065(zT − 4000) 4000 < zT ≤ 8000 m;
0 zT > 8000 m.

Take NZ=40 and ∆z = 700 m and compute both. Then use these data to create virtual

potential temperatures, which should also be contained in an array of dimension NZ and

positioned at the scalar heights, using θ̄v = θ̄ [1.+ 0.61q̄v]. I’ll call this array TBV.

10.3 Derived quantities

Next, the base state nondimensional pressure (π̄) has to be computed1. Pressure is nondi-

mensionalized as:

π =

[
p

p0

] Rd
cpd

,

where Rd = 287 J kg−1 K−1 and p0 = 100000 N m−2 (1000 mb). The hydrostatic equation,

written in terms of π is:
dπ̄

dz
= − g

cpdθ̄v
.

We will obtain π̄ as a function of height by integrating this equation upwards from the

surface, starting with a supplied surface pressure which will be taken to be 96500 N m−2

(965 mb). The basic concept is illustrated in Fig. 10.3. This surface pressure (PSURF) is

recorded at the lowest real w point (k = 2 in Fortran, k = 1 in C++). The first task is

then to compute π̄ at the first real scalar point, located 0.5∆z above the surface. The mean

virtual potential temperature, θ̄v, will be taken to be its value at the first real scalar point

and presumed constant below that point. This can be coded in Fortran as:

xk = rd/cpd

pisfc = (psurf/p0)**xk

pib(2) = pisfc - grav*0.5*dz/(cpd*tbv(2))

1The advantage of avoiding dimensional pressure is discussed in Sec. 3.3.
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psurf & pisfc

k=2pib(2)

pib(3)

k=1 (FAKE)pib(1)
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0.5∆z

∆z

Figure 10.3: Computation of nondimensional pressure at scalar levels. The black block illustrates
the model surface.
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In C++, the code might look like this:

xk = rd/cpd;

pisfc = pow((psurf/p0),xk);

pib[1] = pisfc - grav*0.5*dz/(cpd*tbv[1]);

Now we need to integrate the hydrostatic equation up through the rest of the column. Each

step will be of height dz as we traverse from one scalar point to the next. From the hydrostatic

equation, we know that the pressure at the top of a designated layer depends on two things:

the pressure at the layer bottom, and the mean virtual temperature of the layer. To get the

mean θ̄v for a layer between two scalar heights, we need to average the TBV values at the

layer top and bottom. In Fortran, we’re integrating from k = 3 to NZ-1 because NZ-1

represents the uppermost real scalar point (one-half ∆z below the model top at w position

k = NZ). (If the desired DO loop increment is unity, it need not be explicitly coded.) In

C++, we traverse from k = 2 to NZ-2, inclusive.

do k = 3, nz-1

tbvavg = 0.5*(tbv(k)+tbv(k-1))

pib(k) = pib(k-1) - grav*dz/(cpd*tbvavg)

enddo

for(k = 2; k <= nz-2; k++){

tbvavg = 0.5*(tbv[k]+tbv[k-1]);

pib[k] = pib[k-1] - grav*dz/(cpd*tbvavg);

}

You may find it useful to compute mean dimensional pressure at each scalar level as well.

Once π̄ is obtained, mean state density ρ̄ has to be computed from a form of the ideal gas

law (with pressure nondimensionalized):

ρ̄ =
p0π̄

cvd
Rd

Rdθ̄v

where cvd = cpd - Rd = 717 J kg−1 K−1. Density at the scalar height levels (RHOU) is easily

obtained. You get the surface value of RHOW (rhow(2) or rhow[1]) by knowing the surface

pressure, and RHOWs farther aloft by averaging pairs of RHOU values to the w height level.

From Fig. 1, it is seen this is written as:

rhow(k) = 0.5*(rhou(k) + rhou(k-1))
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Finally, compute the relative humidity at each scalar height level, using a form of Tetens’

equation (see Soong and Ogura 1973, JAS; Murray 1967, JAM) to get the saturation mixing

ratio for the base state, q̄vs:

q̄vs =
380

p̄
exp

[
17.27(T̄ − 273.)

(T̄ − 36.)

]
where p̄ and T̄ are base state pressure (N m−2) and temperature (K). Since you are carry-

ing nondimensional pressure and potential temperature instead, these variables need to be

converted. Using the definition of π:

p = p0π
cpd
Rd

and the relationship between T and θ is:

T = θπ.

Compute q̄vs for each scalar grid point and use it to calculate the relative humidity.

10.4 Results for some fields

In creating the following, I employed these values for model constants: g = 9.81 m s−1; cpd
= 1004 J kg−1 K−1; Rd = 287 J kg−1 K−1; and cvd = 717 J kg−1 K−1.

z(km) tb(K) qb(g/kg) rhou(kg/m^3) RH (%) pib(ndim) p(mb) T(deg. C)

0.35 300.52 14.92 0.108851E+01 88.78 0.978590E+00 927.08 20.93

1.05 302.05 12.56 0.102329E+01 96.08 0.956077E+00 854.59 15.63

1.75 303.88 10.19 0.959954E+00 99.96 0.933657E+00 786.52 10.57

2.45 305.90 7.83 0.898970E+00 98.72 0.911346E+00 722.71 5.63

3.15 308.08 5.47 0.840510E+00 89.18 0.889156E+00 663.00 0.78

3.85 310.38 3.11 0.784646E+00 66.11 0.867096E+00 607.21 -4.02

4.55 312.79 2.24 0.730747E+00 62.94 0.845181E+00 555.20 -8.78

5.25 315.30 1.79 0.679410E+00 66.96 0.823428E+00 506.80 -13.52

5.95 317.89 1.33 0.630783E+00 67.54 0.801845E+00 461.83 -18.25

6.65 320.56 0.88 0.584796E+00 61.11 0.780434E+00 420.11 -22.97

7.35 323.30 0.42 0.541370E+00 41.13 0.759196E+00 381.46 -27.70

8.05 326.11 0.00 0.500413E+00 0.00 0.738135E+00 345.70 -32.44
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8.75 328.97 0.00 0.461731E+00 0.00 0.717253E+00 312.68 -37.19

9.45 331.90 0.00 0.425375E+00 0.00 0.696554E+00 282.24 -41.96

10.15 334.88 0.00 0.391250E+00 0.00 0.676039E+00 254.21 -46.76

10.85 337.91 0.00 0.359259E+00 0.00 0.655707E+00 228.46 -51.58

11.55 340.99 0.00 0.329307E+00 0.00 0.635558E+00 204.83 -56.43

12.25 346.96 0.00 0.298942E+00 0.00 0.615673E+00 183.27 -59.54

12.95 358.28 0.00 0.267244E+00 0.00 0.596277E+00 163.85 -59.52

13.65 369.97 0.00 0.238910E+00 0.00 0.577493E+00 146.50 -59.50

14.35 382.04 0.00 0.213581E+00 0.00 0.559303E+00 130.98 -59.47

15.05 394.51 0.00 0.190940E+00 0.00 0.541687E+00 117.11 -59.45

15.75 407.38 0.00 0.170700E+00 0.00 0.524628E+00 104.71 -59.43

16.45 420.68 0.00 0.152607E+00 0.00 0.508109E+00 93.62 -59.40

17.15 434.40 0.00 0.136433E+00 0.00 0.492111E+00 83.71 -59.37

17.85 448.58 0.00 0.121974E+00 0.00 0.476619E+00 74.84 -59.35

18.55 463.22 0.00 0.109049E+00 0.00 0.461616E+00 66.92 -59.32

19.25 478.33 0.00 0.974942E-01 0.00 0.447088E+00 59.84 -59.29

19.95 493.94 0.00 0.871648E-01 0.00 0.433019E+00 53.51 -59.26

20.65 510.06 0.00 0.779307E-01 0.00 0.419394E+00 47.84 -59.23

21.35 526.71 0.00 0.696756E-01 0.00 0.406200E+00 42.78 -59.20

22.05 543.89 0.00 0.622957E-01 0.00 0.393422E+00 38.26 -59.17

22.75 561.64 0.00 0.556982E-01 0.00 0.381049E+00 34.21 -59.14

23.45 579.97 0.00 0.498000E-01 0.00 0.369067E+00 30.59 -59.10

24.15 598.89 0.00 0.445270E-01 0.00 0.357463E+00 27.36 -59.07

24.85 618.44 0.00 0.398128E-01 0.00 0.346226E+00 24.47 -59.03

25.55 638.62 0.00 0.355982E-01 0.00 0.335344E+00 21.88 -58.99

26.25 659.46 0.00 0.318303E-01 0.00 0.324806E+00 19.57 -58.95
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Chapter 11

Model Task #2: Assessing convective
instability

The present task is to assess the convective instability of the sounding we created in Task #1.

This instability, called Convective Available Potential Energy (CAPE), is usually gauged for

an insulated parcel originating in the lower troposphere that is subsequently raised without

mixing with — nor experiencing resistance from — the environment. If the parcel can

become positively buoyant, it will convert the potential energy represented by its buoyancy

(CAPE) into kinetic energy of motion. In actuality, the parcel will experience some degree

of mixing with its surroundings, and has to push air residing above it out of the way. Thus,

the CAPE is an overestimate of the true amount of kinetic energy that might be realized by

the parcel.

11.1 Lifting and adjusting a parcel on the model grid

Figure 11.1 sets up the problem and presents a hypothetical situation. In the grid view we are

defining a parcel at the lowest real scalar grid point by specifying its potential temperature

and water vapor mixing ratio. Call these θp and qvp. (We’re using these properties because

they are conserved, at least until the parcel saturates.) Once defined, we will raise the

parcel, grid point by grid point, until we reach the model’s topmost scalar point. There

are two parts to this problem: first, we compute potential temperature and vapor content

along the parcel’s path, and then we assess its instability (if any) relative to its surroundings.

We use the fundamental air parcel assumption that the parcel’s pressure equals that of its

surroundings at all times.

131



θ

θ

θ

θ

k=2

k=3

k=4

k=5

θ 

θ+∆θ 

θe

k=1

k=2

k=3

k=4

Fortran C++
Python

LCL

z

T, θ

Figure 11.1: Grid and Stuve diagram views of an ascending parcel. On this figure, θ represents
parcel potential temperature, θp.
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Call the lowest scalar point index k1; this is k = 2 in Fortran and k = 1 in C++. When

we raise the parcel to the next grid point up (k = k1+1), its θp and qvp are (tentatively)

preserved. Figure 11.1 also sketches what this would look like on a thermodynamic chart like

a Stuve diagram. We have ascended one grid point along a dry adiabat. At this juncture,

we test to see if the parcel has become saturated during this displacement. This is done by

computing the parcel’s saturation mixing ratio, qvsp, a function of its potential temperature

θp and (nondimensional) pressure π̄ (the environment value at the parcel’s height) given by1:

qvsp =
380

p0π̄
cpd
Rd

exp

[
17.27(θpπ̄ − 273.)

(θpπ̄ − 36.)

]
,

where it is recalled that T = θπ. In the example shown, the parcel is assumed to have just

become saturated at k = k1+1, so qvsp = qvp, so the lifting condensation level (LCL) is at

this height level.

Further lifting should now be moist adiabatic, with the parcel continually condensing suffi-

cient vapor to prevent supersaturation at any and every infinitesimal vertical “step”. Note

that since pressure varies along the parcel path, this is impossible to handle with precise ac-

curacy in a model (the model’s framework is Eulerian, not Lagrangian, anyway). However,

it is not terribly inaccurate to first raise the saturated parcel dry adiabatically – which of

course produces a supersaturated parcel) – and then adjust the parcel back to 100% relative

humidity at the new height level. This effectively discretizes the saturated adiabatic process

into two separate steps, dry adiabatic expansion followed by isobaric saturation adjustment,

as shown on the Stuve view in Fig. 11.1. Naturally, this approximation gets worse as the

vertical grid interval gets larger.

We appreciate that if the parcel is supersaturated, i.e., qvp > qvsp, the amount of condensation

actually realized is less than the difference qvp − qvsp. This is because of the temperature

dependence of the saturation mixing ratio. The parcel is supersaturated because it carries

more vapor than it can hold at its temperature. However, as the supersaturated parcel’s

vapor condenses, heat is released that raises the parcel’s temperature, increasing its ability

to hold vapor. Thus, during the process of condensation, qvp decreases (as vapor condenses)

but qvsp increases (owing to latent heating).

We compute the isobaric saturation adjustment in the following way2: The amount of vapor

that can be condensed from a supersaturated parcel starting with pre-adjustment values of

1In avoiding carrying both dimensional and nondimensional pressure, the equation got more complicated.
You may decide to create a vector array for both.

2The present approach is something of a compromise between the saturation adjustments proposed by
Asai (1965) and Soong and Ogura (1973).
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potential temperature θp, vapor mixing ratio qvp and saturation mixing ratio qvsp is:

C =
qvp − qvsp

1 + φ

where φ is defined as:

φ = qvsp

[
17.27 · 237Lv
cpd(θpπ̄ − 36.)2

]
and Lv is the latent heat of vaporization (≈ 2.5 × 106 J kg−1). The vapor loss due to

condensation is then

qvp = qvp − C,

and the heat released raises the parcel’s potential temperature according to:

θp = θp +
Lv
cpdπ̄

C.

At the conclusion of this adjustment, we should have a parcel potential temperature and

vapor mixing ratio that represents exact saturation. It is worth demonstrating that is indeed

the case.

11.2 Computing CAPE and CIN on the model grid

CAPE is an integrated property, defined as:

CAPE =

∫ zEQL

zLFC

g

[
θpv − θ̄v
θ̄v

]
dz

and represents the “positive area” on a thermodynamic diagram when both the environmen-

tal sounding and the parcel path are plotted. As the parcel rises, it may find itself less dense

than the environment at some point. The height where this first occurs is called the level of

free convection (LFC). Eventually, the parcel will become more dense than the surrounding

environment; this height is termed the equilibrium level (abbreviated EQL) and is the first

guess at cloud top. CAPE is computed between these two levels.

CIN, in contrast, is the “negative area” existing between the parcel’s initial location (z0) and

the LFC, so it is defined as

CIN =

∫ zLFC

z0

g

[
θpv − θ̄v
θ̄v

]
dz.

CIN is integrated negative buoyancy, but is often presented as a positive quantity. The

definition here produces negative values when CIN is present. Note that these formulae
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use virtual potential temperatures for the parcel and environment (θpv and θ̄v, respectively).

These are defined as:

θpv = θp(1 + 0.61qvp),

and

θ̄v = θ̄(1 + 0.61q̄v).

Using virtual temperatures allows us to incorporate the effect of moisture on parcel density.

Our present application computes the CAPE and CIN of the Weisman-Klemp sounding for

a surface-based parcel; i.e., commencing at the lowest scalar level above the model ground.

Although we should probably develop code that can handle complex situations – such as

soundings that possess one or more layers with negative buoyancy above the first LFC – the

present sounding will not require special treatment. Our specific example will assign potential

temperature (300.52 K) and mixing ratio values (11.5 g kg−1) to the parcel representing

initial subsaturation (use only kg kg−1 in doing your model calculations), from which the

parcel’s θpv can be computed. (Note this parcel is negatively buoyant even at its origin, as

it possesses less vapor than the environment at the first scalar level.) At each model level

above the surface, we have already computed parcel virtual potential temperature, θpv, and

we have the environmental value θ̄v as well. It is time to compute CAPE and CIN.

Let the integrand of CAPE and CIN be called b, for buoyancy. We have b at each model

level3. CAPE can be computed using the trapezoidal rule, so the fractional value between

model levels k and k − 1 would be
bk + bk−1

2
∆z,

as illustrated in Fig. 11.2. This straightforward if the parcel is positively (or negatively)

buoyant at both levels. It is likely, however, that the LFC and EQL will fall between model

levels, as also shown in Fig. 11.2, so there will one or two layers that have to be treated

differently. These special layers will be identifiable by a change in sign of b between the

bottom and top.

As an example, in the layer encompassing the LFC, the positive area would be

areapos =
bk + 0

2
(zk − zLFC),

3This presumes the parcel CAPE and CIN are computed after parcel buoyancy is determined at each
level. That is not necessary, as once you have parcel b at level k, you can compute the CAPE and/or CIN
in the layer between levels k and k − 1. In other words, you do not really need to allocate an array for the
parcel buoyancy.
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where zLFC is the height of the LFC (at which point parcel buoyancy is zero). zLFC can be

found via linear interpolation:

zLFC = zk −
∆z

bk − bk−1

(bk − 0) = zk − β∆z,

where β is the fraction of the layer possessing positive buoyancy. This permits us to express

the positive area as

areapos =
bk
2
β∆z.

The negative area below the LFC contributes to CIN, and would be

areaneg =
bk−1

2
(1− β)∆z.

So, we might have some code for the LFC layer that looks like the following:

btop = b( k ) ! buoyancy at top of current layer
bbot = b(k-1) ! buoyancy at bottom of current layer

if(btop.ge.0..and.bbot.lt.0.)then ! we have isolated the LFC layer
frac = btop/(btop - bbot) ! fraction of layer that is positively buoyant
areapos = 0.5*btop*frac*dz ! positive area according to trapezoidal rule
areaneg = 0.5*bbot*(1.-frac)*dz ! negative area according to trapezoidal rule
zlfc = z(k) - dz*frac/1000. ! height of LFC in km

[...]

In the above, z is an array of model scalar level heights (in km) and zlfc is the height of the

LFC. Something similar would have to be done for the layer encompassing the EQL. In my

code, I consider four mutually exclusive possibilities for each model layer: that it contains the

LFC (as in the above code), that it contains the EQL, that it is positively buoyant through

the layer, and that it is negatively buoyant through the layer. The latter contributes to CIN

only if the layer resides below the LFC. (Do not add the negative buoyancy above the LFC

to CIN.)

My output is included at the end of this chapter.

11.3 What is CAPE missing?

The units of CAPE (and CIN) are J kg−1 or, equivalently, m2 s−2. The latter suggests that

CAPE is a (vertical) velocity squared. In our discussion of gravity waves, we rewrote the
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Figure 11.2: Parcel buoyancies on the model vertical grid (oriented horizontally for convenience).
In the hypothetical example illustrated, the parcel starts with some small negative buoyancy at its
origin.

vertical equation of motion into a form similar to that below (though now with moisture):

dw

dt
= −1

ρ̄

∂p′

∂x
+ g

θ′v
θ̄v
.

The hydrostatically balanced mean state has already been removed and the primed values

represent the difference between the parcel and its surrounding environment. Given the air

parcel assumption of mechanical equilibrium, p′ = 0, and the equation is revised to:

dw

dt
= g

θpv − θ̄v
θ̄v

(11.1)

Note the right hand side already looks like CAPE; all it needs is to be integrated between

the LFC and EQL height levels. If the motion is strictly one-dimensional (in the vertical)

and steady with time, then

dw

dt
=
dw

dz

dz

dt
= w

dw

dz
=

1

2

d(w2)

dz
.

Integrate (11.1), using the rightmost expression above to replace the left hand side of (11.1).

So, after rearranging:

CAPE =
1

2

∫ zEQL

zLFC

d(w2)

=
1

2
w2
EQL − w2

LFC

=
1

2
w2
EQL (11.2)
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where it has been assumed that w = 0 at the LFC (not a bad assumption). Thus, the vertical

velocity at the estimated cloud top (EQL) depends on the vertically integrated parcel positive

buoyancy such that:

wEQL =
√

2CAPE.

For a CAPE of 2000 J kg−1, such as might be found in a late spring Midwestern environment

during the afternoon, this predicts a parcel would strike cloud top with a vertical velocity

of over 63 m s−1. Two things are unrealistic about this value. First, it is too large. Second,

maximum vertical velocity is not likely to be found at cloud top, but rather somewhere

farther below. (Can you explain why?) Indeed, by the time a real parcel approaches cloud

top, its velocity will be much reduced from the largest value it had previously attained, and

may even be reasonably close to zero. (Again, can you explain why?)

11.4 Results

In the results tabulated below, height z is in km, pressure p in mb, thv env and thv prcl

are environmental and parcel virtual potential temperatures in K, qv prcl is the parcel

vapor content in g kg−1, CAPE and CIN are in J kg−1, and buoybot and buoytop are parcel

buoyancies at the bottom and top of the present layer, in m s−2. CIN is presented as a

negative quantity. These results were obtained with a parcel initial potential temperature

defined as 305.2 K, parcel initial mixing ratio of 11.5 g/kg, and the gravity acceleration and

latent heat of vaporization were defined as 9.81 m/s/s and 2.5E6 J/kg/K, respectively.

You certainly can anticipate that the accuracy of your CAPE and CIN calculations depends

on resolution, and applicability of your estimates depends on your initial parcel properties.

What happens if you increase NX and decrease ∆z correspondingly? What happens if you

give the parcel different properties, such as something representative of a deeper layer?

Figure 11.3 shows the sounding as rendered by the metpy Skew-T package. Although pro-

vided with the same initial parcel properties, the CAPE and CIN values computed by this

routine do not agree with we have obtained here. This is in part due to the differences in

the calculation procedure, definitions used (e.g., metpy’s CAPE and CIN do not use virtual

temperature), and perhaps precision.
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Figure 11.3: Our sounding as visualized using metpy.
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[partial results]
initial parcel potential temperature: 300.52 K
initial parcel vapor mixing ratio: 11.50 g/kg

z p thv_env thv_prcl qv_p cape cin buoybot buoytop
1.05 854.6 304.36 302.63 11.50 0.0 -26.6 -0.020 -0.056
1.75 786.5 305.76 306.00 10.15 0.3 -43.8 -0.056 0.008

[...]
3.85 607.2 310.97 316.29 6.23 194.9 -43.8 0.122 0.168
4.55 555.2 313.22 319.50 5.07 322.5 -43.8 0.168 0.197

[...]
8.75 312.7 328.97 332.77 0.64 1134.2 -43.8 0.162 0.113
9.45 282.2 331.90 333.67 0.38 1192.2 -43.8 0.113 0.052
10.15 254.2 334.88 334.26 0.21 1205.8 -43.8 0.052 -0.018
[...]
13.65 146.5 369.97 335.01 0.00 1205.8 -43.8 -0.638 -0.927
14.35 131.0 382.04 335.03 0.00 1205.8 -43.8 -0.927 -1.207
15.05 117.1 394.51 335.03 0.00 1205.8 -43.8 -1.207 -1.479
[...]
24.85 24.5 618.44 335.03 0.00 1205.8 -43.8 -4.322 -4.496
25.55 21.9 638.62 335.03 0.00 1205.8 -43.8 -4.496 -4.663
26.25 19.6 659.46 335.03 0.00 1205.8 -43.8 -4.663 -4.826
Vertically integrated CAPE 1205.8 J/kg CIN is -43.8 J/kg
LFC detected at 1.67 km
EQL detected at 9.97 km
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Chapter 12

Model Task #3: Grid setup, initial
condition and visualization

In this task, we set up the model’s two-dimensional (2D) grid, specify the initial condition,

and get a start on model visualization. The dry version of our model will have four 2D

prognostic variables, u, w, θ′ and π′, and carry a minimum of five one-dimensional (1D)

arrays for the base state temperature, nondimensional pressure and zonal horizontal velocity

(θ̄,π̄, and ū), along with two arrays for mean density at the u and w levels. Sample code for

getting started with the GrADS visualization package is also included. My code adds a fifth

2D prognostic variable, for meridional horizontal velocity v, in case you wish to add Coriolis

accelerations to the 2D model.

12.1 Grid setup

Figure 11.1 shows the grid setup. Remember, in each grid box the velocity components are

defined on the outer edges and the scalar variables reside at the center. The physical domain

is completely surrounded by a set of artificial grid boxes; this just makes coding the model

a little easier. There are a total of NX points in the x direction (index i) and NZ points in

the z direction (index k).

In the horizontal direction, the physical boundaries are u points and are located at i-index

locations 2 and NX for Fortran (Fig. 11.1) or 1 and NX-1 for C++ and other zero-based

index languages (Fig. 11.2). In the vertical, the physical boundaries coincide with w points

at index locations 2 and NZ in Fortran or 1 and NZ-1 in C++. We will force w to be zero

at these points, this corresponding to rigid, free-slip (frictionless) boundaries. For this task,
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we’ll take the domain to be laterally periodic, though we will likely want to reconsider this

later.

First, we need to set up the required arrays. We will eventually be using the leapfrog scheme,

a three time level method. Thus, for each prognostic variable — u, w, θ′ and π′ — we

need to carry three arrays, corresponding to the past, present and future values. For the

u variable, for example, these will be called up, u and um, respectively. There is a more

storage-efficient way of handling this, but that is not our present concern.

So, we have something like this for Fortran

c set parameters
c grid dimensions

parameter(nx=83,nz=42)
c grid box lengths

parameter(dx=400.,dz=400.)
c variable arrays

dimension thp(nx,nz),th(nx,nz),thm(nx,nz)
dimension wp(nx,nz),w(nx,nz),wm(nx,nz)
dimension up(nx,nz),u(nx,nz),um(nx,nz)
dimension pip(nx,nz),pi(nx,nz),pim(nx,nz)

c base state vectors for theta, vapor, dim. pres., ndim. pres.,
c and density at u and w levels

dimension tb(nz),qb(nz),pb(nz),pib(nz),rhou(nz),rhow(nz)

or for C++

// grid dimensions
const int nx = 83;
const int nz = 42;

// grid box lengths
const double dx = 400.;
const double dz = 400.;

// base state vectors
double tb[nz], qb[nz], pb[nz], pib[nz], rhou[nz], rhow[nz];

// prognostic arrays
double thp[nx][nz], th[nx][nz], thm[nx][nz];
double up[nx][nz], u[nx][nz], um[nx][nz];
double wp[nx][nz], w[nx][nz], wm[nx][nz];
double pip[nx][nz], pi[nx][nz], pim[nx][nz];

To simplify things, we’ll consider a dry and neutral environment, so set tb to 300.0

at every vertical point and set qb to zero. (Don’t throw away the code that created the

sounding used in Model Tasks 1 and 2; you may want to reuse that later.)
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Figure 12.1: Model grid arrangement for Fortran.
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Figure 12.2: Model grid arrangement for C++ and other zero-based index languages.
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Second, make sure the base state arrays are handled correctly at the artificial points above

and below the physical grid. Since w = 0 at the physical boundaries, there can be no

transport through the boundary. Thus, we can specify the temperature and pressure at

these artificial points to be anything we want; it won’t make a difference. For reasons better

appreciated later, it is best to take the mean state fields to possess no gradient across the

boundaries. We’ve already set up tb and pib (for example) for the real scalar points (k =

2, NZ-1 in Fortran or k = 1, NZ-2 in C++). Now we need to do:

TB(1)=TB(2)
TB(NZ)=TB(NZ-1)
PIB(1)=PIB(2)
PIB(NZ)=PIB(NZ-1)
RHOU(1)=RHOU(2)
RHOU(NZ)=RHOU(NZ-1)

or

tb[0] = tb[1];
tb[nz-1] = tb[nz-2];
pib[0] = pib[1];
pib[nz-1] = pib[nz-2];
rhou[0] = rhou[1];
rhou[nz-1] = rhou[nz-2];

12.2 Initial condition

Next we set up the initial perturbation. We’ll define a radially symmetric thermal, consisting

of a positive potential temperature perturbation. Take the horizontal radius, RADX, to be

4000 m and the vertical radius, RADZ, to also be 4000 m. The amplitude of the thermal is

δ = 3 K. Center the thermal at ZCNT= 3000 m above the ground. The equations are:

rad =

√[
(zT − ZCNT )

RADZ

]2

+

[
∆x(i− IMID)

RADX

]2

(12.1)

and

TH(i, k) =

{
1
2
δ [cos(rad · π) + 1] rad ≤ 1;

0 otherwise.
(12.2)

TH(i, k) represents the potential temperature perturbation at grid points i and k at the

present time n. In the above π is 3.14159. . . , not nondimensional pressure. The best way of

using trigonometric π in a program is to let the computer calculate it to machine precision.

This can be done with
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TRIGPI=4.*ATAN(1.0)

(This is the same function in C++). As we saw earlier, the height at a scalar point zT , is

defined differently in Fortran and C++; in the former, it is ∆z (k − 1.5) while in the latter

it is ∆z (k − 0.5).

IMID represents the middle θ point of the domain. For NX odd, it is located at point (NX+1)/2

in the Fortran domain (starting with i = 1) or (NX-1)/2 in the C++ domain (starting with

i = 0). Using a symmetric thermal precisely at the domain’s midpoint will help us test

our code once the full model’s time stepping loop is implemented in Model Task 5. For

an initially calm environment, a symmetric perturbation placed at the exact center of the

domain will generate a solution which must remain symmetric about the domain center (for

scalars and w; the solution will be antisymmetric for u)... unless there are coding errors.

The leapfrog scheme, having three time levels, has to be started off not only with the present

time value at each grid point, but also with the past time value (time level n-1). We do not

generally have this information, so we typically assign the same perturbation to THM(i,k).

This actually causes some problems; we’ll see this later.

This thermal perturbation will disturb the atmosphere. Normally, this will provoke both

sound waves and gravity waves, but because we are assuming a neutral atmosphere, only the

former will appear. We can attempt to construct a perturbation pressure field in balance

with it. The perturbation hydrostatic equation may be written in continuous and discrete

representations as:

∂π′

∂z
=

g

cpd

θ′

θ̄2
(12.3)

and

TUP = TH(i,k+1)/(TB(k+1)**2)
TDN = TH(i,k )/(TB(k )**2)
PI(i,k) = PI(i,k+1)-0.5*(G/CPD)*(TUP+TDN)*DZ

or

tup = th[i][k+1]/(TB[k+1]*TB[k+1]);
tdn = th[i][ k ]/(TB[ k ]*TB[ k ]);
pi[i][k] = pi[i][k+1]-0.5*(g/cpd)*(tup+tdn)*dz;

In C++, remember to declare tup and tdn as doubles.
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We have to assume a value (such as zero) for π′ somewhere. It is easiest to choose this to be

at the topmost real π′ point (PI(i,nz-1)), so actually we need to integrate (12.3) downward .

Thus, the above code has to be rearranged and remapped to fit this new use. We can do

that in this fashion:

DO i = 2,nx-1
c set the assumed point, and the fake point above it

PI(i,nz-1) = 0.
PI(i,nz ) = 0.

c integrate perturbation hydrostatic equation downward
DO k = nz-2, 2, -1
TUP = TH(i,k+1)/(TB(k+1)**2)
TDN = TH(i,k )/(TB(k )**2)
PI(i,k) = PI(i,k+1)-0.5*(G/CPD)*(TUP+TDN)*DZ
ENDDO

c get the artificial point below the grid
PI(i,1)=PI(i,2)
ENDDO

c finesse the first PIM values, over all points (real and fake)
DO K = 1,nz
DO i = 1,nx
PIM(i,k) = PI(i,k)
ENDDO
ENDDO

for(i = 1; i <= nx-2; i++){
// set the assumed point, and the fake point above it

pi[i][nz-2] = 0.;
pi[i][nz-1] = 0.;
for(k = nz-3; k >= 1; k--){

tup = th[i][k+1]/(TB[k+1]*TB[k+1]);
tdn = th[i][ k ]/(TB[ k ]*TB[ k ]);
pi[i][k] = pi[i][k+1]-0.5*(g/cp)*(tup+tdn)*dz;

} // end of for k
// get the artificial point below the grid

pi[i][0] = pi[i][1];
} // end of for i

// finesse the first PIM values, over all points (real and fake)
for(i = 0; i <= nz-1; i++){
for(k = 0; k <= nx-1; k++){

pim[i][k] = pi[i][k];
}
}

In the above, I am using nz1 and nz2 to represent nz-1 and nz-2, respectively. Of course,

those constants have to be declared somewhere in the code.
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You may wish to plot dimensional pressure perturbation p′ instead. Recall from Chap. 3

that π′ and p′ are related by:

p′ = π′cpdρ̄θ̄v.

This can be coded as:

PPRT(i,k) = PI(i,k)*CPD*RHOU(k)*TB(k)*(1.+0.61*QB(k))

in Fortran. Of course, for now we’re neglecting moisture. However, just in case you want to

add moisture later, you might as well be prepared for it.

Finally, make plots of the initial θ′ and π′ (or p′) fields. Figure 11.3 presents initial fields for

θ′ and p′, made using the GrADS package, described in the next section. Vertical profiles of

θ′ (in blue) and p′ (in red) through the center of the thermal are presented in Fig. 11.4.

12.3 Visualization with GrADS

If you are programming in a language (such as Fortran) that does not natively support

visualization, you have a number of options available. In this section, the GrADS (Grid

Analysis and Display System) package is described. GrADS available for Mac, Linux/Unix

and Windows. The GrADS home page is

http://cola.gmu.edu/grads/grads.php

As a visualization environment, GrADS has several significant advantages: it is free, eas-

ily installed, very scriptable, operable in interactive and batch modes, and can produce

publication-quality graphics. Many of its downsides are due to its roots in climate science.

GrADS natively and naively treats the horizontal dimension as longitude or latitude. It also

has difficulty handling time increments less than 1 minute.

With GrADS, you will have two files for each model run: a control file, and a data file. The

control file, with suffix .ctl is a text file that describes the contents of the binary .dat file.

On the course web page, I provide sample Fortran code that can be used (or adapted) to

create both files, a template that illustrates the sequence of events involved, and a sample

GrADS script. These are also reproduced farther below.
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Figure 12.3: Initial potential temperature (shaded as shown, in K) and dimensional pressure (50
Pa contours, starting with -50 Pa) perturbation fields for our initial thermal.
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Figure 12.4: Vertical profiles of initial potential temperature (K; blue) and dimensional pressure
(mb; red) up through the center of the initial thermal. Millibars are used for convenience.
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Particularly useful GrADS-related links include:

Documentation index: http://cola.gmu.edu/grads/gadoc/gadocindex.html

User guide and scripting basics: http://cola.gmu.edu/grads/gadoc/users.html

The GrADS control file: http://cola.gmu.edu/grads/gadoc/descriptorfile.html

Controlling colors: http://cola.gmu.edu/grads/gadoc/colorcontrol.html

The GrADS script library: http://cola.gmu.edu/grads/gadoc/library.html

The example program and GrADS-based subroutines printed out below are also available on

the course website.
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c GrADS-enabled example model code for ATM562 (Fortran 77 version)
c http://www.atmos.albany.edu/facstaff/rfovell/ATM562/grads_example_code_augmented.f
c version of 10/24/2018

c this template illustrates a procedure to write data to GrADS files:
c one GrADS .dat file is created, and TWO GrADS .ctl files
c the first .ctl file is temporary, to help you visualize model
c output during a long run, or if a model crash prevents creation
c of the final .ctl file (which is done last)

program task3

c ----------------------------------------------------------------
c your non-executable code, including parameter, dimension, data
c NOTE my GrADS code expects certain arrays, including a base state
c mean wind (ub) and a 3D array for north-south velocity (v) that
c can be utilized for other variables for models lacking Coriolis
c ADDITIONALLY the leapfrog scheme needs three time levels;
c I designate these as thp, th, and thm, for perturbation theta
c SO your code may include the following:
c ----------------------------------------------------------------
c base state vectors

dimension tb(nz),qb(nz),pb(nz),pib(nz),rhou(nz),rhow(nz),ub(nz)
c 2D prognostic arrays - 3 time levels

dimension thp(nx,nz),th(nx,nz),thm(nx,nz) ! pot. temp. pert.
dimension wp(nx,nz),w(nx,nz),wm(nx,nz) ! vert. vel.
dimension up(nx,nz),u(nx,nz),um(nx,nz) ! zonal horiz. vel.
dimension vp(nx,nz),v(nx,nz),vm(nx,nz) ! merid. horiz. vel.
dimension qvp(nx,nz),qv(nx,nz),qvm(nx,nz) ! water vapor
dimension pip(nx,nz),pi(nx,nz),pim(nx,nz) ! ndim pert. pres.

[...]

c ----------------------------------------------------------------
c end of non-executable code here
c ----------------------------------------------------------------

c ----------------------------------------------------------------
c your model setup code is here
c ----------------------------------------------------------------
c * declare your time step, grid spacings (dt,dx,dz)
c * declare your model end time, plotting interval (timend,nplt)
c * set up your 1D base state (tb,pib,rhou,rhow,ub)
c * set your model 2D initial condition (thermal, etc.)
c examples... you need to change these

dt=5.0 ! seconds
timend=1000 ! seconds
nplt=60 ! plot every 60 time steps, or 300 sec

[...]

c ----------------------------------------------------------------
c GrADS initialization is here
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c ----------------------------------------------------------------
c * set your casename (will create ’casename’.ctl, ’casename’.dat)
c * create a temporary control (*.ctl) file
c * write initial condition to data (*.dat) file
c EXAMPLES... you need to change these

casename=’test’ ! declare ’character*80 casename’ above
iplt = 0 ! counter for plotting calls
byteswap = 0 ! if byteswapping not needed, set = 0
igradscnt =999 ! grads counter - dummy value to start

c * initial call to write_to_grads_ctl sets up temporary control file

call write_to_grads_ctl(casename,nx,nz,dt,dx,dz,
1 igradscnt,nplt,byteswap) ! create the temporary control file

c * write out model data at initial time - i.e., call dumpgrads

igradscnt =0 ! reset grads counter
call dumpgrads(igradscnt,u,v,w,th,pi,qv,rhou,tb,pib,ub,qb,

1 nx,nz,cpd)

c ----------------------------------------------------------------
c model integration loop STARTS here
c ----------------------------------------------------------------
c * update plot counters
c * integrate your equations, take care of boundary conditions
c * set for next time step
c example...

iplt = iplt + 1

c ----------------------------------------------------------------
c decide if it’s time to plot...
c ----------------------------------------------------------------
c * if it’s time to plot, call dumpgrads and reset plot counter
c example...

if(iplt.eq.nplt)then
call dumpgrads(igradscnt,u,v,w,th,pi,qv,rhou,tb,pib,ub,qb,

1 nx,nz,cpd)
iplt=0
endif

c ----------------------------------------------------------------
c model integration loop ENDS here
c ----------------------------------------------------------------
c * go back to start of model integration loop unless it’s timend
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c ----------------------------------------------------------------
c main routine ENDS here
c ----------------------------------------------------------------
c * before you stop model, create FINAL grads control file
c * this control file will have the proper number of times listed

call write_to_grads_ctl(casename,nx,nz,dt,dx,dz,
1 igradscnt,nplt,byteswap)

stop
end

c ----------------------------------------------------------------
c after your main routine, include GrADS subroutines:
c subroutine dumpgrads
c subroutine write_to_grads_dat
c subroutine write_to_grads_ctl
c * you can also keep them in separate files and link to them
c * EXAMPLE: gfortran task3.f grads_routines.f
c ----------------------------------------------------------------
c ====================================================================

The code below contains Fortran subroutines for creating and writing to GrADS control and

data files. Note the call to dumpgrads requires 5 2D arrays (u, v, w, th, pi), representing

the 4 model prognostic variables and an array nominally for meridional velocity v; five 1D

arrays with base state values (rhou, tb, pib, ub, qb); and the specific heat at constant

pressure (cpd), which is used to compute the dimensional pressure perturbation. Although

our model will be strictly 2D initially, the north-south velocity (v) is included in the event

that you wish to include Earth rotation later. This array, which is hardcoded at the scalar

grid location, can also be used for other purposes.
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c ====================================================================
c GrADS routines for ATM562 (Fortran 77 version)
c http://www.atmos.albany.edu/facstaff/rfovell/ATM562/grads_routines_augmented.f
c this version also carries water vapor 2D field (qv) and base state (qb)
c version of 10/9/2018

c ======= OVERVIEW ===================================================
c subroutine dumpgrads expects the following to be passed as input
c igradscnt - a counter
c nx, nz - array dimensions
c u, v, w, th, pi - 2D arrays dimensioned (nx, nz)
c rhou, tb, pib, ub, qb - 1D base state arrays dimensioned (nz)
c cpd - specific heat at constant pressure
c
c with this input, this routine writes
c full and perturbation u, th, and pi; full v; and
c perturbation pressure (in mb)

c subroutine write_to_grads_ctl writes out the ctl file

c EXTRA/OPTIONAL:
c to add more fields to the GrADS output:
c (1) alter dumpgrads to pass more fields, or compute them in dumpgrads
c (2) add calls to write_to_grads_dat in dumpgrads for new fields
c (3) update ngradsvars (# of variables written out) in write_to_grads_ctl
c (4) add code in write_to_grads_ctl to describe the new field

c --------------------------------------------------------------------
c subroutine dumpgrads
c --------------------------------------------------------------------

subroutine dumpgrads(igradscnt,u,v,w,th,pi,qv,rhou,tb,pib,ub,
1 qb,nx,nz,cpd)
dimension u(nx,nz),v(nx,nz),w(nx,nz),th(nx,nz),pi(nx,nz),
1 qv(nx,nz)
dimension rhou(nz),tb(nz),pib(nz),ub(nz),qb(nz)
dimension temp(nx,nz)
dimension zero(nz)

nxm=nx
nzm=nz
do k=1,nzm
zero(k)=0.
enddo

c some calls pass a non-zero base state array to augment to the 2D field
call write_to_grads_dat(u,nxm,nzm,nx,nz,zero,0.,1) ! full U is predicted
call write_to_grads_dat(u,nxm,nzm,nx,nz,ub,-1.,1) ! pert u = U-ub
call write_to_grads_dat(v,nxm,nzm,nx,nz,zero,0.,0) ! v def. at scalar point

call write_to_grads_dat(w,nxm,nzm,nx,nz,zero,0.,2)
call write_to_grads_dat(th,nxm,nzm,nx,nz,tb,1.,0) ! full pot temp
call write_to_grads_dat(th,nxm,nzm,nx,nz,zero,0.,0) ! pert pot temp
call write_to_grads_dat(qv,nxm,nzm,nx,nz,qb,1.,0) ! full qv
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call write_to_grads_dat(qv,nxm,nzm,nx,nz,zero,0.,0) ! pert qv
call write_to_grads_dat(pi,nxm,nzm,nx,nz,pib,1.,0) ! full ndim pressure
call write_to_grads_dat(pi,nxm,nzm,nx,nz,zero,0.,0) ! pert ndim pressure
do i=1,nxm
do k=1,nzm
temp(i,k)=0.01*rhou(k)*cpd*tb(k)*pi(i,k)
enddo
enddo
call write_to_grads_dat(temp,nxm,nzm,nx,nz,zero,0.,0) ! pert pressure in mb
igradscnt=igradscnt+1
print *,’ done writing grads write number ’,igradscnt
return
end

c --------------------------------------------------------------------
c subroutine write_to_grads_dat
c --------------------------------------------------------------------

subroutine write_to_grads_dat(array,nxx,nzx,nxg,nzg,zmean,zfactor,
1 iavg)
dimension array(nxx,nzx),zmean(nzx)
dimension dummy(nxg,1,nzg)
do i=1,nxg
do k=1,nzg
dummy(i,1,k)=0.
enddo
enddo
if(iavg.eq.0)then ! no averaging needed
do i=1,nxg
do k=1,nzg
dummy(i,1,k)=array(i,k)+zfactor*zmean(k)
enddo
enddo
else if(iavg.eq.1)then ! average in x-direction
do k=1,nzg
do i=1,nxg-1
dummy(i,1,k)=0.5*(array(i+1,k)+array(i,k))+zfactor*zmean(k)
enddo
enddo
else if(iavg.eq.2)then ! average in z-direction
do i=1,nxg
do k=1,nzg-1
dummy(i,1,k)=0.5*(array(i,k+1)+zfactor*zmean(k+1)

1 +array(i, k )+zfactor*zmean( k ))
enddo
enddo
else if(iavg.eq.3)then ! average from strfcn point
do i=2,nxg-1
do k=2,nzg-1
top_pair=0.5*(array(i+1,k+1)+array(i,k+1))+zfactor*zmean(k+1)
bot_pair=0.5*(array(i+1, k )+array(i, k ))+zfactor*zmean( k )
dummy(i,1,k)=0.5*(top_pair+bot_pair)
enddo
enddo
endif ! iavg
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do k=2,nzg-1
write(66) ((dummy(i,j,k),i=2,nxg-1),j=1,1)
enddo
return
end

c --------------------------------------------------------------------
c subroutine write_to_grads_ctl
c --------------------------------------------------------------------

subroutine write_to_grads_ctl(casename,nxg,nzg,dt,dx,dz,
1 igradscnt,ipltint,byteswap)

character*4 ctl,dat
character*80 casename,ctlfile,datfile

close(44)
close(66)

ngradsvars=11
print *,’ writing grads control file’

c if(icall.eq.0)then ! first call
c create names for ctl, dat files

knx=index(casename,’ ’)
write(ctl,’(a4)’) ’.ctl’
write(dat,’(a4)’) ’.dat’
ctlfile=casename(1:knx-1)//ctl
datfile=casename(1:knx-1)//dat
write(6,*) ’casename is ’,casename
write(6,*) ’ctlfile is ’,ctlfile
write(6,*) ’datfile is ’,datfile
open(44,file=ctlfile,status=’unknown’)
open(66,file=datfile,status=’unknown’,

1 form=’unformatted’)
c endif ! icall

c

gradstinc=float(ipltint)*dt/60. ! minutes
igradstinc=ifix(gradstinc) ! if not integer number of min, time counted wrong
print *,’ nxg= ’,nxg,’ nzg= ’,nzg,’ gradstinc ’,gradstinc

write(44,900) datfile ! no underscores in ctl, dat file names
900 format(’DSET ^’,a80)

write(44,901)
901 format(’TITLE ATM 562 model’,/,

1 ’OPTIONS sequential’,/,’UNDEF -9.99E33’)
if(byteswap.eq.1) write(44,902)

902 format(’OPTIONS byteswapped’)
c write(44,100) nxg-2,dx/2/1000.,dx/1000. ! dx in km

write(44,100) nxg-2,-1*float(nxg-2)*dx/2/1000.+0.5*dx/1000.,
1 dx/1000. ! dx in km

100 format(’XDEF ’,i3,’ LINEAR ’,2f10.5,/,’YDEF 1 LINEAR 1.0 1.0’)
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write(44,101) nzg-2
101 format(’ZDEF ’,i3,’ levels’)

do k=2,nzg-1
write(44,102) (float(k)-1.5)*dz/1000.

102 format(f10.3)
enddo
if(igradstinc.lt.1)then
print *,’ *** WARNING - since plotting interval less ’,

1 ’than one minute, GrADS will not report time ’,
1 ’correctly.’

print *,’ *** Plot interval recorded as 1 min in ’,
1 ’control file’

igradstinc=1
endif
write(44,103) igradscnt,igradstinc

103 format(’TDEF ’,i5,’ LINEAR 00:00Z01JAN2000 ’,i3,’mn’)
write(44,104) ngradsvars

104 format(’VARS ’,i4)
write(44,105) nzg-2

105 format(’u ’,i3,’ 00 horizontal velocity’)
write(44,106) nzg-2

106 format(’upr’,i3,’ 00 pert horizontal velocity’)
write(44,199) nzg-2

199 format(’v ’,i3,’ 00 north-south velocity’)

write(44,107) nzg-2
107 format(’w ’,i3,’ 00 vertical velocity’)

write(44,108) nzg-2
108 format(’th ’,i3,’ 00 potential temperature’)

write(44,109) nzg-2
109 format(’thpr’,i3,’ 00 pert potential temperature’)

write(44,118) nzg-2
118 format(’qv ’,i3,’ 00 vapor mixing ratio’)

write(44,119) nzg-2
119 format(’qvpr’,i3,’ 00 pert vapor mixing ratio’)

write(44,110) nzg-2
110 format(’pi ’,i3,’ 00 ndim pressure’)

write(44,111) nzg-2
111 format(’pipr’,i3,’ 00 pert ndim pressure’)

write(44,112) nzg-2
112 format(’pprmb’,i3,’ 00 pert pressure in millibars’)

write(44,999)
999 format(’ENDVARS’)

close(44)

return
end

c ====================================================================
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Here is the GrADS script that produced Fig. 11.3. Scripts can be a lot simpler than this.

Note this script calls two others: cbarn.gs, to draw the colorbar, and rgbset.gs, to define

the colors used. Those scripts are also available on the course web page.

* example GrADS plot script for model task 3
* ATM562
* http://www.atmos.albany.edu/facstaff/rfovell/ATM562/plot_init_cond.gs
* version of 10/9/2015

* define some nice colors via the rgbset script
’run rgbset.gs’

* set background color white and clear screen
’set display color white’
’clear’

* set map projection off
’set mproj off’

* this formats the virtual page
’set vpage 0 8.5 0.5 8.5’

* smooth contours. enabled until switched off.
’set csmooth on’

* ----------- make temperature perturbation plot -----------------
* set contour label, make thp plot, draw title and axes
* declare a color-shaded plot
’set gxout shaded’

* define colors and contour levels
* colors are as defined in rgbset.gs
’set clevs -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1.0 1.5 2.0 2.5 3’
’set ccols 49 47 45 44 43 42 0 0 62 63 64 65 67 69’

* this next line turns off the grads logo
’set grads off’
* override default GrADS axis labels
’set xaxis -16 16 4’
’d thpr’

* draw the colorbar. requires script cbarn.gs
’run cbarn 1 0 5 0.18’

* reset graphics output to contour
’set gxout contour’

* ----------- make pressure perturbation plot -----------------
* set contour color and contour interval
’set ccolor 1’
’set cint 50’
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* suppress contour labels
’set clab off’
* this next line tries to suppress the zero contour
’set black 0 0’
* plot pprmb but convert to Pascals
’d pprmb*100’

* draw titles and labels
’draw title initial temp & pres perturbations (K, Pa)’
’draw xlab x (km)’
’draw ylab z (km)’

* ----------- make a PNG plot ---------------------------------
’gxprint init_tp_pp.png’

* finish up
’set clab on’

The next script plots the vertical profiles of temperature and perturbation pressure.

* example GrADS plot script for model task 3
* ATM562
* http://www.atmos.albany.edu/facstaff/rfovell/ATM562/plot_vert_profile.gs
* version of 10/9/2015

* set background color white and clear screen
’set display color white’
’clear’

* set map projection off
’set mproj off’

* this formats the virtual page
’set vpage 0 8.5 0.5 8.5’

* smooth contours. enabled until switched off.
’set csmooth on’

* set location at domain center
’set lon 0’

* set range for horizontal plot
’set vrange -5 5’
’set grads off’

* plot temperature perturbation profile. color it blue
’set ccolor 4’
’d thpr’

* plot pressure perturbation profile (in mb). color ir red
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’set ccolor 2’
’d pprmb’

* titles and labels
’draw title temperature and pressure pert profiles’
’draw xlab perturbation (K or mb)’
’draw ylab z (km)’

* ----------- make a PNG plot ---------------------------------
’gxprint init_tp_pp_profile.png’
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Chapter 13

Model Task #4: Implementing the
leapfrog scheme

As an intermediate step towards building the 2D model, this task gets you to implement the

leapfrog scheme for a simple 2D case with constant advection velocity. This task demon-

strates how to implement a time stepping loop for a simple equation. We will take the Model

Task #3 code, add an cone-shaped initial condition for one of the variables, and build the

loop. The resulting simulation will well illustrate the phenomenon of dispersion error.

13.1 2D linear advection

Specifically, we’re going to solve the simple constant advection equation

vt = −cxvx − czvz,

where cx and cz are the advection speeds in the x and z directions, respectively. I have

selected the variable v because I am already writing this field to the GrADS output files,

and am defining it at the scalar location, but am not yet using it for anything. The leapfrog

approximation to this is (written in explicit form):

vn+1
i,k = vn−1

i,k − cx
2∆t

2∆x

[
vni+1,k − vni−1,k

]
− cz

2∆t

2∆z

[
vni,k+1 − vni,k−1

]
.

The indices i and k are for the x and z directions. There is a reason why I kept the factor

of 2 in both the numerator and denominator in the advection terms (watch for this below).

This can be implemented in Fortran and C++ as:
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vp(i,k)=vm(i,k)-cx*d2t*rd2x*(v(i+1, k )-v(i-1, k ))
1 -cz*d2t*rd2z*(v( i ,k+1)-v( i ,k-1))

vp[i][k]=vm[i][k]-cx*d2t*rd2x*(v[i+1][ k ]-v[i-1][ k ])
-cz*d2t*rd2z*(v[ i ][k+1]-v[ i ][k-1]);

where d2t is 2∆t, d2x is 2∆x, d2z is 2∆z, cx is cx and cz is cz, along with:

rd2x=1./d2x
rd2z=1./d2z

This turns some frequent divisions into multiplications, which are faster and more efficient.

So, we’ve three arrays, vp, v, and vm, each dimensioned nx by nz. I have adopted nx=nz=51,

so for Fortran the domain center is at index 26, and for C++/Python at index 25.

To facilitate this example, we will implement periodic boundary conditions in both directions .

This means there are only nx-2 and nz-2 unique points. The Fortran do loops will span

i= 2, nx-1 in the x direction and k =2, nz-1 in the z direction. The C++ for loops will

span i =1, nx-2 and k =1, nz-2. Upon completion of these calculations, we need to fill out

the non-unique points in the arrays, using coding like:

do k=2,nz-1
v( 1,k)=v(nx-1,k)
v(nx,k)=v( 2,k)
enddo
do i=1,nx
v(i, 1)=v(i,nz-1)
v(i,nz)=v(i, 2)
enddo

for(k=1; k<= nz-2; k++){
v[ 0 ][k] = v[nx-2][k];
v[nx-1][k] = v[ 1 ][k];
}

for(i=0; i<= nx-1; i++){
v[i][ 0 ] = v[i][nz-2];
v[i][nz-1] = v[i][ 1 ];
}

Take dx and dz to be 100 m, dt to be 50 sec, and cx = cz = 1 m s−1. The initial perturbation

will resemble Task #3’s, but with radx = radz = 1000, delt = 10, and placed in the domain

center. Because of the doubly periodic domain, the simulated cone should return to the

domain center in 4900 sec. You can use code like this for Fortran and C++:
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c Fortran
c imid and jmid are coordinates of domain midpoint

imid=(nx+1)/2
kmid=(nz+1)/2

c parameters for initial perturbation
delt=10.
radx=1000.
radz=1000.

c trigpi is trigonometric pi
trigpi=4.*atan(1.0)
do i=2,nx-1
do k=2,nz-1
rad=sqrt((dz*(k-kmid)/radz)**2

1 +(dx*(i-imid)/radx)**2)
if(rad.ge.1.)then
v(i,k)=0.
else
v(i,k)=.5*delt*(cos(trigpi*rad)+1.)
endif

c we don’t have VM at the initial time, so we fake it
vm(i,k)=v(i,k)
enddo
enddo

// C++
// imid and jmid are coordinates of domain midpoint

imid=(nx-1)/2;
kmid=(nz-1)/2;

// parameters for initial perturbation
delt=10.;
radx=1000.;
radz=1000.;

// trigpi is trigonometric pi
trigpi=4.*atan(1.0);
for(i = 1; i<= nx-2; i++{

for(k = 1; k <= nz-2; k++){
rad=sqrt(pow(dz*(k-kmid)/radz,2)

+pow(dx*(i-imid)/radx,2);
if(rad >= 1.)

v[i][k] = 0.;
else

v[i][k] = .5*delt*(cos(trigpi*rad)+1.);
// we don’t have um at the initial time, so we fake it

vm[i][k] = v[i][k];
} // end of for k

} // end of for i

This perturbation shouldn’t be nonzero near the boundaries, but take care of the boundary

points anyway, just to be safe:
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c Fortran
c periodic BCs

do k=2,nz-1
v(1,k)=v(nx-1,k)
v(nx,k)=v(2,k)
vm(1,k)=vm(nx-1,k)
vm(nx,k)=vm(2,k)
enddo

c so now 1,nx and 2,nz-1 has been done
do i=1,nx
v(i,1)=v(i,nz-1)
v(i,nz)=v(i,2)
vm(i,1)=vm(i,nz-1)
vm(i,nz)=vm(i,2)
enddo

c and that took care of the remaining points

// C++
// periodic BCs

for(k = 1; k <= nz-2; k++){
v[ 0 ][k] = v[nx-2][k];
v[nx-1][k] = v[ 1 ][k];
vm[ 0 ][k] = vm[nx-2][k];
vm[nx-1][k] = vm[ 1 ][k];

}
// so now 0,nx-1 and 1,nz-2 are done

for(i = 0; i <= nx-1; i++){
v[i][ 0 ] = v[i][nz-2];
v[i][nz-1] = v[i][ 1 ];
vm[i][ 0 ] = vm[i][nz-2];
vm[i][nz-1] = vm[i][ 1 ];

}
// and that took care of the remaining points

Get ready to integrate. I like to set counters for both the time step and the model time.

Also, remember since we dont have time n-1 starting out, we need to do the first time step

with a forward time and center space scheme. We can fake this easily, without much extra

coding, by taking vm = v at the model start [we already did that above] and initially taking

d2t = dt instead of 2∆t. . . but just for the first time step. So we can code (in Fortran;

similar code for C++):

c get ready to integrate
c N is my time step counter; start at N=0

n=0
c TIMENOW is my model time keeper; start at TIMENOW=0

timenow=0.
c TIMEND is my integration stop time: 4900 sec

timend=4900
c My grid spacings
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d2x = dx + dx
d2z = dz + dz

c but D2T is DT to start!
d2t = dt

Now, build the integration loop. There’s many ways of implementing a loop; one of the most

straightforward is to do something like this:

c Fortran
c Get ready, get set - GO

1000 n = n + 1 ! update the timestep counter
timenow = float(n)*dt ! update the time

c Are we through yet? If so, bail out
if(timenow.gt.timend) go to 1001

c
c ********************************
c The integration code goes here..
c ********************************
c

c Here is the end of the integration loop. First, make sure we fix D2T.
c This gets done at the end of the first model time, and every time
c thereafter - no big deal; it avoids an IF statement and doesn’t slow
c the model down enough to stress over

d2t = dt + dt

c Loop back to label 1000
goto 1000

c At TIME=TIMEND, the loop exits to here
1001 continue

c Close up shop..

// C++
// Get ready, get set - GO

double temp = timend/dt;
nmax = (int) temp;

while(n < nmax)
{
n++; // update the timestep counter
timenow = n*dt; // update the model time

/* integration code goes here */

/* here is the end of the loop. First, we make sure we
fix D2T. This gets done at the end of the first model time,
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and every time thereafter - no big deal; it avoids an IF statement
and doesn’t slow the model down enough to stress over */

d2t = dt + dt;

} // end of time stepping loop

// Close up shop..

As I said, there are more elegant ways of doing this main loop, but I find this inelegant way to

be quite readable. However, note in the above that I’m handling specification of the current

model time with something like timenow = n*dt instead of timenow = timenow + dt. The

latter is more straightforward but can result in the accumulation of truncation error. (Try

this with a fractional time step like 0.4 and see what happens.) That can be important

if you need to use the timenow variable to trigger processes (including stopping the model

integration) elsewhere in the code.

In the integration loop, do the forecast over the unique points, then clean up the boundary

points, and finally get set for the next time step. Notice that since d2t is really dt and vm

is v for the first time step, the leapfrog code really is implementing the forward time scheme

for the first time step. Also note that we’ll require v values outside of the ranges 2, nx-1 and

2, nz-1 (or 1, nx-1 and 1, nz-1 for zero-based index languages), but since we take care of the

boundary points each time step, we can implement the leapfrog code without a lot of messy

IF statements.

c Fortran
c In the integration loop:

c Loop over the unique points
do k=2,nz-1
do i=2,nx-1

vp(i,k)=vm(i,k)-cx*d2t*rd2x*(v(i+1,k)-v(i-1,k))
1 -cz*d2t*rd2z*(v(i,k+1)-v(i,k-1))
enddo
enddo

c That was easy. Now take care of the boundary points for VP
do k=2,nz-1
vp(1,k)=vp(nx-1,k)
vp(nx,k)=vp(2,k)
enddo
do i=1,nx
vp(i,1)=vp(i,nz-1)
vp(i,nz)=vp(i,2)
enddo
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c Finally, get set for new time step. For the next step,
c V becomes VM and VP becomes V. Note we do this over ALL points
c since the boundaries are already fixed up.

do k=1,nz
do i=1,nx

vm(i,k)=v(i,k)
v(i,k)=vp(i,k)
enddo
enddo

c Now is it time for a plot? If so, call GrADS subroutine here.

// C++
// In the integration loop:

// Loop over the unique points
for(i = 1; i <= nx-2; i++){

for(k = 1; k <= nz-2; k++){
vp[i][k]=vm[i][k]-cx*d2t*rd2x*(v[i+1][ k ]-v[i-1][ k ])

-cz*d2t*rd2z*(v[ i ][k+1]-v[ i ][k-1]);
}

}
// That was easy. Now take care of the boundary points for VP

for(k = 1; k <= nz-2; k++){
vp[ 0 ][k] = vp[nx-2][k];
vp[nx-1][k] = vp[ 1 ][k];

}
for(i = 0; i <= nx-1; i++){

vp[i][ 0 ] = vp[i][nz-2];
vp[i][nz-1] = vp[i][ 1 ];

}

// Finally, get set for new time step. For the next step,
// V becomes VM and VP becomes V. Note we do this over ALL points
// since the boundaries are already fixed up.

for(i = 0; i <= nx-1; i++){
for(k = 0; k <= nz-1; k++){

vm[i][k] = v [i][k];
v [i][k] = vp[i][k];

}
}

// Now is it time for a plot? If so, call GrADS routine here.

13.2 Results of example integration

Figure 13.1 shows the initial condition and the forecasted fields at 1500 sec intervals. The

contoured field is the leapfrog solution, superimposed on the exact solution, represented

by the color shaded field. The true feature and its finite difference counterpart are being
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advected in the “northeast” direction. Owing to the double periodicity assumption, the cone

reenters the domain at the southwest corner, and the cone’s virtual neighbors are also seen

in the northwest and southeast quadrants.

Note the quick appearance of small-scale features in the wake and the deformation of the

simulated cone. We can consider this as “noise” if we choose, but in reality this represents an

integral part of the true cone structure that is being mishandled. Note further that the noise

is propagating in the opposite direction to the main feature! For the 2D leapfrog scheme, the

phase speed of small-scale waves such as 2∆x and 2∆z is not only incorrect in magnitude,

but also in direction. Owing to the domain’s periodicity, the noise field intersects itself,

creating an interference pattern. There is also a small but discernible phase lag.

The simulated cone should remain axially symmetric about a 45◦ angle, the propagation

direction. If your results differ, make sure you’ve placed the initial perturbation in the exact

center of the domain, check your leapfrog scheme code, and re-examine how you handle the

boundary conditions.

Note: For this model task, I have slightly modified my GrADS code with respect to how the

“vertical” direction is handled. This is the code change in subroutine write to grads ctl:

c original code - commented out
c write(44,101) nzg-2
c 101 format(’ZDEF ’,i3,’ levels’)
c do k=2,nzg-1
c write(44,102) (float(k)-1.5)*dz/1000.
102 format(f10.3)
c enddo

c revised code starts
write(44,1100) nzg-2,-1*float(nzg-2)*dz/2/1000.+0.5*dz/1000.,
1 dz/1000. ! dz in km

1100 format(’ZDEF ’,i3,’ LINEAR ’,2f10.5)
c revised code ends

13.3 Specification of the exact solution

In this section, code for generating the exact or true solution is presented. The initial cone

feature is recreated each time step, centered on a position that is shifted at speeds cx and

cz. It is likely there is a more elegant way of accomplishing this, but this approach works.

The main problem is that the cone will exit the domain on one side and re-enter on the
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other. Thus, there will be a period of time in which the cone is straddling the boundaries,

possibly with “ghost” features in other parts of the domain. (See, for example, Fig. 13.1

at the northwest and southeast corners.) This cannot be handled in the simple manner by

which we handled the periodic boundaries in the code.

Figure 13.2 presents the concept employed by my example code for placing the cone rep-

resenting the exact solution. For simplicity, the cone is presumed to be translating in one

direction, towards the right. At the time shown, the cone is in the process of exiting the

domain and re-entering on the left side. We can consider this a combination of a physical

cone (that is only partly within the domain) and its virtual counterpart (that is also partially

in the physical domain).

The x coordinate for the center of the physical cone is xmid. This point falls within the

domain. xi represents any grid point in the domain, whether residing within the cone or

not. Since xmid is inside the domain and the domain is periodic, the centroid of the virtual

cone will reside outside of the physical domain, at location xmidmirror. Our arbitrary grid

point xi has distance xloc from the centroid of the physical cone, and distance xlocmirror

from the virtual cone’s center.

For reconstruction of the exact solution, the smaller of these two distances should be selected.

In the example shown, that would be xloc since the virtual cone’s center is much farther

away. This distance will be used to determine if the grid point lies within the cone. Other

points in the domain, however, will be closer to the virtual cone’s center, and that distance

will be used to determine if the point resides within the cone instead. This will permit

reconstruction of the exact solution, even if it is the process of moving across the virtual

boundaries.

In the code below, the exact solution is stored in the 2D array called qv, utilizing an array

I write to my GrADS files that is not currently being used for moisture.

c ----------------------------------------------------------------------
c exact solution
c ----------------------------------------------------------------------

xmid=dx*(nx+1)/2+cx*n*dt ! Departure of cone centroid
zmid=dz*(nz+1)/2+cz*n*dt ! from initial position

if(xmid.ge.nx*dx) xmid=xmid-(nx-2)*dx ! Passing the periodic
if(zmid.ge.nz*dz) zmid=zmid-(nz-2)*dz ! boundary

if(xmid.gt.dx*(nx+1)/2) then ! The cone’s mirror location
xmidmirror=xmid-(nx-2)*dx ! on other side of periodic bdry
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else
xmidmirror=xmid+(nx-2)*dx

endif
if(zmid.gt.dz*(nz+1)/2) then
zmidmirror=zmid-(nz-2)*dz

else
zmidmirror=zmid+(nz-2)*dz

endif

qv=0. ! start with a clean slate

do i=2,nx-1
do k=2,nz-1
xi=float(i)*dx ! Current location
zk=float(k)*dz

xloc=((xi-xmid)/radx)**2 ! Location relative to
zloc=((zk-zmid)/radz)**2 ! domain midpoint

xlocmirror=((xmidmirror-xi)/radx)**2 ! Distance to mirror beyond the
zlocmirror=((zmidmirror-zk)/radz)**2 ! periodic boundary

xloc=amin1(xloc,xlocmirror) ! Take smaller of the
zloc=amin1(zloc,zlocmirror) ! two coordinates
rad=sqrt(xloc+zloc)

if(rad.lt.1.) qv(i,k)=.5*delt*(cos(trigpi*rad)+1.) ! Exact soln.

enddo
enddo

13.4 Animations using GrADS

The script included below can be used to create a sequence of PNG files that can be combined

into an animated GIF. As written, the script starts making images from the first time (dis t

= 1) until the last time in the file ( endtime). Hitting the Enter/Return key is needed to

advance from frame to frame. That can be eliminated by commenting out the pull dummy

line in the code.
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* example GrADS plot script for model task 4
* this version can save individual frames as png images
* ATM562
* http://www.atmos.albany.edu/facstaff/rfovell/ATM562/plot_cone_movie.gs
* version of 10/9/2018

’set display color white’
’clear’
’run rgbset.gs’

* display parameters
’set mproj off’
’set vpage 0. 8.5 0. 8.5’
’set parea 1 7.5 1 7.5’

* save individual plots as png images?
say ’Create png images? (1=yes ; 0=no)’
pull ans

* find final time in grads file
frame = 1
’q file’
rec=sublin(result,5)
_endtime=subwrd(rec,12)
say " endtime is " _endtime

* looping flag
runscript = 1

* start at time 1
dis_t = 1

* =======================================================================
* MOVIE LOOP
* =======================================================================
while(runscript)
’set t ’ dis_t
’clear’

’set grads off’
’set ccolor 15’
’set cint 2.0’
’set black 0 0’
’set cthick 7’
’set gxout shaded’
’set clevs 0 2 4 6 8 10’
’set ccols 0 0 61 63 65 67 69’
’d qv’
’run cbarn.gs’

’set clab off’
’set gxout contour’
’set ccolor 2’
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’set clevs 2 4 6 8 10’
’d qv’

’set clab on’
’set cthick 5’
’set ccolor 1’
’set cthick 6’
’set cint 2.0’
’d v’

* =======================================================================
* FINISH
* =======================================================================
if(ans)
if( frame < 10 )
’gxprint movie00’frame’.png ’
else
if ( frame < 100 )
’gxprint movie0’frame’.png ’
else
’gxprint movie’frame’.png ’
endif
endif
frame=frame+1
endif

* this next line makes you hit return key to advance
pull dummy

if ( dis_t=_endtime )
runscript=0
endif
dis_t = dis_t + 1
endwhile
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(a) t = 0 sec (b) t = 1500 sec

(c) t = 3000 sec (d) t = 4500 sec

exact solution

Figure 13.1: Fields at initial time and at 1500 sec intervals thereafter. Color shaded field represents
exact solution. Contour interval is 2 units.
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xmid xmidmirror

xi

xloc xlocmirror

Figure 13.2: Concept for handling the placement of the cone representing the exact solution in a
doubly periodic domain, the real (physical) extent of which is indicated by the thick black square.
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Chapter 14

Model Task #5: Discretizing the
model equations

14.1 Equations and flux form

This task starts up where Task #3 left off. In that task, we had created a neutral, calm and

dry base state environment, defined a thermal perturbation as an initial condition and made

sure the initial pressure field was in hydrostatic balance with it. In this task we discretize

the model equations and perform a sample integration within a domain that is presumed

to be periodic in the x direction and confined between flat, rigid plates in the z direction.

Please keep in mind that the periodicity assumption is very confining and unrealistic for a

finite domain, and can potentially exert an enormous influence on the results obtained. In

the next chapter, the handling of open lateral boundaries is discussed.

The model equations we’re going to solve (yet again) are:

∂u

∂t
= −~V · ∇u− cpdθ̄v

∂π′

∂x
(14.1)

∂w

∂t
= −~V · ∇w − cpdθ̄v

∂π′

∂z
+ g

θ′

θ̄
(14.2)

∂θ′

∂t
= −~V · ∇θ′ − wdθ̄

dz
(14.3)

∂π′

∂t
= − c̄s

2

ρ̄cpdθ̄2
v

[
∇ · ρ̄θ̄v~V

]
(14.4)

At this point, our model does not include moisture but the base state virtual temperature

has been retained in the pressure gradient terms and the pressure equation. Incorporation

of moisture will require revising the w equation’s buoyancy term in addition to including at
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least one equation for water substance.

Our handling of these equations will parallel that of Wilhelmson and Chen (1982), except

that we will only implement second-order approximations. They didn’t solve the equations

quite in the form presented above. Rather, they rewrote the advection terms into flux form.

Flux form has some desirable properties, but it is based on a set of assumptions.

Recall from discussion in Chapter 6 that the pressure equation (14.4) reduces to the anelastic

continuity equation

∇ · ρ̄~V = 0 (14.5)

when the sound speed becomes infinitely fast and the base state environment is isentropic.

Even though the problems we solve rarely satisfy those conditions, (14.5) is often used to

rewrite the advection terms into flux form. As an example, take (14.1) and multiply it by

the mean density, ρ̄:
∂ρ̄u

∂t
= −ρ̄u∂u

∂x
− ρ̄w∂u

∂z
− ρ̄cpdθ̄v

∂π′

∂x

The mean density was brought directly into the time derivative on the LHS because it isn’t

a function of time (it is only a function of height). Next, use the chain rule to produce:

∂ρ̄u

∂t
= −∂ρ̄uu

∂x
− ∂ρ̄uw

∂z
+ u

[
∇ · ρ̄~V

]
− ρ̄cpdθ̄v

∂π′

∂x

The term in square brackets is simply (14.5), and is zero in an isentropic and anelastic

atmosphere. Wilhelmson and Chen’s model atmosphere was neither isentropic nor anelastic,

but they employed flux form (neglecting the square bracketed term) because they stated the

anelastic solution is “the desired one”.

Actually, Wilhelmson and Chen did not write the θ′ equation in flux form because of a

concern that then the θ′ and π′ equations would no longer be independent. It seems that

this isn’t a problem with the QCOM approximation (or so I recall), though, since we’ve

already neglected the fπ term that was originally in (14.4). (That term had dθ′

dt
in it.)

You can write the θ′ equation in flux form or not (or code both and see if you can find a

difference). In the example problem shown later, flux form was not used in the θ′ equation.

I have a switch in my model where I can go back and forth between flux form and regular

(“advective”) form for this equation.

What’s missing from this? So far, we have no artificial diffusion of any kind, be it time

smoothing to control the leapfrog odd-even time step separation, or spatial smoothing to

restrain nonlinear computational instability. Those will need to be added in the future as

more complex phenomena are simulated.
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14.2 Discretization

Recall we have a staggered grid, with periodic lateral boundaries (applied at u locations i

= 2 and nx in Fortran) and rigid lower and upper boundaries (applied at w locations k = 2

and nz in Fortran). Thus, for all fields, the unique points fall in the range i = 2, nx-1,

inclusive. For u, θ′ and π′, the unique points in the vertical direction fall between k = 2,

nz-1, inclusive. For w, the inclusive range is between 3 and nz-1, since we don’t need to

solve for w at k = 2 and nz (it’s zero; why bother?).

The flux form equations are:

∂u

∂t
= −∂uu

∂x
− 1

ρ̄

∂ρ̄uw

∂z
− cpdθ̄v

∂π′

∂x
(14.6)

∂w

∂t
= −∂uw

∂x
− 1

ρ̄

∂ρ̄ww

∂z
− cpdθ̄v

∂π′

∂z
+ g

θ′

θ̄
(14.7)

∂θ′

∂t
= −∂uθ

′

∂x
− 1

ρ̄

∂ρ̄wθ′

∂z
− wdθ̄

dz
(14.8)

∂π′

∂t
= − c̄s

2

ρ̄cpdθ̄2
v

[
ρ̄θ̄v

∂u

∂x
+
∂ρ̄θ̄vw

∂z

]
(14.9)

Note that in (14.6)-(14.8) we’ve divided through by ρ̄. Also, the advection of θ′ has been

written in flux form but vertical advection of mean potential temperature cannot be. If you

choose to use advective form for θ′, then the equation is simply:

∂θ′

∂t
= −u∂θ

′

∂x
− w∂θ

′

∂z
− wdθ̄

dz
(14.10)

In this case, the two vertical advection terms may be combined, if desired.

14.2.1 The u equation

Clarity is more important that efficiency in the following discussion, so feel free to code these

equations more compactly. First, we look at the time derivative term, recognizing we’ll have

to rewrite it into explicit form rather than the form shown here:

∂u

∂t
=
un+1
i,k − u

n−1
i,k

2∆t

The other time derivatives are handled in the same way. The horizontal advection term

in the u equation will be discretized in this manner (see Fig. 1 for grid layout and index

assignments):

−∂uu
∂x

= − 1

∆x

[[
uni+1,k + uni,k

2

]2

−
[
uni,k + uni−1,k

2

]2
]
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To get the horizontal gradient of u2 centered at the u point, we first have to average u2 to

the scalar point, and then divide by the distance between the scalar points (∆x). Note that

although the difference is not done over 2∆x, it is still centered and second-order accurate.

This is one advantage of grid staggering.

u uu

w

w

w

w

s s

i-1 i+1i ii-1

k

k+1

k

k-1

k-1

w w

u uu s s

k+1u uu s s

Figure 14.1: Grid staggering and indexing (“s” stands for scalar).

The vertical advection of u will be discretized as follows. The vertical term has to be centered

at the here/now u point, which means we have to average u vertically as well as average

w horizontally. Note ρ̄u,k is the mean density evaluated at the kth u level, while ρ̄w,k is

evaulated at the kth w level. This is more convenient than constantly averaging density in

the vertical direction.

−1

ρ̄

∂ρ̄uw

∂z
= − 1

ρ̄u,k∆z[
ρ̄w,k+1

1

2
(wni,k+1 + wni−1,k+1)

1

2
(uni,k+1 + uni,k)

−ρ̄w,k
1

2
(wni,k + wni−1,k)

1

2
(uni,k + uni,k−1)

]
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The u equation’s pressure gradient acceleration term is easy, a natural for this grid staggering.

To center the horizontal derivative at the ith u point, we need the π values to the right and

left, being at indices i and i− 1, respectively:

−cpdθ̄v
∂π′

∂x
= −cpdθ̄v,k

1

∆x

[
π′ni,k − π′ni−1,k

]
.

Sample Fortran coding

Note in this sample an attempt has been made to line up the terms on the right hand side,

to facilitate reading, understanding, and debugging.

c preliminary definitions --- redefined each time step
c (because d2t is redefined after first time step is completed)

dtx=d2t/dx
dtz=d2t/dz

c do loop for U
c loop over unique points: i=2,nx-1 and k=2,nz-1

do k=2,nz-1
do i=2,nx-1
up(i,k)=um(i,k)-.25*dtx*((u(i+1,k)+u(i,k))**2

1 -(u(i-1,k)+u(i,k))**2)
2 -.25*dtz*(rhow(k+1)*(w(i,k+1)+w(i-1,k+1))
2 *(u(i,k+1)+u(i ,k))
3 -rhow( k )*(w(i,k )+w(i-1,k ))
3 *(u(i,k )+u(i ,k-1)))/rhou(k)
4 -dtx*cp*tbv(k)*(pi(i,k)-pi(i-1,k))

enddo
enddo

Now enforce the boundary conditions. There is no flow through the rigid upper and lower

boundaries (since w there is zero), so it doesn’t matter what u is just above and below the

model surface. It helps simplify the coding if we just take u to be zero-gradient across these

two boundaries. Then, we need to enforce periodicity. Boundary conditions for the other

variables are discussed in the next section.

c zero gradient top and bottom over the unique points
do i=2,nx-1
up(i,1)=up(i,2)
up(i,nz)=up(i,nz-1)
enddo

c now k=1,nz has been done for the unique points
c now apply periodic lateral boundaries for all k

do k=1,nz
up(1,k)=up(nx-1,k)
up(nx,k)=up(2,k)
enddo
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Sample Python coding

A straightforward port of the sample Fortran loop above to Python might result in the

following code (dtx and dtz defined as above.). As Python uses zero-based indexing, the

real points extend from 1 to nx-2 in the horizontal and (for u and scalars) from 1 to nz-2 in

the vertical. However, in Python the ranges do not include the final value indicated, so this

is coded as 1,nx-1 and 1,nz-1. The rest of the code closely mimics its Fortran counterpart.

for i in range(1,nx-1,1):
for k in range(1,nz-1,1):

up[i,k] = um[i,k]
-0.25*dtx*(((u[i+1,k]+u[i,k])**2.0)

-((u[i-1,k]+u[i,k])**2.0))
-0.25*dtz*(rhow[k+1]*(w[i,k+1]+w[i-1,k+1])

*(u[i,k+1]+u[i ,k ])
-rhow[k ]*(w[i,k ]+w[i-1,k ])

*(u[i,k ]+u[i ,k-1])
)/rhou[k]

-dtx*cpd*tbv[k]*(pi[i,k]-pi[i-1,k])

A major deficiency of Python is that it performs repetitive computational tasks very slowly,

and the code sample above is not competitive with Fortran. However, Python can be vec-

torized, and the code version below executes substantially faster. This code example was

provided by Massey Bartolini.

up[1:-1,1:-1] = um[1:-1,1:-1]
-0.25*dtx*(((u[2: ,1:-1]+u[1:-1,1:-1])**2.0)

-((u[ :-2,1:-1]+u[1:-1,1:-1])**2.0))
-0.25*dtz*(rhow[2: ]*(w[1:-1,2: ]+w[ :-2,2: ])

*(u[1:-1,2: ]+u[1:-1,1:-1])
-rhow[1:-1]*(w[1:-1,1:-1]+w[ :-2,1:-1])

*(u[1:-1,1:-1]+u[1:-1, :-2])
)/rhou[1:-1]

-dtx*cpd*tvb[1:-1]*(pi[1:-1,1:-1]-pi[:-2,1:-1])

The expression up[1:-1,1:-1] includes the predicted values of u from i = 1 to nx-2. The

range end specified is “-1”, which represents the last item in the sequence nx-1, but (again

in Python) the last item in the range is not included. In several places, blanks are provided

instead of indices, which means the default values [0, referring to both start and end] are

being requested. Don’t forget to handle the boundary conditions.
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14.2.2 The w equation

The w equation’s horizontal advection term is:

−∂uw
∂x

= − 1

∆x[
1

2
(uni+1,k + uni+1,k−1)

1

2
(wni+1,k + wni,k)

− 1

2
(uni,k + uni,k−1)

1

2
(wni,k + wni−1,k)

]
.

Both u and w have to be averaged, while in the vertical advection term

−1

ρ̄

∂ρ̄ww

∂z
= − 1

ρ̄w,k∆z[
ρ̄u,k

[
wni,k+1 + wni,k

2

]2

−ρ̄u,k−1

[
wni,k + wni,k−1

2

]2
]

only w has to be averaged. In the pressure gradient acceleration term, θ̄v has to be averaged

to the w location:

−cpdθ̄v
∂π′

∂z
= −cpd

1

2

[
θ̄v,k + θ̄v,k−1

] [π′ni,k − π′ni,k−1

∆z

]
.

Finally, the buoyancy term is:

+g
θ′

θ̄
= g

1

2

[
θ′ni,k
θ̄k

+
θ′ni,k−1

θ̄k−1

]

14.2.3 The θ′ equation (in flux form)

In the horizontal advection term, we need to average θ′ to the u locations before we can

compute the derivative. Thus:

−∂uθ
′

∂x
= − 1

∆x

[
uni+1,k

1

2
(θ′ni+1,k + θ′ni,k)− uni,k

1

2
(θ′ni,k + θ′ni−1,k)

]
.

The vertical advection of θ′ is similar:

−1

ρ̄

∂ρ̄wθ′

∂z
= − 1

ρ̄u,k∆z

[
ρ̄w,k+1w

n
i,k+1

1

2
(θ′ni,k+1 + θ′ni,k)− ρ̄w,kwni,k

1

2
(θ′ni,k + θ′ni,k−1)

]
.
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The final term (for now) is the vertical advection of the mean state. Some people multiply

and divide by ρ̄, to be consistent with the other terms:

−w
ρ̄

dρ̄θ̄

dz
= −1

2

1

ρ̄u,k

[
ρ̄w,k+1w

n
i,k+1

(θ̄k+1 − θ̄k)
∆z

+ ρ̄w,kw
n
i,k

(θ̄k − θ̄k−1)

∆z

]
I am not aware of a compelling reason for doing that. Note that since this equation is not

in flux form, it consists of an average of two differences, rather than the difference of two

averages.

14.2.4 The π′ equation

The RHS of the π′ equation has two terms, both multiplied by this coefficient:

− c̄s
2

ρ̄cpdθ̄2
v

= − c2
s

ρ̄u,kcpdθ̄2
v,k

Theoretically, c̄s is a function of height, as seen in Chapter 2, but we will take it to be a

constant, externally supplied parameter. The first term is:

ρ̄θ̄v
∂u

∂x
=

1

∆x
ρ̄u,kθ̄v,k

[
uni+1,k − uni,k

]
,

while the second term is:

∂ρ̄θ̄vw

∂z
=

1

∆z

[
ρ̄w,k+1w

n
i,k+1

1

2
(θ̄v,k+1 + θ̄v,k)− ρ̄w,kwni,k

1

2
(θ̄v,k + θ̄v,k−1)

]
.

14.3 Boundary conditions

As noted above, we are presuming a horizontally periodic domain confined between flat and

rigid plates. The periodic condition was illustrated above for the u equation and this is

applied to all prognostic variables at the left and right boundaries. Rigidity and flatness

imply no flow normal to the plates, and thus the first and last real w points are identically

zero (i.e., for Fortran, w(i,2) = w(i,nz) = 0. at all i). As a consequence, the upper and

lower boundary conditions do not actually matter for the other prognostic variables, so it

suffices to presume zero-gradient conditions, as illustrated above for the u equation.

When we are finished with the boundary conditions, every (fake as well as real) point in the

up, wp, thp, pip arrays has been given a value, and we are ready to set for the next time

step. The order in which the prognostic equations are computed and boundary conditions

applied does not matter, as long as the updating is performed last in the time stepping loop.
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14.4 A sample integration

Figures 14.2-14.5 show fields of θ′, w, u and π′ through a sample integration, made with

these values listed below (that are consistent with the model design of Model Task 3):

• Model domain of 83 by 42 points (so the model takes little memory).

• Calm, dry, isentropic atmosphere (300 K potential temperature).

• Surface pressure 965 mb.

• 400 m grid spacing in both directions (pretty coarse for this problem).

• Sound speed cs = 50 m s−1 (too slow, but allows model to run quickly).

• Thermal specifications: 4000 m horizontal and vertical radii, centered at 3000 m above

the ground, with maximum amplitude of 3 K.

• 2 sec time step.

• Integrated for 1200 sec.

Each figure shows the fields at the initial time, and at 400, 800 and 1200 sec. We can’t make

the atmosphere too deep because it’s dry adiabatic (do you know why that is?). We can’t

integrate the model for too long; the thermal will eventually hit the rigid model top. Even

before that, the periodic lateral boundaries will cause (physical, not necessarily numerical)

problems for this narrow simulation domain. This is because periodic boundaries in an

initially calm environment act as rigid walls, and are perfectly reflective.

We can observe the consequences of the reflective walls in all of the model prognostic vari-

ables, but it may be most obvious in the perturbation pressure field at the lowest scalar

level and when presented as a Hovmöller (time-space) diagram (Fig. 14.6). In Model Task

#3, we supplied the initial thermal with a hydrostatically-balanced pressure perturbation

field. Close observation of the model integration reveals the initially supplied π′ field is

not sufficient to prevent sound waves from being excited by the temperature disturbance.

Two waves emerge and propagate in opposite directions at speed cs. After reflecting off the

periodic boundaries, the waves return to the domain center, where they reflect yet again.

That Hovmöller diagram also helps us see that our initially supplied π′ field was perhaps

not very good. We assumed the adjustment was hydrostatic, which means each column was
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handled in an independent manner, and only model columns that had some thermal pertur-

bation inserted were affected. This is why the magnitude of the initial pressure perturbation

at the surface was large in absolute terms; in reality, the adjustment should have been much

broader, resulting in a smaller surface pressure reduction directly beneath the thermal. Note

how quickly the initially supplied surface π′ changed. This is evidence the adjustment was

excessively large. Did it do more harm than good? Try making a simulation without the

initial π′.

Also, keep statistics like domain maximum w and θ′ every time step, and plot them. Do

you see any temporal instability? What happens if you don’t hydrostatically balance the

initial thermal? If you properly center your initial condition, and have no coding errors, your

solution should be perfectly axially symmetric (or, for u, perfectly anti-symmetric).
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Figure 14.2: Perturbation potential temperature field at initial and three subsequent times. Con-
tour interval 0.5 K; zero contour suppressed.
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Figure 14.3: Vertical velocity field at initial and three subsequent times. Contour interval 2 m
s−1; zero contour suppressed.
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Figure 14.4: Horizontal velocity field at initial and three subsequent times. Contour interval 2.5
m s−1; zero contour suppressed.
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Figure 14.5: Dimensional pressure perturbation field at initial and three subsequent times. Contour
interval 0.25 mb; zero contour suppressed.
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Figure 14.6: Hovmöller diagram of dimensional pressure perturbation field at the lowest scalar
model level. Contour interval 0.5 mb; zero contour suppressed.
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Chapter 15

Model Task #6: Next steps

15.1 Final project

The final modeling project will entail a written report, which can take the form of a Power-

Point presentation. The report should hit these main points:

• The problem to be simulated, including background relevant to the problem;

• The modifications to the model that had to be done to perform the simulation;

• A description of the basic results;

• The conclusions — what was learned from doing the project.

I don’t expect amazing, new, earthshaking results here. Just a demonstration that effort has

been expended and something was learned — about the physical problem simulated and/or

about modeling in general.

As an example, you can augment Model Task #5 in a number of ways, such as by comparing

your simulation results to those from laboratory and theoretical analyses (I can point out

where those results may be found). Or, you can approach the problem from a pure modeling

perspective and design experiments to address basic questions such as:

• What is the effect of changing the temporal and spatial resolution on the results?

• What differences are found if different numerical schemes are employed? (Such as

second- vs. fourth-order leapfrog, Runge-Kutta, etc..)
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• What errors are introduced by artificially slowing down the sound waves?

• In 2D, do a decomposition of the pressure field into buoyancy and dynamic pressure

components by solving the anelastic pressure equation. Or make your model fully

anelastic and compare results with compressible simulations.

• Make your model 3D and compare results between 2D and 3D. Why are 3D motions

typically so much stronger?

• Add a passive tracer to your model and see how it gets pushed around by a thermal

rising through its midst. (This involves adding another, simple equation to the model.)

Where does the tracer go? For a tracer initialized outside of the original thermal

perturbation, how much of the tracer winds up within the thermal itself?

• By making your thermal negatively buoyant, you can study how a cold air pool spreads

along the ground, a sort of “dam break” problem. At sufficiently fine resolution, you

can capture the development of Kelvin-Helmholtz waves along the interface between

the chilled and ambient air. What resolution do you need to successfully capture

these waves? Which is more important, vertical or horizontal resolution? What does

diffusion do to the waves? Implement a passive tracer in your model, and perhaps

initialize it outside the heat sink. How much tracer does the cold pool eventually

entrain? Is that also a function of resolution?

One of those options, or a suitable alternative, is sufficient for a final modeling project.

Suitable alternatives can include, and are not limited to, adding heat or momentum sources

to the model, surface friction and/or surface heat fluxes, adding moisture and microphysics,

and implementing non-flat lower boundaries to mimic flow over mountains or into canyons.

This is certainly not an exhaustive listing. The rest of this chapter discusses how specific

additions and improvements can be made to the Model Task #5 model.

15.2 Open lateral boundary conditions

15.2.1 Theoretical basis

Thus far, our model has employed periodic lateral boundary conditions (BCs), primarily for

simplicity. We have already seen, however, that this represents a powerful constraint on

the circulations that can develop within the domain. To alleviate this, we can try to “open
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up” the domain, creating potential inflow and outflow boundaries. Oliger and Sundstrom’s

(1978) analysis demonstrated that for inflow boundaries, p − 1 BCs are needed, where p is

the number of equations being solved, whereas at outflow boundaries, only one boundary

condition is required. The variable that obviously always requires a BC is u, as in the 2D

model it is the only variable sited directly on the boundary when the grid is staggered.

Whether a domain side is an inflow or outflow boundary, however, is feature-dependent.

Suppose there is a mean flow of u = -10 m s−1 across grid point i = NX. For advective

phenomena, that is an inflow boundary, as the wind is directed into the domain from the

outside. However, suppose a gravity wave with an eastward phase speed of 30 m s−1 is

approaching that side. For that wave, the domain edge at i = NX is an outflow boundary.

Furthermore, it is possible that the wave will reflect upon reaching the edge of the domain,

and subsequently progress inward, which is an undesirable result.

Below, we describe Klemp and Wilhelmson’s (1978; “KW”) approach to implementing open

BCs. The idea is that a wave that might be approaching a domain side is identified and the

velocity at the boundary is adjusted to try to let the wave pass by with minimal reflection

by essentially “advecting” it out of the domain. Let c∗ be the intrinsic phase speed of a

wave moving independently of the flow, so u ± c∗ is the wave’s flow speed relative to the

model domain. Specifically, u+ c∗ is the approach speed for the eastern domain edge. This

could represent an eastbound wave (c∗ > 0) being hastened (u > 0) or slowed (u < 0

but also |u| < c∗) in its motion, or a westbound wave (c∗ < 0) being pushed by a strong

westerly current. Unless u+c∗ > 0 on the domain’s east end, however, that is not an outflow

boundary, at least for that wave. Similarly, u− c∗ < 0 is the wave’s approach speed for the

western boundary.

If a particular domain side is an inflow boundary for that wave, the local time tendency for

u is set to zero. We do not actually know what resides outside our finite domain, so it is

assumed that u there, whatever value it happens to have, is not changing. For the remaining

model variables, a zero-gradient BC is applied. For a wave-relative outflow boundary, KW

replaced the normal velocity’s equation with a simplified version of the form

∂u

∂t
= − (u± c∗) ∂u

∂x
, (15.1)

where the plus (minus) sign is applied at the eastern (western) domain edge. Note the

pressure gradient and vertical advection terms are absent; all we are doing is advecting a

particular wave feature across the boundary1.

1If Coriolis accelerations are incorporated into the model, these are retained in the KW boundary condi-
tion. See Klemp and Wilhelmson (1978, p. 1077).
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But... which wave? Many may exist in a particular simulation and be approaching a given

boundary, including sound waves and gravity modes, thereby representing a very wide spec-

trum of wave speeds. The KW approach involves the specification of a single value for

c∗, and they adopted the intrinsic phase speed of the fastest-moving low-frequency gravity

wave, which has phase speed of NzT
π

, where the denominator represents trigonometric π, N

is the Brunt-Väisälä frequency, and zT is either the height of the domain top or the model

tropopause. Referring to (2.38), we can see this represents a wave of infinite horizontal

extent and a vertical wavelength of twice zT .

With a tropospheric value of N = 0.01 s−1, a zT of 10 km (shallow even for a midlatitude

warm-season tropopause) yields c∗ ≈ 30 m s−1, which is what KW used in their 3D control

experiment. KW’s analysis showed that this BC will not reflect a wave having precisely

the specified value of c∗. Yet, even if it is perfect for that one feature, that means that the

potentially many other waves having different intrinsic speeds will reflect, at least to some

degree. KW also tested values larger and smaller than this value (see their Fig. 10), and

their analysis and simulation results suggested that overestimating c∗ is less harmful than

underestimating it.

It is noted here that other variants of this open BC exist. For example, Wilhelmson and

Chen (1982) estimated separate, time-dependent c∗ values just inside each lateral boundary.

Durran and Klemp (1983) did something similar, but averaged vertically so c∗ did not vary

within a given model column.

15.2.2 Implementation

When the leapfrog scheme is employed, the original KW boundary condition can be coded

in a manner like the following, where cstar is c∗. The BC is being applied to the u equation

for i = 2 and nx, which are the zonal velocity’s boundary points. Note that the gradient of

u is being computed at time n− 1. This is necessary to maintain stability.

dtx=d2t/dx
do k=2,nz-1

up(2 ,k)=um(2 ,k)
1 -amin1((u(2 ,k)-cstar),0.)*(um(3,k)-um(2,k))*dtx

up(nx,k)=um(nx,k)
1 -amax1((u(nx,k)+cstar),0.)*(um(nx,k)-um(nx-1,k))*dtx

do i=3,nx-1
[code for non-boundary points]

enddo ! i
enddo ! k
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15.3 Solving the anelastic pressure equation

The anelastic continuity and pressure equations were introduced in Chapter 6, and an exam-

ple of solving a simple version of the elliptic pressure equation was demonstrated. Here, we

discuss how to solve the full pressure equation in a 2D framework. This can be implemented

either as part of an anelastic model, or within a compressible model to provide an anelastic

version of the pressure field that can be separated into components such as dynamic and

buoyancy pressure. In the latter case, the anelastic pressure perturbation would not be

the same as that prognosed in the model, and would not be formally used in the model

integration.

In Chapter 6, we derived the anelastic pressure equation as

∂2π′

∂x2
+

1

ρ̄cpdθ̄v

∂

∂z
ρ̄cpdθ̄v

∂π′

∂z
= − 1

ρ̄cpdθ̄v

[
∂ρ̄ADV (u)

∂x
+
∂ρ̄ADV (w)

∂z

]
+

1

ρ̄cpdθ̄v

∂ρ̄B

∂z
. (15.2)

Again, ADV also includes all of the terms in the u and w equations (such as diffusion, Coriolis

and friction) apart from pressure gradients and buoyancy. The elliptic pressure equation can

be solved either iteratively or using a direct method. Recall that the simplified equation

resulted in a sparse, tridiagonal matrix (6.11). The above equation is more complex, but

still yields a matrix that is very structured and sparse; it becomes “block-tridiagonal”. We

will employ a direct solver that exploits its ordered, sparse nature.

15.3.1 Subroutine BLKTRI

In two dimensions, we can use subroutine BLKTRI, from the NCAR scientific software library

called FISHPAK. BLKTRI is designed to solve equations of the form

am(i)*pi(i-1,k) + an(k)*pi(i,k-1) + (bm(i)+bn(k))*pi(i,k) +
cm(i)*pi(i+1,k) + cn(k)*pi(i,k+1) = f(i,k)

The coefficient arrays am, an, bm, bn, cm, cn are one-dimensional, representing either

model width or depth, and essentially hold the non-zero values along the diagonal and off-

diagonals of the block-tridiagonal matrix. They are dimensioned either nx-2 or nz-2 because

the solver will ignore our domain’s fake points. The 2D array f(i,k) holds the discretized

version of the right hand side if (15.2).
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We start by discretizing the LHS of (15.2), one term at a time. The second derivative with

respect to x is
π′ni+1,k − 2π′ni,k + π′ni−1,k

∆x2
,

By inspection, it is clear that the coefficients being applied to π′ni−1,k and π′ni+1,k (i.e., am and

cm) are both 1/∆x2 , and that the coefficient for bm is − 2/∆x2 .This means that, nominally,

we are making these associations:

rdx2 = 1./(dx*dx)
do i=2,nx-1
am(i-1) = rdx2
cm(i-1) = rdx2
bm(i-1) = -am(i-1)-cm(i-1)
enddo

I wrote “nominally” because we will subsequently consider if our boundary conditions will

need to alter these assignments. At present, there is no need to have the values of am, bm,

cm vary along the horizontal grid. That will change if, say, the horizontal grid stretching

is implemented, which would make dx a function of x. The assignments are being made to

point i-1 because BLKTRI will be ignoring our fake row of points, shifting everything one

point to the left.

The vertical derivative on the LHS of (15.2) is more complicated and will vary in the vertical

direction even before boundary conditions are considered. Our discretization is

1

ρ̄u,kcpdθv,k
cpd

(
ρ̄w,k+1

(
θ̄v,k+1 + θ̄v,k

)
2

[
π′ni,k+1 − π′ni,k

]
∆z

− ρ̄w,k
(
θ̄v,k + θ̄v,k−1

)
2

[
π′ni,k − π′ni,k−1

]
∆z

)
/∆z.

Thus, we are making these nominal assignments:

rdz2 = 1./(dz*dz)
do k=2,nz-1
coef = 1./(rhou(k)*cpd*tbv(k))
an(k-1) = coef*(rhow( k )*0.5*(tbv(k+1)+tbv(k)))*rdz2
cn(k-1) = coef*(rhow(k+1)*0.5*(tbv(k)+tbv(k-1)))*rdz2
bn(k-1) = -an(k-1)-cn(k-1)
enddo

We are shifting one point downward owing to the fake level at k = 1. So far, we have been

presuming that all model levels are separated by dz. In practice, vertically stretched grids

are often employed, meaning the grid interval between levels k-1 and k and between k and

k+1 may not be the same. A stretched grid could be accommodated by defining dz and rdz

as one-dimensional functions of height. This would require rewriting the code above.
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Horizontal boundaries

At this point, we need to be concerned with how the boundaries are handled. Recall from

the simple example in Chapter 6 that all known values are collected on the right hand side

of the equation, i.e., into f(i,k). If the horizontal boundaries are periodic, no changes to

am, bm, cm are needed, because none of the values of π′ are known before all of them are

determined. If we open up the lateral boundaries, however, we will apply a zero-gradient

BC to the pressure perturbation. This means

π′n2,k − π′n1,k
∆x

= 0,

at i = 1, and at i = nx-1,
π′nnx,k − π′nnx−1,k

∆x
= 0.

In other words, am = rdx2 for all grid points, except when i = 2, because the zero-gradient

BC forces π′n1,k and π′n2,k to be equal. Similarly, cm = rdx2 for all grid points except i =

nx-1, where it vanishes, and bm is -2*rdx2 for all points except at both ends, where it is

-1.*rdx2. This can be accommodated by appending the following code after the do loop in

which am, bm, cm are defined (and the iper flag having been set):

if(iper.ne.1)then ! lateral BCs are not periodic
am(1)=0.
bm(1)=-cm(1)
cm(nx-2)=0.
bm(nx-2)=-am(nx-2)
endif

Upper and lower boundaries

Our model is confined between rigid plates. The absence of flow across those plates implies

that w, ∂w
∂t

and dw
dt

are all zero there. Thus, our vertical equation of motion becomes

−cpdθ̄v
∂π′

∂z
= −gθ

′

θ̄
.

Rather than forcing the gradient to be zero, we are demanding that the vertical pressure

acceleration and the buoyancy cancel each other. It appears more complicated, but it causes

essentially similar revisions to be made to the coefficient vectors:

an(1)=0.
bn(1)=-cn(1)
cn(nz-2)=0.
bn(nz-2)=-an(nz-2)
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Initializing BLKTRI

After constructing the coefficient vectors, the solver is initialized by setting iflg = 0 and

calling the subroutine:

iflg = 0
np = 1
mp = 1
if(iper.eq.1) mp = 0 ! periodic horizontal BCs
call blktri(iflg,np,nz-2,an,bn,cn,mp,nx-2,am,bm,cm,nx-2,rhs,
1 ier,wa)
print *, ier,wa(1)
if(ier.ne.0) stop ’blktri_problem’

In the above, mp, np are 1 unless the horizontal and vertical directions are periodic. The

array rhs(nx-2,nz-2) is a proxy for the RHS, and is ignored for the initialization. Just

provide the routine with a 2D array of the required dimensions. wa is a vector provided for

internal calculations. There is a complex formula for computing the required length but, in

practice, just give it a large dimension like 8000. The length actually required is computed

and stored in wa(1), which can be inspected. The variable ier holds the error code. Unless

it is zero, there is a problem.

Computing the right hand side of (15.2)

The code example below presumes that periodicity in x is being assumed, and will have to

be modified for open boundaries. First, we construct advu, representing the RHS of the u

equation other than the pressure gradient term, and enforce the BCs:

c compute ADV(u)
do k=2,nz-1
do i=2,nx-1
advu(i,k)=-.25*((u(i+1,k)+u(i,k))**2

1 -(u(i-1,k)+u(i,k))**2)/dx
2 -.25*(rhow(k+1)*(w(i,k+1)+w(i-1,k+1))
2 *(u(i,k+1)+u(i,k))
3 -rhow( k )*(w(i,k )+w(i-1,k ))
3 *(u(i,k-1)+u(i,k)))/
4 (dz*rhou(k))

enddo
enddo

c BCs for ADV(u)
c zero gradient top and bottom
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do i=2,nx-1
advu(i,1)=advu(i,2)
advu(i,nz)=advu(i,nz-1)
enddo

c now k=1,nz has been done
c periodic lateral boundaries

do k=1,nz
advu(1,k)=advu(nx-1,k)
advu(nx,k)=advu(2,k)
enddo

Now compute the buoyancy term buoy, and advw, representing the RHS of the w equation

other than the pressure gradient and buoyancy, and impose our boundary conditions:

do k=3,nz-1
do i=2,nx-1
buoy(i,k)=g*0.5*(th(i,k)/tb(k) + th(i,k-1)/tb(k-1))
advw(i,k)=-.25*((u(i+1,k)+u(i+1,k-1))

1 *(w(i+1,k)+w(i,k))
2 -(u(i ,k)+u(i ,k-1))
2 *(w(i-1,k)+w(i,k)))/dx
3 -.25*(rhou( k )*(w(i,k+1)+w(i,k))**2
4 -rhou(k-1)*(w(i,k-1)+w(i,k))**2)/(rhow(k)*dz)

enddo
enddo

c BCs for ADV(w)
c w is zero at k=2 and nz. also zero at k=1, which should not be referenced.

do i=2,nx-1
advw(i,2)=0.
advw(i,1)=0.
advw(i,nz)=0.
enddo

c now k=1,nz has been done
c periodic lateral boundaries

do k=1,nz
advw(1,k)=advw(nx-1,k)
advw(nx,k)=advw(2,k)
enddo

We are not bothering to compute advw at k = 3 and nz because we are making sure those

vanish.

Pressure decomposition and recomposition

Now we differentiate advu and advw, as required by (15.2). This is made easier because we

already took care of the BCs.
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c set up for pressure decomposition
do k=2,nz-1
a1=1./(rhou(k)*dz)
a2=1./(cp*tb(k))
do i=2,nx-1
byctrm(i-1,k-1)=(buoy(i,k+1)*rhow(k+1)-buoy(i,k)*rhow(k))*a1*a2
dyntrm(i-1,k-1)=((advu(i+1,k)-advu(i,k))/dx

1 +(advw(i,k+1)*rhow(k+1)-advw(i,k)*rhow(k))*a1)*a2
alltrm(i-1,k-1)=dyntrm(i-1,k-1)+byctrm(i-1,k-1)
enddo
enddo

In Chapter 6, it was noted that a nice property of the elliptic equation (15.2) is that we can

separate the forcing (RHS) into parts, and solve the equation for the part of the pressure

field responding to that forcing. In the above, we have written the RHS anticipating we will

want to separate buoyancy from dynamic pressure. Thus, bycterm is a 2D array storing the

vertical gradient of the buoyancy term in (15.2). Solving the elliptic equation for it alone

yields buoyancy pressure. Similarly, dynterm represents the derivatives of advu and advw

and yields dynamic pressure2. We do not actually need to combine dynterm and bycterm as

alltrm and solve the equation a third time, as we could just combine the results from the

first two calls, but the provided code does this anyway, providing a sanity check.

iflg = 1 ! BLKTRI has already been initialized
np = 1 ! vertical dimension is not periodic
mp = 0 ! horizontal domain is periodic
call blktri(iflg,np,nz-2,an,bn,cn,mp,nx-2,am,bm,cm,nx-2,byctrm,ier,wa)
call blktri(iflg,np,nz-2,an,bn,cn,mp,nx-2,am,bm,cm,nx-2,dyntrm,ier,wa)
call blktri(iflg,np,nz-2,an,bn,cn,mp,nx-2,am,bm,cm,nx-2,alltrm,ier,wa)

do k=2,nz-1
do i=2,nx-1
pbyc(i,k)=byctrm(i-1,k-1)-byctrm(1,1) ! cosmetic adjustment
pdyn(i,k)=dyntrm(i-1,k-1)-dyntrm(1,1) ! cosmetic adjustment
ptot(i,k)=alltrm(i-1,k-1)-alltrm(1,1) ! cosmetic adjustment
enddo
enddo

We should augment the code above to check the value of ier for each call; this was removed

to enhance readability. On return from BLKTRI, the forcing arrays contain the pressure

components, having been overwritten in the routine; these need to be shifted back to account

for our fake points. Because we are solving the equation with periodic and/or Neumann BCs,

however, there is no way of obtaining unique values of the pressure perturbation. This does

2As shown by Rotunno and Klemp (1982), the dynamic pressure can be further decomposed into its linear
and nonlinear parts; this would require some rewriting of the above code.
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not matter very much because we formulated our equations to require only pressure gradients.

(This was discussed in Chapter 3 as one of the advantages of π′ over dimensional p′.)

This leaves us, however, with pressure values that can float. The provided code addresses this

annoyance by subtracting the corner value from each pressure component. One could select

a different corner point, depending on the application, or do something more sophisticated,

such as adjusting the mean domain value to a specified constant, such as zero. Owing to the

way our model is formulated, however, this is completely cosmetic3.

15.3.2 An example application

Figure 15.1 shows fields at 900 sec from Model Task # 5’s thermal simulation. Note the

pressure perturbation field consists of high pressure above the thermal, low pressure on the

thermal’s flanks, and sound waves (above x = ±12 km) with maximum amplitude at the

surface. As discussed in the previous chapter, those waves resulted from our providing a

hydrostatically balanced initial pressure perturbation field. In Fig. 15.2 the anelastic version

of the pressure field (panel b) and its decomposition (panels c, d) into dynamic (p′d) and

buoyancy pressure (p′b) components are shown for comparison with the compressible model’s

pressure prediction (repeated from the previous figure as panel a). It is immediately seen

that the prognosed and diagnosed p′ fields are not the same, and the most striking difference

is the absence of the sound waves in the anelastic field.

Even though the anelastic and compressible pressure fields are not identical, we can still

utilize the former’s decomposition into dynamic and buoyancy pressures to understand what

is going on. The dynamic pressure field consists of low pressure on the flanks and high

pressure above and below the thermal (the below-thermal high being too small for the

contour interval selected). As shown in Rotunno and Klemp (1982), high dynamic pressure

is produced by both convergence and divergence4, while low p′d results from rotation. The

buoyancy pressure pattern consists of high perturbation pressure above the thermal with low

pressure beneath. This can be understood from a simplified, 1D version of (15.2):

∂2π′

∂z2
=
∂B

∂z
.

For wave-like features (describable with sines and cosines), the second derivative of a field

is proportional to the field itself, with the sign reversed (e.g., d2 sinx/dx2 ∝ − sinx). As

3With the version of BLKTRI provided, your Fortran compiler may issue a warning about the call to
subroutine PPADD. The code appears to work, so this warning can be ignored.

4This requires the assumption that the pressure field is sinusoidal, which is not always true.
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Figure 15.1: Fields at t = 900 sec for the Model Task # 5 thermal simulation: (a) horizontal
velocity (3 m s−1 contours); (b) vertical velocity (5 m s−1 contours); (c) perturbation potential
temperature (0.5 K contours); and (d) perturbation dimensional pressure (0.2 mb contours). Zero
contours suppressed.

a consequence, we see that high buoyancy pressure would be expected where dB/dz is

negative – above the thermal – and low pressure where buoyancy increases with height –

below the thermal. The effect of buoyancy forcing on the vertical velocity could be examined

by combining the vertical buoyancy pressure gradient with the buoyancy field itself (cf.,

Rotunno and Klemp 1982).

15.4 Adding a mean horizontal wind or shear

We wrote our potential temperature equation to prognose θ′ (as thp, th, thm), perturba-

tions from a horizontally homogeneous base state described by θ̄. Our water vapor prediction

equation will also be written in terms of perturbations. This is traditional, likely because
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Figure 15.2: Dimensional pressure component fields at t = 900 sec for the Model Task # 5
thermal simulation (0.2 mb contours): (a) pressure predicted by the compressible model (same as
Fig. 15.1d); (b) anelastic pressure field; (c) anelastic dynamic pressure component; and (d) anelastic
buoyancy pressure component. Zero contours suppressed.
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temperature and vapor perturbations are explicitly needed in the w equation’s buoyancy

term. As a consequence, when we code the vertical advection, we need a separate term to

handle the advection of the mean state. As artificial diffusion designed to control nonlinear

instability (see below) should be applied only to perturbations, however, no special handling

of the vertical diffusion term will be needed.

Adding a mean (possibly sheared) horizontal wind to the model involves placing nonzero

entries in ub. Although not required, it is traditional to handle u as the full field, representing

mean plus perturbations. Under this approach, which is presumed in the examples that

follow, u and um are set equal to ub everywhere during the initialization. However, we will

need to subtract ub from u in the vertical diffusion term, owing to the possibility of mean

state vertical shear.

15.5 Diffusion and time smoothing

We have seen repeatedly that models handle the shortest wavelengths worst. They are

subjected to the largest phase errors and grow the fastest when the model goes unstable

(Chapter 5), and aliasing of these waves was implicated in nonlinear computational instability

(Chapter 7). Adding a diffusion term to the model is straightforward, as long as the term is

applied at time level n− 1 when the leapfrog scheme is used. If the purpose of the diffusion

is solely to restrain computational instability, and not to represent a physically realistic

mixing process, then it is standard to apply the smoothing only to perturbations from the

basic state. This is not an issue with prognostic variables th, pi and qv, as they already

represent perturbation quantities, nor with w for which the mean state is zero. However, if u

was coded to represent the full horizontal velocity field, diffiusion should only be applied to

the perturbations, i.e., u(i,k)-ub(k). This is illustrated in the sample code below (derived

from Model Task #5).

dtx=d2t/dx
dtz=d2t/dz
rdx2=1./(dx*dx)
rdz2=1./(dz*dz)

c do loop for U
c loop over unique points: i=2,nx-1 and k=2,nz-1
c model predicting full u but applying diffusion only to u’

do k=2,nz-1
do i=2,nx-1
up(i,k)=um(i,k)-.25*dtx*((u(i+1,k)+u(i,k))**2

1 -(u(i-1,k)+u(i,k))**2)
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2 -.25*dtz*(rhow(k+1)*(w(i,k+1)+w(i-1,k+1))
2 *(u(i,k+1)+u(i ,k))
3 -rhow( k )*(w(i,k )+w(i-1,k ))
3 *(u(i,k )+u(i ,k-1)))/rhou(k)
4 -dtx*cp*tbv(k)*(pi(i,k)-pi(i-1,k))
5 +dkx*d2t*rdx2*(um(i+1,k)-2.*um(i,k)+um(i-1,k))
6 +dkz*d2t*rdz2*(um(i,k+1)-2.*um(i,k)+um(i,k-1)
6 -ub( k+1)+2.*ub( k )-ub( k-1))

enddo
enddo

This code sample specifies constant mixing coefficients, dkx and dkz, applied to the horizontal

and vertical directions, respectively. The values can be selected based on their amplification

factors for 2∆x and 2∆z waves (see Chapter 7). Again, if the mixing is purely for numerical

reasons, these should be the smallest possible values that accomplish the required task.

Higher order diffusers might also be considered, especially for the horizontal direction, to

attain greater scale selectivity.

The above was explicit spatial smoothing. Recall that time smoothing has been used to

control the leapfrog scheme’s computational mode. Chapter 5 discussed two filters, the

Robert-Asselin and a recent modification of that scheme. The code below suggests how this

could be handled in the time stepping loop. Before the displayed code segment, the forecast

for up has been completed, and BCs applied, but we have not yet swapped values from u to

um and from up to u. The still-current time value u is being smoothed based on the forecast,

original present value, and immediate past value, where ts is the smoothing coefficient. The

operation is applied to all grid points, real and fake, because BCs have already been applied.

c time filter before setting for new time step
do i=1,nx
do k=1,nz
u (i,k)=u (i,k)+ts*(up (i,k)-2.*u (i,k)+um (i,k))
w (i,k)=w (i,k)+ts*(wp (i,k)-2.*w (i,k)+wm (i,k))
th(i,k)=th(i,k)+ts*(thp(i,k)-2.*th(i,k)+thm(i,k))
pi(i,k)=pi(i,k)+ts*(pip(i,k)-2.*pi(i,k)+pim(i,k))
enddo
enddo

15.6 Adding a heat source

A heat source can be implemented by supplying a forcing term for the potential temperature

perturbation equation. The source can be held steady with time, or made to oscillate.
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As examples, Nicholls et al. (1991) and Mapes (1993) considered the response of a stable

environment to maintained heat sources representing diabatic forcing generated by convective

storms. They gave their heat sources vertical profiles that resembled what is observed in

nature and simulated by cloud models, and examined how the gravity waves that were excited

by activating the heating modified the environment surrounding the source.

Specifically, they considered heating profiles that were describable as sine (or half-sine) func-

tions in the vertical. As with the thermal used in Model Tasks #3 and 5, the source is

confined to a limited area. The code below places into hsrc a source with amplitude ampl

and horizontal radius radx at grid point icnt. A single half-sine of depth H comparable to

the troposphere depth can represent the gravest mode of deep convective heating. A second

mode, described by a full sine wave but with half the depth of the gravest component and

half its amplitude is optionally included, if xmode2 = 1. The combination of these two waves

can produce the “top heavy” heating profile considered in both Nicholls et al. (1991) and

Mapes (1993), and made non-negative in the latter.

do k=2,nz-1
argz=((dz*(float(k)-1.5)-znaught)/radz)**2
vert=(trigpi/H)*(dz*(float(k)-1.5))
do i=2,nx-1
argx=(dx*(i-icnt)/radx)**2
rad=sqrt(argz+argx)
if(rad.le.1.)then
hsrc(i,k)=0.5*ampl*(cos(trigpi*rad)+1)

1 *(sin(vert)-0.5*xmode2*sin(2*vert))
hsrc(i,k)=amax1(hsrc(i,k),0.)
endif
enddo
enddo

Add this code to the right-hand sides of the θ′ equation. As usual, trigpi is trigonometric

π, which can be obtained as 4.0*atan(1.0). Don’t forget to multiply by 2∆t.

In a stable atmosphere, the deeper heating mode should provoke a gravity wave of depth

2*radz, propagating away fromt he source at phase speed

c = ±NH
π

,

where N is the Brunt-Väisälä frequency and the denominator is trigonometric π. The second

mode will move at half that speed, and thus travel through the gravest mode’s wake. The

source could also be made unsteady, characteristic of multicellular storms, and be made

to tilt at some angle to the vertical, which is representative of mature squall lines. More
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complex heat sources, including explicit diabatic cooling to represent evaporation, could also

be crafted to mimic squall lines, as was considered by Pandya and Durran (1996).

Bretherton (1988) found that the atmosphere’s response to a maintained heat source is

complicated. While the vertical motion forced reaches a steady state, the horizontal velocity

perturbations in the vicinity of the source grow logarithmically with time. Adding the

Coriolis force to the model suppresses this logarithmic growth, however. (This can be done

in 2D, and requires adding a term to the u equation as well as a v equation.) Can you

demonstrate this occurs?

15.7 Adding a momentum source

A momentum source can be added to the equations to simulate steady or unsteady obstacles

or forcings by defining a streamfunction ψ that enters into the u and w equations in this

manner
∂u

∂t
← −1

ρ̄

∂ψ

∂z

∂w

∂t
← 1

ρ̄

∂ψ

∂x
.

The streamfunction can be confined in areal extent (much like our initial thermal), and

made either steady or unsteady with time. As an example, Fovell et al. (1992) used an un-

steady momentum source placed in the midtroposphere to excite stratospheric gravity waves.

Changing the width of the source and frequency of the oscillation affects the wavelength and

tilt of the resulting waves, as does adding in various vertically sheared flows.

Fovell (2005) used a series of steady momentum sources placed in the boundary layer to

mimic horizontal convective rolls, which consist of a series of updrafts and downdrafts. By

altering the flow passing over the drafts, vertically propagating gravity waves having various

tilting angles can be generated. By shifting the streamfunction closer to the surface, and

playing with the magnitude of the source, a “mountain” consisting of a series of hills or

a single peak can be created. There will still be some flow through the virtual mountain

– it is not actually impermeable, especially if the wind is strong – but in many ways this

can provide a simple and straightforward way of including topographic-like features in the

numerical model.

The code below implements Fovell (2005) forced rolls, being more straightforward than

the method used in Fovell et al. (1992). psik and psim are the horizontal and vertical
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wavenumbers. The source is centered at height znaught (set to 1 km in Fovell 2005) and

horizontal grid point icnt. ampl is the source amplitude, taken to be 0.27 in that paper,

and the horizontal and vertical wavelengths were 7000 and 3000 m, respectively. This code

sets up the streamfunction, which is placed in 2D array strfcn.

argu1=psik*dx*(float(i-icnt)+.5)
argu2=psim*(dz*(k-1)-znaught)
argu=argu1+argu2
if(argu2.gt.-0.5*trigpi.and.argu2.lt.0.5*trigpi)then
strfcn(i,k)=ampl*sin(argu1)*cos(argu2)
else
strfcn(i,k)=0.
endif

Note that the streamfunction is being defined at a point that is 0.5∆z above and below u

and 0.5∆x to the left and right of w, which makes sense given how it will be used to create

forcing for these velocity components. Add this code to the right-hand sides of the u and w

equations. Don’t forget to multiply by 2∆t.

15.8 Add a surface heat flux to the lower boundary

By adding the heat flux to only part of the domain, you can simulate the sea-breeze circula-

tion (or an urban heat island). The heated portion of the domain represents the land surface

during the day, while the unheated part represents the sea. Heated air over the land rises,

and the relatively cooler air originating over the “sea” pushes inland. Adding a mean u flow

directed “offshore” to the model restrains the inland progress of the sea-breeze front, but also

can make it much stronger and sharper. An “onshore” flow speeds the front’s propagation

but makes it much more diffuse. Can you show how the sea-breeze frontal lifting varies with

the intensity and direction of the mean wind?

By adding the heat flux to the entire domain, combined with an initial perturbation, you

can simulate the development of Rayleigh convection, represented by roll-like circulations in

2D. If you implement a uniform heat flux, however, you should not provoke any motions,

especially if your domain is periodic. (Why?) As a consequence, you will need to superimpose

some variation on the surface flux. Will adding random noise to the heat flux create coherent,

non-random circulations?

The code below implements a source term for the θ′ equation, but only to the lowest real

temperature level k = 2, and only if the potential temperature there (θ̄ + θ′) exceeds a
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specified, but fixed ground temperature, tground. If the air is cooler than the ground surface,

there is an upward heat flux. It is not uncommon either to augment the near-surface wind by

a “convective velocity” value to mimic turbulent heat transfer and/or to employ a minimum

wind speed in the flux equation so the source does not become too small when winds are

calm. The code sample provided implements both ideas. Note the temperature difference

tdif is computed at time n− 1.

! tb is base state potential temperature (K)
! tground is a specified, fixed ground surface temperature
! cdh is a nondimensional heat transfer coefficient (usually something like 7E-3)
! addlfx implements random variation around a mean of 1.0
! apply ONLY at lowest real level

if(ishflux.eq.1.and.k.eq.2)then
tdif=amax1(tground(i)-(thm(i,k)+tb(k)),0.)
avgu=0.5*abs(u(i+1,k)+u(i,k))
avgu=amax1(avgu,2.0) ! enforce a minimum wind speed
wnetc=2.*sqrt(tdif) ! "convective velocity" adjustment
vel=sqrt(avgu*avgu+wnetc*wnetc)
thp(i,k)=thp(i,k)+d2t*cdh*vel*addflx(i)*tdif/dz
endif

15.9 Add a near-surface heat sink to the model

A simple way to mimic a thunderstorm cold pool or cold front is to put a heat sink into

the model, an area within which the air will be either constantly cooled, or “nudged” to

a selected, fixed negative buoyancy. (This is similar to the previous idea but implemented

above the ground instead of at it.) The chilled air produced in the sink will commence

spreading along the model surface.

Can you relate the pool’s propagation speed to the density excess within the cold air? As

it spreads, the cold air “underruns” the less dense air outside the pool, forcing it to rise.

Can you relate the strength of this forced lifting to factors such as the pool’s propagation

speed and the stability of the environment? (The latter would obviously require making the

base state non-isentropic.) What happens if you also impose a mean horizontal wind? What

happens if that mean wind is also sheared?
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15.10 Implementing surface drag (friction)

Surface drag is often implemented using a bulk aerodynamic formula involving nondimen-

sional momentum drag coefficient CDM :

ρ̄CDM |~V |u,

applied to the horizontal wind at its lowest real level above the ground. Values of CDM such

as 0.003 and 0.001 have been used over land and water surfaces, respectively. |~V | is the

wind speed at the first horizontal wind level, including the vertical velocity interpolated to

there. A minimum velocity may also be included in |~V |, so the drag does not vanish when

the winds are nearly calm. You need to think about whether you want to apply drag to

the full u field, or just u′. Applying the drag to the entire wind field will cause the flow to

spin down near the ground, which may be undesirable. After all, ū is considered to be a

time-independent base state so, in a sense, it is already supposed to incorporate the mean

effect of friction near the surface.

15.11 Adding moisture and microphysics to the model

Simulate a simple, isolated cumulus cloud. What kind of life cycle does it undergo? How

much rain falls out of the cloud? How fast does the cloud top rise and how long does it

survive? Can you make a new convective cell grow after the old one dies out?

Adding moisture and even “warm rain” microphysics to the model is quite complicated, and

the following step-by-step strategy is suggested. A lot of things have to be added, more than

you might guess, and a lot of adjustments and refinements have to be made. However, you

don’t have to go all the way to a full-blown cloud model with rain and perhaps even ice

species to get something worthy of using in an experiment. I am presuming you are starting

with Model Task #5, the dry thermal in a neutral environment.

1. Make the environment stable, although still dry. A good choice is reverting to your

MT1/MT2 sounding. The thermal will not rise as far, of course, and now you will

excite gravity waves.

2. Add spatial diffusion to the prognostic equations, to suppress nonlinear instability.

Terms like Kx
∂2u
∂x2

and Kz
∂2u′

∂z2
.
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• Kx and Kz are mixing coefficients, units squared meters per second. Optimal

values depend on the problem and the resolution. For mesoscale applications, try

100 and 10 for Kx and Kz as a first guess.

• This diffusion is artificial in nature, and should be applied only to perturbations

from the mean state (e.g., u′ = u − ū). This will only matter after ū varies with

height, however.

• How does this influence your thermal? Adjust and tune the coefficients.

3. Add temporal diffusion (Robert-Asselin filter) to the prognostic equations, to control

the computational mode (Sec. 5.2.3).

• A good place to apply this is after you have finished computing advection, spatial

diffusion and have applied the boundary conditions, but before you set for the

next time step.

• Try to keep the filter coefficient, ε, small (.01 or less).

• Also add domain statistics that might help reveal computational mode activity:

Domain maximum vertical and horizontal velocity, domain total kinetic energy,

domain maximum and minimum temperature and pressure perturbations, etc..

4. Add water vapor prognostic equation to the model, treating it as a passive tracer at

first.

• Craft your equation in terms of q′v and mimic the θ′ equation. You will need a

term for vertical advection of q̄v, in advective form. Add spatial diffusion, applied

to q′v (you will need it).

• Re-enable q̄v from MT1/MT2. Consider also adding q′v to your initial thermal, by

adjusting the RH in the thermal to 100%, say. (Otherwise the thermal represents

an area with lower RH.)

• Advect your water vapor field. Note negative total mixing ratios (i.e., q̄v + q′v)

will occur, just as negative values were produced in the wake of the cone in MT4.

• Adjust the negative total mixing ratios in some fashion. Do this after advection

and spatial diffusion and before applying the boundary conditions. Simply zeroing

them will add a spurious moisture source to the model. Using better adjustments

is fairly simple and straightforward. Implementing positive-definite advection

schemes will be more challenging.

• Do temporal diffusion and apply boundary conditions.
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5. Make water vapor active, by implementing a saturation adjustment, as in MT2, but in

a “cloudless cloud model” or pseudoadiabatic model.

• Add q′v to the buoyancy term of the w equation. Buoyancy is g
[
θ′

θ̄
+ 0.61q′v

]
. See

Sec. 8.2.2.

• Following advection, spatial diffusion and boundary condition treatments, but

before time filtering, check your time n + 1 fields for supersaturation. Apply

saturation adjustment where RH > 100% to adjust q′v at supersaturated grid

points back to 100% RH. This is a sink term for vapor, and a source term for

potential temperature. (You are not doing anything with this condensed vapor;

it is simply ignored, as if its fallspeed were infinite.)

• The adjustment is instantaneous, and so is NOT multiplied by the time step.

The supersaturation did emerge over the last time interval, but it is adjusted

instantaneously.

• When saturation adjustment is finished, reapply boundary conditions, do the time

filtering, and then set for the next time step.

• Diabatic heating owing to microphysics tends to force the model at small time

and space scales. Watch out for linear and nonlinear instability, and excitement

of the computational mode. Adjust time step, Kx, Kz and ε as needed. Watch

out for strange goings-on in your model stratosphere, where the vertical static

stability is high.

6. Add cloud water, qc, to the model, making a rainless cloud model.

• Advect cloud water. Deal with negative mixing ratios. They should not exist.

• Add qc to the buoyancy term. Now buoyancy is g
[
θ′

θ̄
+ 0.61q′v − qc

]
. Cloud

droplets represent a drag on the air, and so contribute to negative buoyancy.

• Now the saturation adjustment has two roles: to create new cloud water mass

at supersaturated grid points, and to remove cloud water if present where RH <

100%. So, look not only for grid points where RH > 100% but also for subsatu-

rated points at which qc > 0.

• In MT2, the mixing ratio adjustment was labeled C. Now positive C is a sink

for vapor, a source for θ′ and a source for qc. Negative C is a source for vapor,

and a sink for θ′ and qc. |C| can exceed available cloud water, so do not let that

happen. All of these adjustments are instantaneous.
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• As you implement cloud water, reconsider your time steps and diffusion coeffi-

cients, and watch out for 2∆t noise.

7. Add rain water, qr, to the model, representing “warm rain” (Kessler-type) microphysics

(refer to Chapter 8).

• Advect rain water and adjust the negative mixing ratios.

• Unlike cloud droplets, raindrops have a non-negligible fall velocity relative to still

air. Add a terminal velocity (VT ) term to vertical advection in the qr equation,

creating (w − VT ) (see Sec. 8.1.2). In practice, VT depends on drop size (mass),

and drop size is (usually) presumed to depend on qr itself; the more rain mass

in a grid volume, the more large drops are presumed to exist. See Sec. 8.1.1 for

details. It may suffice here, however, to impose a constant VT to get something

going. A 6 m s−1 fall speed is probably a good start.

• Raindrops also represent a drag source, so buoyancy is now g
[
θ′

θ̄
+ 0.61q′v − qc − qr

]
.

• After advection and spatial diffusion are accomplished, but before the saturation

adjustment and time filtering, it is time to perform microphysics :

– Warm rain microphysics consists of “autoconversion” (self-aggregation) of

cloud droplets into raindrops, the accretion of cloud droplets by falling rain-

drops, and the evaporation of raindrops in subsaturated air.

– Kessler imagined that cloud droplets would evolve into raindrops at some

rate, as long as droplets were sufficiently numerous. He implemented this as

k1(qc − qc0), where k1 is a conversion rate (typically 0.001 s−1) and qc0 is a

cloud water threshold (often 0.001 kgw kg−1
a ). This is typically conceded now

as a poor way of handling this process.

– Once created, rain mass also grows owing to accretion, as the drops collided

with more slowly falling (relative to still air) cloud particles. Kessler distilled

the geometric “sweep-out” problem into this simple term: k2qc [ρ̄qr]
7/8, with

k2 the accretion rate of 2.2 m7/8 kg
7/8
w s−1 .

– Raindrops also evaporate in subsaturated air. This process is not instanta-

neous and the equation is complex (see Sec. 8.1.4).

• Details regarding the implementation of microphysics:

– Microphysics represents processes that occurred over the previous time inter-

val. As they reside on the right hand side, these terms are multplied by d2t

when the leapfrog scheme is employed.
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– There is not uniform agreement on which time level to base microphysical

rates on. As an example, the accretion of cloud by rain depends on both qc and

qr. Since the rates are applied to the interval between times n−1 and n+1, it

is reasonable to assume that you use the cloud and rain values at time level n.

Some cloud models (e.g., ARPS) base microphysics rates like autoconversion

and accretion on time n + 1 values, at least when Kessler microphysics is

employed. This means that doing autoconversion before accretion changes

the accretion rate, as the latter is based on qn+1
c and qn+1

r , which were just

altered. The sample code that follows adopts this approach, but I would be

cautious about this.

– The sample code below does frequent checks for negative mixing ratios, more

than necessary. If you took care to adjust negative values that were caused

by advection prior to doing computing microphysics, and take care not to

transfer more mass from a particular species than actually exists, you should

not need to be so vigilant.

– Some models compute raindrop sedimentation (fallspeed) separate from ad-

vection, with the result that an updraft may push drops some vertical dis-

tance, only to be shifted downward again when the fallspeed is finally applied.

It seems to make more sense to combine the fallspeed with the vertical veloc-

ity (i.e., w− V̂T ), as was written in Sec. 8.2, and do sedimentation as part of

advection.

• As always, reconsider your time steps and diffusion coefficients, and watch out

for 2∆t noise. Microphysics can and will add noise to the model, and very likely

excite the leapfrog computational mode.

To reiterate, here is the order in which the model should operate in the time-stepping

loop.

(a) Compute advection and spatial diffusion for all real points, for all prognostic

variables, creating forecasts at time n+1. This includes rainwater sedimentation.

(b) Take care of negative mixing ratios in the time n+ 1 quantities. For water vapor,

which we handle as q′v, we are making sure the total vapor mixing ratio, q′v + q̄v

is non-negative.

(c) Take care of the boundary conditions.

(d) Perform microphysical calculations, updating time n+1 quantities. This includes

raindrop evaporation. These rates are multiplied by d2t.
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(e) Perform saturation adjustment, which removes supersaturation (creating qc) or

evaporates cloud droplets present in subsaturated air. These adjustments are

instantaneous, and not multiplied by d2t.

(f) Update the boundary condition again, on fields potentially modified by micro-

physics and saturation.

(g) Apply the time filter to suppress the computational mode.

(h) Set for the new time step.

Sample code for Kessler-type microphysics. This mimics code from the ARPS model.

! ---------------------------------------------------------------------------------
! Kessler (warm rain) microphysics
! ---------------------------------------------------------------------------------
! compute autoconversion of cloud water to rain, accretion of cloud by rain
! and evaporation of rain in subsaturated air

! ---------------------------------------------------------------------------------
! this logic follows that used in the OU ARPS model
! -- rates are multiplied by d2t because leapfrog scheme is used
! -- rates are based on values of qc, qr, qv at time n+1. This is arguable, and can
! -- cause results to be potentially dependent on order in which terms are computed
! -- checks are made to ensure mixing ratios qc, qr, and qv+qb do not become negative
! -- negative mixing ratios are zeroed out, creating a spurious source. Not optimal.
! ---------------------------------------------------------------------------------

! things defined prior to computing microphysics

d2t = dt + dt ! after 1st time step
xki = cpd/rd ! cpd/rd
psl = 1000.e2 ! reference pressure (Pa)

! -- base state information
pbar = pb(k) ! mean dimensional pressure (Pa)
pibar = pib(k) ! mean nondimensional pressure
thetabar = tb(k) ! mean potential temp (K)
qbar = qb(k) ! mean vapor mixing ratio (kg/kg)
xlf = 2.5e6 ! latent heat of vaporization

! ---------------------------------------------------------------------------------
! autoconversion of qc to qr (Sec. 8.1)
! ---------------------------------------------------------------------------------

autort = 0.001 ! autocon rate, 1/sec
autotr = 0.001 ! autocon threshold, kg/kg

qcplus = max(0.0, qcp(i,k) ) ! not using negative mixing ratios
ar = autort *( qcplus - autotr) ! qc at n+1 used to comp. autocon
ar = max(0.0, ar) ! no autocon is qc < threshold
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arcrdt = min( ar*d2t, qcplus ) ! mult autocon rate by d2t, and
! do not exceed available qc

qcp(i,k) = qcp(i,k) - arcrdt ! subtract result from qc
qrp(i,k) = qrp(i,k) + arcrdt ! add result to qr

! ---------------------------------------------------------------------------------
! accretion of qc by qr (Eq. 8.14)
! ---------------------------------------------------------------------------------

acrt = 2.2 ! accretion rate, (m/kg)^(7/8)/s

qcplus = max(0.0, qcp(i,k) ) ! not using negative mixing ratios
! (shouldn’t be needed here)

qrplus = max(0.0, qrp(i,k) ) ! not using negative mixing ratios

cr = acrt*qcplus*(rhou(k)*qrplus)**0.875 ! accretion rate
arcrdt = min( cr*d2t, qcplus ) ! mult accretion rate by d2t, and

! do not exceed available qc

qcp(i,k) = qcp(i,k) - arcrdt ! subtract result from qc
qrp(i,k) = qrp(i,k) + arcrdt ! add result to qr

! ---------------------------------------------------------------------------------
! evaporation of rainwater (Eq. 8.15)
! ---------------------------------------------------------------------------------

qrplus = max(0.0, qrp(i,k) ) ! not using negative mixing ratios
! (shouldn’t be needed here)

qvplus = max(0.0, qvp(i,k)+qbar ) ! not using negative mixing ratios

! -- saturation mixing ratio at time n+1 (see MT2)
pc=380./(pibar**xki*psl) ! coefficient for qvs eqn.
pth = thp(i,k) + thetabar ! full theta, time n+1

qvs=pc*exp(17.27*(pibar*pth-273.)/(pibar*pth-36.)) ! Tetens’ for qvs at n+1

! -- evaporation
coef = 1.6 + 30.39*( rhou(k)*qrplus )**0.2046 ! ventilation coef.
deficit = amax1((1.0 - qvplus/qvs(i,j,k)),0.) ! saturation deficit (RH < 100%)

er = coef*deficit*((rhou(k)*qrplus)**0.525 ) & ! evaporation rate, kg/kg/s, >0
& /( (2.03e4 + 9.584e6/(pbar*qvs) ) &
& *rhou(k) )

erdt = min( qrplus, max(0.0, er*d2t) ) ! do not exceed available qr

qrp(i,k) = qrp(i,k) - erdt ! subtract from qr
qvp(i,k) = qvp(i,k) + erdt ! add to qv

thp(i,k) = thp(i,k) & ! latent cooling
& - xlf*erdt/( cpd*pibar )

! ---------------------------------------------------------------------------------
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Part III

Adjoint models

217



Chapter 16

Theory and construction

In the course of a modeling study, one may wish to gauge the effect the model’s initial

conditions (ICs) and/or parameter settings (PSs) might have on the model forecast. One

may be interested in assessing either how a single alteration at the initial time eventually

influences everything at the final time. Alternatively, one may be more concerned with how

a single aspect of the final forecast was influenced by everything at the initial time. These

complementary but incommensurable strategies represent the simplest foci for the modeling

experiment.

For the first focus, the obvious solution is to run the model repeatedly, spanning every possi-

ble combination of ICs and PSs. This could well be a formidibly expensive, or even outright

impossible, task. Some efficiency might be achieved by replacing the original, nonlinear nu-

merical model with a tangent linear model (TLM). As will be seen, the TLM is constructed

from the original model using Taylor series truncated to first order, creating a model that

forecasts perturbations from the original model solution while constraining them to share

the original model’s temporal trajectory.

First, a control run is created by the integration of the full nonlinear numerical model. Then

the TLM is initialized, not with the control run’s initial fields and parameter values, but

rather with small variations or perturbations for a subset of those values. Finally, the TLM

is integrated to forecast how those perturbations from this control state would evolve. Owing

to its truncated Taylor underpinning, it is clear the perturbations must start off and remain

small, lest the neglected higher order terms (involving products of these perturbations)

become non-negligible.

In the second focus, one wishes to trace some aspect of the control run’s final forecast
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backward in time in order to identify that aspect’s precursors, those specifically being the

variables and the locales which have combined to most influence the magnitude and even

appearance of the aspect. As an example, say the forecast aspect of interest is the surface

central pressure of a cyclone predicted by the control run to reside at a particular location

and to have a certain value. That final central pressure has certainly been influenced by the

atmospheric state at earlier times, and might also have been different had alternate values

for various model parameters been selected. However, which fields, at which locations and

times, and which parameters, wielded the most influence on how the simulated cyclone came

to be?

To investigate this, it is necessary to run a new model – the adjoint model – backward in

time, commencing with the final forecast one wishes to examine. This new model is created,

in effect, by transposing the TLM. In this situation, the TLM is but an intermediate step

in the construction of the adjoint model. Indeed, the chief use of the TLM appears to be in

validating the correctness of the adjoint model.

Unlike the TLM, however, the adjoint model does not propagate the original model’s vari-

ables, or even perturbations from those variables. Instead, the model deals with sensitivity

and is “initialized” at the final time with sensitivity concentrated in the field(s) and locale(s)

of particular interest. In the present example, the adjoint would start off with some nonzero

sensitivity in the model variable representing surface pressure at the cyclone center since that

is the field and the locale we are focusing on. All other model variables would initially hold

zeroes. The adjoint model then propagates this sensitivity backwards in time, during which

it spreads among spatial locales and other model variables. In this way, the model attempts

to identify the fields, locales and parameters that were most influential on determining the

forecasted central pressure, through distributions and concentrations of sensitivity.

Put another way, I like to think of the adjoint model as propagating a dynamically active

tracer or tracker backwards in time. This is a considerably enhanced extension of the concept

of passive tracers. One often uses passive tracers when one wishes to identify the origin of

air that is found to reside at a particular place and time. If you saved the wind data as the

model ran forwards, then you can initialize a passive tracer at the locale of interest at the

final time and run the “wind tape” (as it were) backwards, advecting the tracer upstream

as time rewinds. Owing to its absolutely passive nature, this tracer does not influence the

flow field which bears it – and this makes sense because in a very real sense the “future” has

already occurred and should not be altered by this operation. The absolutely passive tracer

is dynamically inert as well because it is simply being shunted by the wind.
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But now suppose you are not as concerned with the origin of the air at the location of interest

as with the origin of the dynamics that conspired to determine atmospheric conditions – the

winds and more – there. Unlike the passive tracer model, the adjoint model is composed of

a set of sensitivity trackers, one for every prognostic field and parameter of interest in the

model. Even though the model may be initialized (say) at the final time with nonzero values

in only one of the tracked fields, at only one of the domain’s grid points, this tracker will

spread to other tracked fields (and locales) as time rewinds owing to the coupled nature and

structure of the equations. As far as the forward model is concerned, the adjoint tracer is

still passive, and running the adjoint model itself does not change the already known future.

However, the model can – within its inherent limitations – identify how that future came to

be.

16.1 The Tangent Linear Model - Introduction

Here is a simple model equation consisting of a single prognostic variable u, a function of

[2D or 3D] space and time, and a single model parameter α, the value of which is set at the

initial time:
∂u

∂t
= Fu(u, α). (16.1)

Integration of (16.1) in time starting from initial values yields the forecast solution u(x, z, t).

Let one such solution be termed the control run, which will be designated with the subscript

“C” in this introductory discussion. The initial condition at time t=0 is uC(x, z, 0) and this

simulation’s parameter value is αC . The forecast equation in this case will be revised slightly

to read:
∂uC
∂t

= Fu(uC , αC). (16.2)

The initial values of uC and αC completely determine the subsequent evolution of the u field.

Now, let another, alternative simulation, to be designated with the subscript “A”, also be

run, yielding uA(x, z, t). This run may start with a different initial condition uA(x, z, 0)

and/or a different value for the model parameter αA. For this simulation, (16.1) becomes

∂uA
∂t

= Fu(uA, αA). (16.3)

The alternative solution may be viewed as a variation on the control run. Let the difference

between the alternative and control runs’ model parameter values be termed α′′, so we have

α′′ = αA − αC . (16.4)
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At any given point in time and space, the difference between the two forecasts for u will be

called u′′, and defined as:

u′′(x, z, t) = uA(x, z, t)− uC(x, z, t). (16.5)

The obvious way to handle this situation is to simply run the nonlinear model twice, or

for however many instances are needed to examine a parameter space consisting of initial u

values and model parameter α values. As noted above, this could be a formidable task. If –

and this is a big if – the perturbations from the control run are and remain small, then a good

approximation to the alternative run(s) could be obtained from a tangent linear version of

the original nonlinear model. Instead of predicting uA and subtracting it from uC to obtain

u′′, we are directly prognosing u′′ using an approximated model. This model, the TLM, may

be more efficient to run.

There appear to be two ways of defining the TLM. One is straightforward and utilizes first-

order truncated Taylor series; the other is involved mathematically but appears to wind up

with the same TLM formulation. The former is examined below; the latter in Appendix

B. For simple models, the Taylor approach can be applied directly to the model differential

equations, generating the TLM model in analytic form. The TLM differential equation is

then discretized and integrated. For more interesting and commonly occurring situations,

however, it seems one is stuck with starting with the model difference equations; i.e., the

model code. Since we are concerned with assessing model sensitivity, and the “model”

subsumes its coding, we should be more generally concerned with creating the TLM of the

finite difference rather than the original differential equations anyway.

16.2 Construction of the TLM

16.2.1 TLM formulation of a differential equation

A function of a single variable, like f(u), may be expanded by Taylor series as follows:

f(uA)− f(uC) = (uA − uC)
∂f

∂u
|C + h.o.t.,

where h.o.t. stands for the higher order terms. At first glance, it appears this expression is

directly extensible to functions of two or more variables in the following fashion:

f(uA, αA)− f(uC , αC) = (uA − uC)
∂f

∂u
|C + (αA − αC)

∂f

∂α
|C + h.o.t.. (16.6)
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It turns out, however, that this is true only if the two partial derivatives on the right hand

side (RHS) exist and are continuous at the reference point (uC , αC)1. This may need to be

called into question later, and may be the salient difference between this approach and the

more complex procedure discussed in Appendix B.

Assuming for the present that (16.6) is applicable, it may be applied to the RHS of the

model equation, specifically expanding the RHS of (16.3) about the state defined by (16.2).

In this case, we get:

Fu(uA, αA)− Fu(uC , αC) = (uA − uC)
∂Fu
∂u
|C + (αA − αC)

∂Fu
∂α
|C + h.o.t.. (16.7)

Henceforth, the higher order terms will be neglected. Using (16.2) and (16.3), it is seen the

left hand side (LHS) of (16.7) is simply

∂uA
∂t
− ∂uC

∂t
=
∂u′′

∂t
,

so that to a first order approximation (owing to the neglected terms), the equation forecasting

the difference between the two simulations takes the form

∂u′′

∂t
≈ u′′

∂Fu
∂u
|C + α′′

∂Fu
∂α
|C . (16.8)

Definitions (16.4) and (16.5) were used to obtain the above expression. This is the TLM

for the perturbations, which were again designated u′′. The derivatives depend only on the

temporally evolving control run, and so perturbation forecasts possess the same evolving

temporal trajectory as the control run simulation. The TLM is predicated on the existence

of these derivatives and the negligibility of the missing higher order (perturbation product)

terms. The latter assumption can be particularly specious in some, if not many, applications.

16.2.2 A simple example

The following example is cast in one-dimensional space for simplicity. First, we consider a

tendency equation with one forcing term, consisting of Rayleigh friction. This is a simple

damping function. The differential equation is:

∂u

∂t
= Fu = −αu, (16.9)

where α represents the damping rate.

1Condon and Odishaw, Handbook of Physics, 1958, p. 1-38
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To apply (16.8), we need the partial derivatives of Fu with respect the two independent

variables, u and α, evaluated for the control run. It is seen that ∂Fu

∂u
|C = −αC and ∂Fu

∂α
|C =

−uC . Thus, the TLM of the model differential equation (16.9) is

∂u′′

∂t
= −u′′aC − α′′uC . (16.10)

Although we’re neglecting the approximation sign, the expression (16.10) is not precise. The

perturbation product term,

u′′α′′
∂2Fu
∂u∂α

= −u′′α′′

is missing and the TLM is accurate only as long as this term is negligible.

16.2.3 A partially discretized simple example

We are actually concerned with constructing the TLM of the model discretized difference

equations rather than its differential equations. As an example, we revisit the Rayleigh

friciton equation and discretize its RHS. We will have to make a decision regarding the

LHS discretization before long, however. If the centered, three time level leapfrog scheme is

used, the damping term has to be evaluated at the past time (time level n-1) for stability.

Presuming this choice has been made, the mixed differential-difference equation for (16.9)

is:
∂ui
∂t

= Fu,i = −αun−1
i , (16.11)

where i is the spatial index. This is the equation we wish to construct a TLM from.

Now Taylor expansions are applied. The equation (16.11) may be written as:

∂ui
∂t

= Fu(u
n−1
i , α).

The truncated expansion of the RHS for the alternative run about the control run is:

Fu(u
n−1
i,C + u′′

n−1
i , αC + α′′)− Fu(un−1

i,C , αC) ≈ u′′
n−1
i

∂Fu
∂un−1

|C + α′′
∂Fu
∂α
|C

However, the two partial derivatives on the above equation’s RHS are:

∂Fu
∂un−1

|C =
∂

∂un−1

[
−αun−1

i

]
|C

= −αC ,

and

∂Fu
∂α
|C =

∂

∂α

[
−αun−1

i

]
|C

= −un−1
i,C ,
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while the LHS is simply ∂u′′

∂t
. Thus, the TLM model prognostic equation is:

∂u′′

∂t
= −αCu′′n−1

i − α′′un−1
i,C .

16.2.4 TLM of a model equation with constant advective velocity

As already mentioned, analytic forms for the partial derivatives of Fu for simple models may

be easily constructed. In more complex settings, one seems forced to discretize the model

equations first. We have now reached this point.

Again considering only a single spatial dimension for simplicity, the PDE governing constant

advection of a variable u may be written as:

∂u

∂t
= Fu = −cx

∂u

∂x
, (16.12)

where cx is the advection speed. Employing the second-order centered approximation for the

RHS of (16.12), we create:

∂u

∂t
= − cx

2∆x

[
uni+1 − uni−1

]
(16.13)

= − cx
2∆x

uni+1 +
cx

2∆x
uni−1 (16.14)

= Fu
[
cx, u

n
i+1, u

n
i−1

]
. (16.15)

Equation (16.15) shows that the forcing Fu is a function of three independent variables,

being the advection speed and the present time’s values of u on either side of the current

grid point i.

For the truncated Taylor expansion, we need the partial derivatives of the RHS with respect

to each of the independent variables separately. I know of no way of doing this for the

original differential equation, but differentiating the discretized version is very simple. Thus,

starting with
∂u′′

∂t
≈ c′′x

∂Fu
∂cx
|C + u′′

n
i+1

∂Fu
∂uni+1

|C + u′′
n
i−1

∂Fu
∂uni−1

|C . (16.16)

we quickly wind up with

∂u′′

∂t
≈ − c′′x

2∆x

[
uni+1,C − uni−1,C

]
− cxC

2∆x
u′′

n
i+1 +

cxC
2∆x

u′′
n
i−1. (16.17)
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16.2.5 TLM of a model equation with nonlinear advective velocity

If we replace cx in (16.12) with u, creating a nonlinear term, (16.12), (16.13) and (16.15)

become

∂u

∂t
= −u∂u

∂x

= − uni
2∆x

[
uni+1 − uni−1

]
= Fu

[
uni , u

n
i+1, u

n
i−1

]
,

respectively, and our TLM is evaluated using:

∂u′′

∂t
≈ u′′

n
i

∂Fu
∂uni
|C + u′′

n
i+1

∂Fu
∂uni+1

|C + u′′
n
i−1

∂Fu
∂uni−1

|C . (16.18)

Combining all of the above examples, it is seen that the total number of independent variables

requiring differentiation in the construction of the TLM is equal to the number of model

parameters on the RHS of the equation plus – for each prognostic variable and each time

level involved – the number of unique points contributing to the discretization of the spatial

operators present on the RHS.

16.2.6 TLM of a simple system of nonlinear equations

We extend the foregoing to a system of coupled equations by considering a simple example

consisting of two prognostic variables (u and v), two model parameters (g and α) and a

single grid point in space. The parameters are not perturbed in this example. The model

differential equations for this example are:

∂u

∂t
= gv − αu+ uv (16.19)

∂v

∂t
= −gu− αv − uv. (16.20)

The right hand sides of the above equations will be referred to as Fu and Fv, respectively.

Since only the model variables are being subjected to perturbation, we have

∂u′′

∂t
= u′′

∂Fu
∂u
|C + v′′

∂Fu
∂v
|C (16.21)

∂v′′

∂t
= u′′

∂Fv
∂u
|C + v′′

∂Fv
∂v
|C (16.22)
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for the TLM model equations. Upon evaluation of the required RHS derivatives, we come

up with

∂u′′

∂t
= u′′ (−αC + vC) + v′′ (gC + uC) (16.23)

∂v′′

∂t
= u′′ (−gC − vC) + v′′ (−αC − uC) . (16.24)

for the TLM. The preceeding can be written more compactly in matrix form. Specifically,

we have [
∂u′′

∂t
∂v′′

∂t

]
=

[
−αC + vC gC + uC
−gC − vC −αC − uC

] [
u′′

v′′

]
, (16.25)

whereas the general form of (16.21)-(16.22) is[
∂u′′

∂t
∂v′′

∂t

]
=

[
∂Fu

∂u
|C ∂Fu

∂v
|C

∂Fv

∂u
|C ∂Fv

∂v
|C

] [
u′′

v′′

]
. (16.26)

The matrix is identified as the Jacobian of partial derivatives, evaluated for the control run.

All that remains is to discretize the time derivatives on the LHS, supply initial conditions

and to integrate the resulting model. If a two time level scheme is employed with time step

∆t, we have [
u′′

v′′

]n+1

= ∆t

[
−αC + vnC + 1 gC + unC
−gC − vnC −αC − unC + 1

] [
u′′

v′′

]n
, (16.27)

where it is appreciated that the now slightly augmented matrix is a function of time but

depends solely on the control run. Defining x′′ as [u′′, v′′]T , this is more compactly written

as

x′′
n+1

= Anx
′′n, (16.28)

where An has incorporated the time discretization ∆t.

16.3 The adjoint model

16.3.1 Roadmap for adjoint formulation and discussion

Now we employ the TLM to construct the adjoint model. The adjoint is essentially created

by transposing the TLM’s Jacobian matrix and then running the resulting model backwards.

As it stands, this statement may not be particularly enlightening. However, we start with

this and (hopefully) clarify some concepts along the way. Part of the following discussion

mirrors that presented in Errico and Vukicevic (1992, MWR; hereafter “EV”).
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Importantly, numerous aspects of the adjoint model are simplified, and proper coding of same

much more easily checked, when time integration schemes involving only two time levels are

employed. This raises a sticky situation, however: For advection, two time level schemes

are usually either unacceptably flawed or computationally burdensome. On the other hand,

adjoint models made from forward codes using more efficient three time level schemes are

much more convoluted. Despite this, until further notice the following examples implicitly

presume or explicitly use simple, two time level time differencing2.

The structure of this discussion is as follows: First, we recapituate the presentation of the

fully discrete TLM in matrix form, as this will facilitate the derivations to follow. Then, the

concept of the forecast aspect will be introduced, at its simplest and most straightforward

representing one thing about the final control model forecast you’d like to know more about

the evolution of. The adjoint variables will appear at this point, representing the sensitivities

you wish to track backwards in time.

16.3.2 The TLM in matrix form

Let x be a vector representing all temporally varying independent variables, or degrees of

freedom, in the model. In the discretized model it includes all of the prognostic fields (wind

components, temperature, humidity variables, etc.) at all of the model grid points. Thus, if

there are M variables and I total grid points, the length of x is L = M × I. Then, let x′′ be

the perturbations from a control run as forecast by a TLM.

In the simplest possible model, one discretized with a forward time scheme (requiring only

two time levels at any instant of time) and having no model parameters that are varied from

the control run configuration, we can express the prediction of the state of x′′ at time level

n+ 1 based on the state at time n as:

x′′n+1 = Anx
′′n, (16.29)

just as in (16.28). Here An is the L × L time-dependent Jacobian matrix evaluated using

the control run information at time n.

In (16.26), the Jacobian was a simple 2 × 2 matrix, because there were only two degrees

of freedom. In a model with a substantial set of prognostic variables, and particularly a lot

2As a compromise, I have made forward and backward models using the leapfrog and Euler backwards
schemes. The latter is a two time level scheme, but requires twice the computational burden of the leapfrog
since it involves both predictive and corrective calculations for each time step. Still, it generates virtually
identical results (for the simulations I’ve made thusfar) and its two time level construction facilitates accuracy
assessment.
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of grid points, A can be a very huge matrix. Within its structure, it allows the possibility

that every perturbation forecast in xn+1 can potentially be influenced by every perturbation

in the model at the present time. This would be the case if An were dense, with few or no

zeroes. In compressible models, however, the forecasts at time n+1 and grid point i depends

only on previous values located in the immediate vicinity of i. Thus, for large domains A is

a very, very sparse matrix.

Now, since x′′n itself depended upon An−1 and x′′n−1 in a manner analogous to (16.29), so

(16.29) could also be written as:

x′′n+1 = AnAn−1x
′′n−1. (16.30)

The state at time n− 1, in turn, relied upon the still earlier time n− 2 and so on, right on

back to the initial condition at time step n = 0. Thus, we could also write (16.29) as

x′′n+1 = Pn+1x
′′0, (16.31)

where Pn+1 = AnAn−1 · · ·A0 and is called the transition matrix . The upshot is that in

a deterministic model such as this, the model state at any given subsequent time can be

considered to be a transformation applied to the state at the initial time.

This has a further important implication. As noted above, the sparseness of the matrix An at

any given time n reflects the fact that a perturbation forecast at time n+1 can be influenced

only by a small number of perturbations present at time n. However, the multiplication of

An with An−1 in (16.30), which relates the perturbations at times n + 1 and n − 1, would

logically produce a fuller and more complex matrix. Now consider a temporal integration

proceeding from the initial condition at time 0 to final forecast time N which would entail

the sequential multiplication of every individual, sparse matrix A spanning the integration

period. By (16.31), this matrix is identified as PN , and it would likely be very full. The

implication is that a given forecast at the final time is directly linked to a wide array of

points and fields in the initial state, and is thus correspondingly sensitive to alterations in

those initial conditions. It will be seen the adjoint model uses this matrix (or, more precisely,

its transpose), to quantify this sensitivity and dependence.

16.3.3 The forecast aspect

At this point, we need to introduce the forecast aspect , which quite literally represents some

aspect of our forecast about which we wish to examine the sensitivity. This aspect, which
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will be designated J , can be a complex function of many model fields, spatial locations and

points in time, so J = J(x). One is not limited to directly prognosed fields; derived fields

(e.g., vorticity and relative humidity, say) are also fair game. Dramatic simplification of

the presentation, however, results from defining J at a single time. This restriction will

henceforth be adopted.

In the simplest and most tractable application, J might be be a function of a single field

(such as pressure), at a single location (such as at the surface, at a single grid point in the

center of a cyclone, perhaps) at a single time (such as the final forecast time N). We might

then wonder how this particular aspect of interest came to be, how it was influenced or even

controlled by the atmospheric state existing at earlier times. That is, we desire to learn

which fields and which locations at earlier times most profoundly determined how surface

pressure at the grid point of interest evolved.

Consider a J based on the control run at the final forecast time N which we will call J̃N ,

some function of x̃N . If we changed this run’s initial conditions, we might conceivably alter

what the forecast aspect comes to be at that final forecast time. This would be an alternative

run, having its own forecast aspect J∗N . Or, say the control run’s surface pressure forecast is

known to be wrong, and we’re interested in how that error came to be. That is, we wish to

track the error backwards in time, to other prognostic fields and spatial points. In this case,

our J∗N would be the observed pressure at the aspect point.

In either scenario, we can define dJN ≡ J∗N − J̃N , representing either the aspect difference

between two simulations or between control simulation and reality. As J is a function of

xN , we can approximate dJN as ∆JN , defined using a truncated Taylor series expansion

about the control run state. Keeping in mind that the TLM variables x′′Nl approximate

the difference between the control and alternative fields, we can write the truncated Taylor

expansion as:

∆JN =
L∑
l=1

x′′
N
l

∂J̃

∂x̃Nl
. (16.32)

(Recall that l ranges over all M fields and I locales, as L = M × I.)

Thus, whether a particular field located at a particular point (i.e., xNl ) can affect the forecast

aspect (i.e., contribute to ∆JN) depends on two things: the existence of variation from its

control run value there (i.e., x′′Nl 6= 0) and, more importantly, the presence of any sensitivity

to that perturbation there (that is, ∂J̃
∂x̃Nl
6= 0). Naturally, if the sensitivity is zero, no pertur-

bation, of any size, can influence the final forecast at the grid point of interest. . . at least as

far as the linearized TLM and adjoint models are concerned. In contrast, if the sensitivity
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is huge then even a small variation could exert a very substantial effect.

The perturbation values x′′nl at any time n can be obtained by an integration of the TLM for-

ward from perturbed initial conditions. The corresponding sensitivities, ∂J̃
∂x̃nl

, will be provided

by the adjoint model. As a shorthand, we will adopt the notation

∂J̃

∂x̃nl
= x̂nl , (16.33)

which is interpreted as follows: x̂nl is the sensitivity of aspect J to model variable xl at time

n. So, as an example, say that J is the central pressure of the cyclone at final time N .

One of entries of x̂nl represents the vertical velocity field at some grid point at time n. The

magnitude of the adjoint variable corresponding to that particular field and locale represents

the adjoint model’s assessment of how sensitive that final central pressure is to the vertical

velocity field at that time and place. If J has units of millibars, that particular adjoint

variable would be dimensioned millibars per meter per second.

Now it must be realized that ∆JN (or, more properly, dJN) is known information, at least

in this application. We’ve chosen our J and can be presumed to have both the control and

alternative datasets for time N at hand. Moreover, the right hand side of (16.32), applied

at the final time N , is also known. The TLM has already been integrated, yielding x′′Nl for

all l (fields and grid points combined).

More importantly, the sensitivities involved in (16.32) are trivial , at least as far as the final

forecast time is concerned. For a forecast aspect also consisting of a single field at a single

grid point, the only way that any final time perturbation could instantaneously influence the

forecast aspect is if it were in the field that defines the aspect (e.g., pressure) and located

directly at the forecast aspect point. Thus, in this example, the only nonzero sensitivity at

final time N is that owing to the aspect field at point itself. Indeed, that nonzero value is 1,

because the partial derivative of J depends only on itself there.

The key is to obtain the sensitivities representing earlier times . Owing to the coupled nature

of the equations, we can reasonably expect that as we move backwards in time, more and

more fields and locales could be contributing some influence towards the final forecast aspect.

It is the backward integration of the adjoint model that will yield these sensitivities. How is

the adjoint model constructed? This is the topic of the next subsection.
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16.3.4 Construction of the adjoint

In this subsection, the following strategy is employed: First, we define the adjoint model in

a practical way, using a shortcut rather than a mathematically rigorous procedure. Then

the basis of the shortcut is examined. Finally, a neat manner, based on the forecast aspect

sensitivity already considered, in which the fidelity of the adjoint model may be assessed is

presented.

The adjoint to (16.29) is practically constructed in the following way. First, the matrix An

is transposed and transported (not inverted) across the equivalence sign. Then the TLM

perturbation variable vector x′′ on either side is replaced with the adjoint sensitivity vector,

denoted x̂. That means there is an adjoint version of every degree of freedom in the TLM.

The adjoint variables in x̂ are “initialized” at the control run’s final time, and are integrated

backward in time, perhaps as far as that run’s initial time. In other words, the TLM forecast

representation (16.29) has been transformed into:

x̂n = AT
n x̂n+1, (16.34)

where the superscript “T” denotes transposition.

Note (16.34) does not really immediately follow from (16.29), not only because x̂ is not x′′,

but also due to the fact that AT 6= A−1 (except perhaps in very simple cases). Thus, we are

not actually running the TLM model backwards. Instead, we are using the TLM formulation

of the original nonlinear model to create a new model – the adjoint model – that is designed

to be run backwards. Indeed, instead of using An to push us forward from time n to n+ 1,

as we did in the forward integration of the TLM, we are now using the transpose of that

same matrix to draw our (adjoint) model backwards over that same time interval, from time

n+ 1 to n. This is further illustrated in Fig. 1.

Recall that the adjoint variable x̂n at any given time n is simply the sensitivity of the

forecast aspect at that time, according to (16.33). Thus, the adjoint model takes the trivial

sensitivities defined at the control run’s final time and prognoses them backwards in time.

Note also that if we run the adjoint model backwards over the entire length spanned by

the forward model, then we have employed – in reverse succession – every matrix An that

resulted from the forward integration. Thus, we have (and can exploit) the same transition

matrix formed in the forward procedure.

This is also illustrated in the following operation. Starting with (16.31), the equation which

related the TLM states at the initial and final times via the transition matrix PN , and using
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TLM model (forward)

adjoint model (backward)

Figure 16.1: TLM model forward time stepping and adjoint model backward time stepping

the same strategy employed for (16.34), we create

x̂0 = PT
NxN . (16.35)

Noting this property of matrix multiplications

(abc)T = cT bTaT ,

it is seen that

PT
N = AT

0 · · ·AT
N−2A

T
N−1.

Thus, the same control-run dependent mappings that stepped the TLM forward in time are

used in reverse sequence to draw the adjoint model backward from the final time.

The basis of the adjoint model lies in what is termed the “adjoint property”, which may be

simply stated as:

(a,Lb) =
(
LTa,b

)
. (16.36)

The parentheses indicate matrix multiplication (the inner product), the vectors a and b are

dimensioned L× 1 and the matrix L is L×L. The adjoint property essentially says this: A
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multiplication of the vector a by the vector resulting from the operation Lb yields the same

result as the operation which multiplies LTa by b. In the situations we will encounter, LT

is the transpose of L but in more general situations it is that matrix’s adjoint .

This property permits us to directly relate ∆JN with ∆J0. Using definition (16.33) along

with the inner product notation, we can rewrite (16.32) as

∆JN =
(
x̂N ,x′′N

)
. (16.37)

Again, keep in mind that ∆JN is known and trivial. Still, since the final TLM model state

is directly related to the initial condition via the transition matrix PN , we can use (16.31)

to rewrite the above equation as

∆JN =
(
x̂N ,PNx′′0

)
. (16.38)

Now the adjoint property (16.36) can be used to move the transition matrix’s position within

the inner product:

∆JN =
(
PT
N x̂N ,x′′0

)
. (16.39)

By (16.35), though, this means we actually have:

∆JN =
(
x̂0,x′′0

)
≡ ∆J0. (16.40)

Given perturbations in the initial condition (x′′0), their effect on the final forecast aspect

is determined by the sensitivities (x̂0) at that time. Those sensitivities were drawn back

starting at the final time via integration of the adjoint model (16.34).

To recap, the summed product of the control run perturbations and adjoint sensitivities

at the final time (which was trivial) is equal to the summed product of the control run

perturbations and adjoint sensitivities at the initial time. This is even more general than

it might appear, since we can define the transition matrix as valid for any time interval

bounded by n and N where n need not be zero (the initial time). Thus, we can generalize

(16.39) for any time n by writing

∆J = (x̂n,x′′n) . (16.41)

In the above expression, the subscript on ∆J is dropped because its temporal invariance has

now been established. This holds true whenever two time level discretization is employed.

Since ∆J was trivial at the final time N , it necessarily follows that it is trivial at any and

every other time. This seems useless, but actually this characteristic provides a very useful
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gauge of the fidelity of the adjoint model. If one runs the TLM model forward and saves

those fields at every time step, then ∆J values may be calculated at every step during the

adjoint model’s reverse integration. These values should not vary, at least to within roundoff

error 3. Failure to preserve the temporal invariance of ∆J indicates an inconsistency between

the TLM and adjoint modes exists.

16.3.5 An example

It is not always necessary to discretize the model’s time derivatives prior to forming the

adjoint model (at least when we confine ourselves to simple two time level schemes, that is).

To simplify the discussion, the notation will be changed a bit when this alternative solution

path is adopted. The example below comes from Lorenz and Emanuel (1998, JAS ), though

the notation has been altered for convenience.

There is one prognostic variable, φ, and the model domain consists of N gridpoints, indexed

with the subscript i. The partially discretized model equation predicting φi is

dφi
dt

= (φni+1 − φni−2)φni−1 − φni +G (16.42)

= F
[
φni , φ

n
i+1, φ

n
i−1, φ

n
i−2, G

]
, (16.43)

where G represents a model forcing that is held constant with time and not varied from its

control run value. The perturbation value φ′′ is evaluated via truncated Taylor series about

the control run values (indicated by the “C” subscripts and by Φ) as:

dφ′′i
dt

= φ′′
n
i

∂F

∂φni
|C + φ′′

n
i+1

∂F

∂φni+1

|C + φ′′
n
i−1

∂F

∂φni−1

|C + φ′′
n
i−2

∂F

∂φni−2

|C (16.44)

= −φ′′ni + φ′′
n
i+1Φn

i−1 + φ′′
n
i−1

[
Φn
i+1 − Φn

i−2

]
− φ′′ni−2Φn

i−1, (16.45)

the second expression coming from evaluating the required partial derivatives. This is the

TLM. The control run values are indicated by the capital letters to simply the notation.

All of the RHS entries are computed at time n. The matrix version of the TLM for a very

small domain consisting of five points would look like this:
dt + 1 −Φ5 0 Φ5 −(Φ2 − Φ4)

−(Φ3 − Φ5) dt + 1 −Φ1 0 Φ1

Φ2 −(Φ4 − Φ1) dt + 1 −Φ2 0
0 Φ3 −(Φ5 − Φ2) dt + 1 −Φ3

−Φ4 0 Φ4 −(Φ1 − Φ3) dt + 1



φ′′1
φ′′2
φ′′3
φ′′4
φ′′5

 (16.46)

3Running double precision on all reals on a Sun workstation, we have gained seventeen digits of accuracy
even for prolonged integrations.
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In the above, dt denotes the time derivative and all variables that appear are at time n.

Specification of boundary conditions was required; we presumed periodicity such that indices

0 and 5 represented the same point.

Now we take the transpose of the mapping matrix and replace φ′′ with φ̂. Thus, the first

column in the matrix above becomes the first row. For the point i = 1 this yields:[
d

dt
+ 1

]
φ̂1 − [Φ3 − Φ5] φ̂2 + Φ2φ̂3 − Φ4φ̂5 = 0. (16.47)

This is the adjoint equation for gridpoint i = 1. Actually, all of the gridpoints would yield

a structurally similar equation, especially owing to the presumed periodicity. Generalizing

and rearranging this, we see the adjoint model is

dφ̂i
dt

= −φ̂ni + (Φn
i+2 − Φn

i−1)φ̂ni+1 − Φn
i+1φ̂

n
i+2 + Φn

i−2φ̂
n
i−1. (16.48)

It is noted this is Lorenz and Emanuel’s equation (8) (with a typographical error repaired).

16.3.6 An alternative strategy

As stated earlier, for models with a large number of grid points and prognostic variables,

the matrix An will be huge yet sparse. EV outline a strategy for constructing the adjoint

equations by hand, essentially by doing the transposition locally. This strategy works as

illustrated herein when two time level discretization is employed, and is similar to the path

taken by automatic differentiators. We first examine the Lorenz-Emanuel example.

In the EV strategy, we first identify every independent variable in the model TLM’s dis-

cretized RHS(s) that shows up at a given time step and grid point location. (The time

derivative is not yet discretized.) This therefore includes every prognostic variable at every

grid point and time level that appears on the TLM’s RHS. Later, when more complex prob-

lems are considered, model parameters that will be varied from their control run values will

also be identified. Adjoint variables will be created from all of these.

Then, as an intermediate step, each equation is converted into a set of adjoint equations.

In (16.45), the LHS φ′′i becomes the multiplier φ̂i for the adjoint equations’ RHS terms.

The RHS perturbation variables each create their own prognostic adjoint equation. In this

example, the TLM has only one variable at a given grid point, namely φ′′i. This creates the

adjoint term multiplier φ̂ni . The RHS independent variables are φ′′ni , φ
′′n
i+1, φ

′′n
i−1, and φ′′ni−2.

At this intermediate step, these generate four prognostic adjoint equations

dφ̂i
dt
,
dφ̂i+1

dt
,
dφ̂i−1

dt
,
dφ̂i−2

dt
.
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Thus, for example, the φ′′i−2 term in (16.45) yields the adjoint time derivative dφ̂i−2

dt
, the

RHS of which is the coefficient of φ′′i−2 (namely Φn
i−1) multiplied by the adjoint version of

the LHS (namely φ̂i). When completed, this system of equations is produced:

dφ̂i
dt

← −φ̂ni (16.49)

dφ̂i+1

dt
← Φn

i−1φ̂
n
i (16.50)

dφ̂i−1

dt
← (Φn

i+1 − Φn
i−2)φ̂ni (16.51)

dφ̂i−2

dt
← −Φn

i−1φ̂
n
i (16.52)

Note in this simple example every adjoint multiplier on the RHS is φ̂ni . This is because these

four adjoint equations came from a single TLM equation (with but one LHS, of course). The

backarrow is employed to indicate that the RHS term is added to an LHS equation that

may also have other terms. That would be more obvious in an example with more than one

equation, having common terms on the RHS.

I’ve noticed that – at least under some conditions – these four equations thus created can

be condensed into the single equation (16.48). This is done by taking the three equations

applicable to grid points other than point i and mapping them to that point. So, (16.52),

for example, becomes
dφ̂i
dt
← −Φn

i+1φ̂
n
i+2.

Each index i was increased by two wherever it appeared. After this mapping, all four equa-

tions have the same LHS and the RHS terms can thus be aggregated. This yields the adjoint

equation previously presented in (16.48), without the intermediate steps of constructing and

transposing the matrix An. (Since I’ve not read this anywhere, keep a look out for places

where this strategy might fail.)

Once this remapping is completed, the adjoint model difference equations look rather like the

original equations they were constucted from. This makes applying the boundary conditions

(BCs) straightforward and easy, at least when the BCs are zero-gradient, periodic or solution-

specified. This remapping strategy makes proper implementation of BCs for diffusion terms

particularly easy. It is noted that this strategy does not appear to work when open radiation-

type boundary conditions are employed. (In fact, I have not gotten an open BC to work,

and it is possible it simply cannot work properly in reverse.)
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As the final step, the adjoint’s LHS has to be discretized. The same scheme that was used in

the nonlinear (and TLM) model is used, but simply run backwards in time. EV emphasize

that proper ordering in the adjoint model must be respected, and that for the reverse model

operations are executed in reverse. Thus, if the forward model performs the sequential

operations A → B → C, then the adjoint model executes the adjoint of those operations in

reverse sequence, i.e., from C → B → A.

It is noted that automatic differentiation software tools effectively skip this final step because

they differentiate the entire model difference code at once, including the temporal discretiza-

tion. This doesn’t make a difference when a simple two time level scheme is employed. Using

a three time level scheme (such as the leapfrog scheme) is much more complicated; see the

appendix of Talagrand and Courtier (1987, QJRMS ) for a demonstration. The leapfrog

scheme is discussed in Sec. 9.3.9 below.

Actually, since the adjoint model never references the TLM perturbations at all (only the

control run information appears on the RHS), it is again emphasized that the TLM itself

never has to be integrated forward at all , unless one is performing the temporal consistency

check on ∆J . The TLM was just used as an intermediate but necessary step in the con-

struction of the adjoint model. Typically, one desires to know the sensitivies at any given

time. In this situation, the perturbations applied at that time represent whatever it takes

to bring about desired result at the final time.

16.3.7 A more complex 1D example

Here is an equation with constant advection (at speed cx) and Rayleigh frictional damping

(at rate α), in differential and semi-discretized forms:

∂u

∂t
= −cx

∂u

∂x
− αu, (16.53)

= − cx
2∆x

[
uni+1 − uni−1

]
− αuni . (16.54)

In this example, the time derivative would again have to be discretized with the two time

level scheme because the sponge term is evaluated at time n. Of course, employing the

simple forward time scheme yields an unstable combination anyway, but serves the purposes

of demonstration.

The TLM version of the foregoing equation (using upper case symbols U , A and Cx to denote
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the control run values) is:

∂u′′

∂t
= − Cx

2∆x

[
u′′

n
i+1 − u′′

n
i−1

]
− c′′x

2∆x

[
Un
i+1 − Un

i−1

]
− Au′′

n
i − α′′Un

i . (16.55)

The RHS contains three time-dependent independent perturbation variables (u′′ni+1, u
′′n
i−1,

and u′′ni ) as well as two temporally fixed model perturbation parameters (c′′x and α′′). This

will result in five time-dependent adjoint variables.

Using the EV strategy, these five equations are:

∂ûi+1

∂t
← − Cx

2∆x
ûi
n (16.56)

∂ûi−1

∂t
← Cx

2∆x
ûi
n (16.57)

∂ûi
∂t

← −Aûi
n (16.58)

ĉxi ← − 1

2∆x

[
Un
i+1 − Un

i−1

]
ûi
n (16.59)

α̂i ← −Un+1
i ûi

n. (16.60)

Note that while the parameter perturbations are temporally fixed, their adjoint versions are

time-dependent . Since these parameters do not have an associated prognostic equation, the

way (16.59) and (16.60) are handled is different, as outlined below.

As before, equations (16.56)-(16.58) can be combined into a single equation:

∂ûi
∂t

=
Cx

2∆x
[ ˆui+1

n − ˆui−1
n]− Aûi

n. (16.61)

The ← sign has been replaced since we’re done building this equation.

16.3.8 Integrating the adjoint; the forecast aspect

To integrate the adjoint backwards in time, we first discretize the time derivatives using

the same (two time level) temporal discretization scheme employed in the forward direction

by the original nonlinear model (and the TLM) and then initialize the adjoint variables at

the “final” time. As the model parameters are not governed by prognostic equations, their

adjoints are simply summed across time. That is, (16.59) and (16.60) are replaced with

ĉxi = ĉxi −
∆t

2∆x

[
Un
i+1 − Un

i−1

]
ûi
n (16.62)

α̂i = α̂i −∆tUn+1
i ûi

n. (16.63)
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The old values of ĉx and α̂ at each grid point are updated each time step.

Again, the details of the adjoint initialization at the final time depends upon the sensitiv-

ity one wishes to assess. No matter how J is formulated in the present example, ∆J is

constructed as

∆J =
∑
i

[
u′′

n
i

∂J̃

∂ũni
+ c′′x

∂J̃

∂c̃nx
+ α′′

∂J̃

∂α̃n

]
. (16.64)

Because the partial derivatives on the RHS are, in fact, the adjoint variables by definition,

we can also write (16.64) as:

∆J =
∑
i

[
u′′

n
i û

n
i + c′′xĉ

n
x,i + α′′α̂ni.

]
(16.65)

Since we’ve seen that ∆J is trivial for a given specified J , it again follows that ∆J provides

nothing more than that (very useful) model check. If this check is not needed, then the TLM

need not be integrated at all .

16.3.9 Using and coding the leapfrog scheme

Now we’ll touch upon using the leapfrog (LF) scheme in the forward and reverse models.

As a three time level scheme, its adjoint will be more complicated. For the forward model,

it is presumed that the LF scheme is started off from time t = 0 with an “Euler” step with

stepsize ∆t. This forward time, center space scheme is unstable but is only used for this first

step. Subsequent steps use the standard LF scheme and are of length 2∆t, “leaping” from

time levels n− 1 to n+ 1. The final step generates the forecast for time step N .

For this example, we’ll look at the TLM for just the advective part of (16.53), ignoring any

parameter variation for simplicity. Also, we’ll presume laterally periodic BCs are used and

have been applied when and where necessary. Thus, the equation we start with is:

∂u′′

∂t
= −Cx

∂u′′

∂x
, (16.66)

where Cx is the control run’s value for the advection speed parameter.

The initial condition (IC) for the forward model is placed in u′′0i for any or all i. The first

Euler step, forecasting u′′1i , is coded as:

u′′
1
i = u′′

0
i −

Cx∆t

2∆x

[
u′′

0
i+1 − u′′

0
i−1

]
. (16.67)

For time steps n = 1,N -1, the standard LF is coded as:

u′′
n+1
i = u′′

n−1
i − Cx2∆t

2∆x

[
u′′

n
i+1 − u′′

n
i−1

]
. (16.68)
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Time step N − 1 concludes with the finished forecast representing time N .

To recap, the forward model code is structured as follows: First, the IC is specified. Then

the forecast for time n = 1 is made using the Euler scheme. Then subsequent LF forecasts

are made. In my manner of coding, after each LF forecast we ready ourselves for the next

time step by shifting the value from u′′ni into u′′n−1
i and then the value of u′′n+1

i into u′′ni .

The code might look like this:

c arrays used:

c hup(i) represents TLM u’’ field at time n+1

c hu (i) represents TLM u’’ field at time n

c hum(i) represents TLM u’’ field at time n-1

c ** for forward model we proceed hum -> hu -> hup

c CX is the advection speed

c DT is the time step

c DX is the grid spacing

c we’re starting at time=0

time=0

c first we put the initial condition into UM, which represents time 0

hum(i) = IC ! for all i

c forecast time is updated

time = time + dt

c first time step uses the Euler scheme (for all i)

hu (i) = hum(i) - dt/(2*dx)*CX*(hum(i+1)-hum(i-1)) ! line A

c now integrate subsequent steps using the LF scheme.

c we integrate from time steps 1 to N-1,

c making forecasts for times 2 to N

do n=1,N-1,1

c forecast time is updated

time = time + dt

c forecasts for time n+1 (stored in hup) are made (for all i)

hup(i) = hum(i) - 2*dt/(2*dx)*CX*(hu(i+1)-hu(i-1)) ! line B

c now we set for new time step by remapping times (for all i)

hum(i) = hu (i) ! line C

hu (i) = hup(i) ! line D

hup(i) = 0. ! not really needed

c go on to the next time step

enddo

The adjoint model operates in reverse. The initial sensitivity is defined at time level n = N .

Time steps n = N −1 to 1, going in reverse, use the adjoint of (16.68). The model concludes

by employing the adjoint of the forward model’s Euler step, (16.67). Since the forward model
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remaps the TLM time level arrays after each standard LF application, the adjoint model

will start every reverse time step doing the adjoint of the remapping first . Everything is

proceeding in reverse.

This brings us to the problem with using a three time level scheme like the LF for the adjoint

model. Note that (16.68) takes information from the two time levels n and n-1 and uses it to

forge the forecast at time n+ 1. This is illustrated in the upper panel of Fig. 2. The adjoint,

proceeding in reverse, unravels this (as it were). The adjoint of (16.68) will take information

at time level n + 1 and push it back into to both times n and n − 1. Put another way, the

the n+1 time level was influenced by two prior times in the forward model, so in the reverse

model the n+ 1 time influences two earlier times. See Fig. 2’s lower panel.

n+1nn-1

n+1nn-1

leapfrog in forward model (n=1...N-1)

leapfrog in adjoint model (n=N-1...1)

Figure 16.2: The leapfrog scheme in forward and reverse modes

Continuing on, the adjoint of (16.68) yields:

ûn−1
i ← ûn+1

i (16.69)

ûni+1 ← −Cx
2∆t

2∆x
ûn+1
i (16.70)

ûni−1 ← +Cx
2∆t

2∆x
ûn+1
i . (16.71)
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Note again that at this step, we’re placing information into û at two different time levels. We

follow this procedure for n=N -1. . . 1 (going in reverse, of course), with the final application

putting information into û1
i and û0

i for all i. The program will conclude by applying the

adjoint of (16.67), which is:

û0
i ← û1

i (16.72)

û0
i+1 ← −Cx

∆t

2∆x
û1
i (16.73)

û0
i−1 ← +Cx

∆t

2∆x
û1
i , (16.74)

which finally combines all information into the final, concluding time level.

The coding example below utilizes the “line-by-line” strategy usually employed by automatic

differentiators. These programs take a forward TLM model code line like

A′′ = B′′ + C ′′

and convert it into

B̂ = B̂ + Â

Ĉ = Ĉ + Â

Â = 0.

The adjoint IC is placed into Â prior to running this code snippet. The ICs of B̂ and Ĉ are

zero.

c now the adjoint code starts

c arrays used:

c dup(i) represents adjoint uhat field at time n+1

c du (i) represents adjoint uhat field at time n

c dum(i) represents adjoint uhat field at time n-1

c ** for reverse model we proceed dup -> du -> dum

c the time counter should be set to the final time from the forward run

c we are presently at time step n = N, the final time

c put the initial sensitivity into the adjoint into DU, here

c representing the adjoint model at final time N

du(i) = IC ! for all i

c we’re ready to integrate backwards
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do n=N-1,1,-1 ! backwards from N-1 to 1

c update the forecast time

time = time - dt

c for each standard LF step, the forward model set the new time step

c mapping last, so for the adjoint we do it first -- for all i

dup(i) = dup(i) + du(i) ! these two lines are the adjoint

du (i) = 0. ! of line D from forward model

du (i) = du(i) + dum(i) ! these two lines are the adjoint

dum(i) = 0. ! of line C from forward model

c now we do the adjoint of the standard LF -- for all i

c the forward model MAKES time n+1 from values at times n and n-1

c therefore the reverse model uses time n+1 to PUT values into times

c n and n-1

dum( i ) = dum( i ) + dup(i) ! these three lines

du (i+1) = du (i+1) - 2*dt/(2*dx)*CX*dup(i) ! comprise adjoint of

du (i-1) = du (i-1) + 2*dt/(2*dx)*CX*dup(i) ! forward model line B

c we’re done for this reverse time step

enddo

c the forward model did the Euler step first,

c so the reverse model does it last

c note in reverse model, each time step put values into TWO time levels,

c the final time step finally ‘‘stitches’’ the two times back together

c update the forecast time -- we should be back to time = 0 now

time = time - dt

c the adjoint of line A yields, for all i

dum( i ) = dum( i ) + du ( i )

dum(i+1) = dum(i+1) - dt/(2*dx)*CX*du ( i )

dum(i-1) = dum(i-1) + dt/(2*dx)*CX*du ( i )

c and we’re done, the adjoint sensitivity at the forward model’s start

c time is in array DUM

c end of model

The chief disadvantage of the leapfrog scheme is that at any intermediate time between
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time levels N and 0 one needs to combine adjacent times to construct a complete adjoint

sensitivity field. This is illustrated in Fig. 3 for the simple advection example we’ve been

considering. The grid depicted shows time levels and grid points. The adjoint is initialized

at time level N at a single grid point, designated i (i.e., ûNi ). This is point indicated with

the white dot and labeled “0”. All other values at this time level contain zero values.

From (16.69)-(16.71), we see that as we step from time N to N−1, this IC causes information

to be placed into three time/space locales: into ûN−1
i+1 and ûN−1

i−1 , both at time level N − 1,

and into ûN−2
i . Since this is the first adjoint operation, this is labeled “1”. The light grey

dots so labeled identify the appropriate positions on the figure grid.

Now we move to the next time step, N − 2, in which (16.69)-(16.71) will be applied to each

locale bearing the label “1”. The time/space locales influenced in this operation are identified

as the dark grey dots labeled “2”. The time/space locale (i, N − 2) is being modified for the

second time, and so it bears both labels. Then step N − 3, representing the third operation,

is applied to all locales bearing the “2” marking. The IC’s influence has now spread to the

time/space positions labeled “3”.

The example ceases at this point, but two items must be addressed. First, note the staggering

that is resulting from this operation. It is clear that in order to retrieve a full intermediate

field, two adjacent time levels would have to be combined. Second, this temporal-spatial

separation isn’t finally cured or “congealed” until the very last LF operation, the Euler step.

It is that operation that finally stitches the odd and even time level fields together. This

illustrates a significant limitation that is not shared by adjoints employing two time level

schemes.

time level

N

N-1

N-2

N-3

N-4

N-5

N-6

i-1i-2i-3 i i+1 i+2 i+3 i+4 i+5i-4i-5

grid index

0

1 1

1
22 2

3 3

3 3 3

2
3

2
3

Figure 16.3: The adjoint leapfrog scheme, started with a single-point IC (point “0”. Labels on
other points show the steps that create and/or modify that particular time/space point.
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Chapter 17

Example applications

In this chapter, we describe example applications of an adjoint model, specifically motivated

by Fovell and Tan (2000, QJRMS ; hereafter “FT00”). That study evaluated the performance

of a simplfied, parameterized moisture model in simulating 2D squall-line type circulations.

Their model was anelastic; herein, our forward model is based on the quasi-compressible

equation set. Using the compressible equations makes the adjoint model construction less

complicated.

The moisture parameterization obviates the explicit treatment of water substance and latent

heating and cooling. In particular, condensation heating is made conditionally proportional

to vertical velocity, and evaporation cooling is handled by a simple sponge-type term. Tra-

ditional “full physics” cloud models typically track at least three forms of water and possess

microphysical interaction terms that are tricky to handle in tangent linear and adjoint mod-

els. The simple parameterized moisture (PM) framework greatly facilitates construction of

the adjoint.

Naturally, the adjoint simulations will be of little to no value unless the PM model permits

reasonably realistic simulations. Indeed, we have used the adjoint to track the source of

deficiencies in the first-generation PM model and to suggest avenues of improvement.

17.1 The moisture parameterization

The PM framework (see Fig. 1) was described in detail in FT00. The chief effects of moisture

are parameterized through the inclusion of terms representing vapor-condensation warming

and liquid-water evaporation, labeled Q+ and Q−, respectively. These terms appear in the
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unstable region (Γm = dθp/dz > 0)

cooling zonecold pool outline
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storm motion
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Figure 17.1: Schematic model illustrating PM model implementation.

model’s perturbation potential temperature (θ′) equation as

dθ′

dt
= Q+ +Q−. (17.1)

This perturbation is defined relative to a temporally and horizontally invariant basic state.

The evaporation cooling term, Q−, is treated as a shallow, lower-tropospheric cooling zone

dimensioned xh× zh in which air is continuously relaxed to the preset potential temperature

perturbation, θ′c with a designated time scale τc. The sink’s upstream edge is positioned

a small distance δ behind the storm’s gust front, subsequent to that feature becoming es-

tablished. As per usual, the model domain is translated in such a way as to keep the gust

front as stationary as possible, but in some cases domain-relative motion can still occur.

The cooling zone’s alignment relative to the front is examined every time step, and shifted

if necessary.

In the PM model latent heat release is made proportional to ascent velocity (w > 0) by

presuming air rises moist adiabatically within the “cloud”. The slope of the moist adiabat

in (θ, z) space is γ∗, a predetermined, nonnegative function of height alone, so Q+ is handled

as

Q+ = γ∗max(w, 0). (17.2)

The model subdomain in which γ∗ is nonzero is termed the “unstable region”. As depicted

in Fig. 1, this region resides between the specified height levels zm and zb. Further, the

unstable region stretches laterally rearward to the domain’s downstream boundary but its

upstream extent is truncated a small distance ε ahead of the surface gust front’s position.
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FT00 reported this truncation had virtually no effect on their simulations. As in FT00, both

δ and ε are taken to be 5 km.

17.2 Model implementation

17.2.1 Basic model design

The model domain is 550 km wide and 21.2 km deep. The horizontal and vertical grid

spacings are ∆x = 1 km and ∆z = 250 m, respectively. In the quasi-compressible model,

the sound speed is treated as a free parameter, and typically discounted somewhat to permit

larger time steps. The sound wave speed is set at 100 m s−1; simulations with larger values

generated very similar results. The time step ∆t is 0.5 s. Note that “time splitting”, the

approach that integrates acoustically active and inactive terms with different time steps, was

not adopted. We have chosen straightforward over efficient design at this time.

The model grid is staggered, using the Arakawa “C” grid. See Fig. 2 for the specific grid

arrangement and indexing convention employed. The upper and lower boundaries are rigid,

free-slip plates; the horizontal domain is periodic. Using periodic boundaries simplifies ad-

joint construction but is not realistic for the kind of circulations under examination. To

compensate for this, the domain has been made sufficiently wide to make the boundary

assumptions unimportant over the lengths of our integrations.

The modeling system has three components: the nonlinear and tangent linear models, both

integrated forward in time, and the adjoint model, operated in reverse (see next section).

Two independently implemented versions of the system have been created, one employing the

leapfrog method and the other using the Euler-backward scheme. Both schemes incorporate

second order centered differencing for spatial derivatives. The leapfrog approach is fast and

efficient but its three time level structure complicates implementation and fidelity assessment

of the adjoint model, as well as interpretation of that model’s intermediate results. These

are the strengths of the two-time level Euler-backward version. The Euler-backward scheme,

however, requires roughly twice the number of computations of the leapfrog approach and

also tends to damp high frequency signals1. Because the model is compressible and not time

split, however, the modes of interest are actually quite slowly varying. Even for prolonged

integrations, the two versions yield virtually indistinguishable results, for both forward and

reverse integrations.

1Haltiner and Williams (1980), p. 134-35.
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Figure 17.2: Staggered grid employed by the forward and adjoint models.
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For the moisture parameterization, the moist adiabatic slope γ∗ is defined at the w locations

at the top and bottom of each grid box. In the nonlinear forward model, presuming a two

time level scheme is employed, (17.2) is implemented at time n and spatial location i, k as:

Q+
i,k =

∆t

2

[
max(wni,k+1, 0)γ∗k+1 + max(wni,k, 0)γ∗k

]
. (17.3)

That is, the parameterized heating is calculated at the w locations and then averaged to the

grid box center where θ′ resides. Parameterized evaporation cooling is handled as

Q−i,k = −
(
θ′ni,k − θ′c

)
τ−1
c (17.4)

within the spatially confined cooling zone.

17.3 Recapitulation

The full nonlinear model may be employed to make two distinct simulations, termed the

“control” and “alternative” runs. These may have have started with different initial condi-

tions (ICs) and/or parameter settings. The tangent linear model (TLM) is a modified version

of the fully nonlinear model that attempts to prognose and track the discrepancies between

the two nonlinear model runs. This model is obtained by taking the full model’s code and

linearizing it about a state provided by the control simulation using truncated Taylor series.

Thus, an approximation to the alternative run is obtained by combining the control and

TLM solutions. The accuracy of the approximation depends upon the importance of the

missing terms.

The adjoint model is subsequently obtained by transposing this TLM. In our work, the TLM

represents the intermediate step in adjoint model construction, and is mainly used to verify

that the adjoint is coded properly. Symbolically, wni,k, w̃
n
i,k, w

′′n
i,k and ŵni,k will represent w

variables from the alternative, control, TLM and adjoint solutions, respectively. In this case,

the variable identified is the vertical velocity at time n and spatial location i, k.

17.3.1 Implementing the parameterization in the TLM

The PM model’s discretized latent heating term (17.3) is a simple function of vertical velocity

Q+
i,k = F+

(
wni,k+1, w

n
i,k

)
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making its TLM implementation quite simple. The TLM term is

Q′′+i,k = w′′ni,k+1

∂F+

∂wni,k+1

|C + w′′ni,k
∂F+

∂wni,k
|C (17.5)

=
∆t

2

[
β̃ni,k+1w

′′n
i,k+1γ

∗
k+1 + β̃ni,kw

′′n
i,kγ

∗
k

]
, (17.6)

presuming that grid location (i, k) resides in the spatially truncated unstable zone. In the

first expression, the subscript C indicates the term is evaluated for the control run. In the

second, the value of the indicator variable β depends upon whether ascent was present in

the control run at the given point and time:

β̃ni,k =

{
1 w̃ni,k > 0;
0 otherwise.

The TLM version of (17.4) is simply

Q′′−i,k = −θ′′ni,kτ−1
c , (17.7)

presuming grid point (i,k) resides in the cooling zone2. The position of the cooling zone may

shift with time if the control run’s specified domain translation speed fails keep the gust

front stationary. At a given time, this position is forced to be the same in the control, TLM

and adjoint models.

17.3.2 Adjoint implementations of the parameterization

Now we turn to the adjoint formulation. Starting with (17.6) and (17.7) the adjoint was

constructed by hand transposition in the following manner: First, the salient parts of the

TLM prognostic equation for θ′′, using a two time level scheme and in coded form, is:

θ′′n+1
i,k = θ′′ni,k +

∆t

2

[
β̃nk+1w

′′n
i,kγ

∗
k+1 + β̃nkw

′′n
i,kγ

∗
k

]
−∆tτ−1

c θ′′ni,k (17.8)

Next, the TLM variables are replaced with their adjoint counterparts (designated here by

hats). This equation spawns the following three lines of code

ŵni,k+1 ←
∆t

2
β̃ni,k+1θ̂

n+1
i,k γ∗k+1

ŵni,k ←
∆t

2
β̃ni,kθ̂

n+1
i,k γ∗k

θ̂ni,k ← −∆tτ−1
c θ̂n+1

i,k ,

2If the leapfrog scheme is employed, the θ′ and θ′′ values used must represent the past time step, n− 1,
for stability.
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where β retains its previous meaning. Since the adjoint model is being integrated backward

in time, time level n+1 “preceeds” time level n. As in the forward model, these terms affect

the adjoint fields only in their respective, designated subdomains.

17.3.3 Verification of the TLM and adjoint

The control/TLM combination may fail to accurately reproduce the alternative run not only

owing to the TLM’s inherent approximations but also due to design and coding errors. Effort

was made to make sure the TLM was free of the latter error source. Then the verified TLM

model was used to vet the correctness of the adjoint model’s coding.

In the course of TLM model validation, the strictly adiabatic discretized model was examined

first. In this configuration, inherent TLM error arises solely due to the neglect of terms

beyond first order in the Taylor expansions. This truncation, however, affects only the

advection terms, and the missing terms themselves are no higher than second order. Indeed,

they are nothing other than easily identified TLM perturbation products.

We tested the adiabatic TLM model code by installing and temporarily reenabling these

missing terms. The output of this “augmented” model should track the discrepancies between

the control and alternative simulations to within roundoff error. This was found to be the

case, thereby validating the adiabatic TLM code itself. Naturally, the perturbation product

terms have to be excluded from the TLM since they cannot be written in matrix form, and

thus are not transposable for use in the adjoint model.

The PM model’s diabatic terms are first order but note (17.2) is not differentiable at w = 0.

Thus, there is error beyond simple roundoff wherever and whenever the control and alter-

native simulation vertical velocities have different signs (as might happen if the updraft

boundary were slightly shifted between two nonlinear simulations, for example). A formula-

tion for (17.6) that is exact (to within roundoff error) is

Q′′+i,k =
∆t

2

[
〈max(w̃ni,k+1 + w′′ni,k+1, 0)−max(w̃ni,k+1, 0)〉γ∗k+1

+ 〈max(w̃ni,k + w′′ni,k, 0)−max(w̃ni,k, 0)〉γ∗k
]

(17.9)

but this is also not transposable. However, this formulation was used temporarily as a

checking and assessment tool.

For adjoint simulations in general, a control simulation must first be made and archived.

Those data are read back in reverse order during the adjoint integration. The adjoint in-
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tegration commences with the definition of a forecast aspect J that represents something

about the control run that one wishes to investigate further. For every prognostic field

and parameter in the forward model there is a corresponding adjoint variable assessing its

influence upon J . Thus, the adjoint variable ŵ represents ∂J
∂w
|C , etc..

For adjoint validation runs, TLM forecasts are made and archived as well. These data are

used to calculate ∆J , the sum of the products of the TLM perturbation and adjoint variables

accumulated for all fields and perturbed parameters over all grid points, at each time step

during the reverse integration. When a two time level scheme is employed, the ∆J values so

calculated should be independent of time (e.g., Talagrand and Courtier 1987). In our tests

with periodic lateral boundaries, the Euler backward version of the model can preserve ∆J

to seventeen digits when double precision is used for all reals.

It was already noted that the leapfrog version generates simulations that are almost indistin-

guishable from those issuing from the Euler backward model, for both forward and reverse

modes. For the leapfrog adjoint, however, inspection of intermediate results, for times falling

between the initial and final times, requires that adjacent time values be combined to yield

“whole” fields. This is a consequence of the leapfrog’s three time-level structure.

17.4 Control model simulation

We now examine a simulation made using the FT00 low CAPE sounding graphically depicted

on Fig. 1. The sounding, which was drawn from an earlier study by Garner and Thorpe (1992,

QJRMS ), is divided into three layers distinguished by stability. The figure also illustrates

the path taken by a parcel rising undiluted from the low-level mixed layer. This parcel’s

level of free convection is at height zb, taken to be 1 km. The maximum buoyancy of this

parcel (∆m= 3K) is realized at height level zm, set at 7 km. Above this point, we presume

the parcel has run out of vapor to condense. Its equilibrium level would reside at zt = 9 km.

The CAPE for this hypothetical parcel is 400 J kg−1.

The initial horizontal wind profile (not shown) consisted of 9.75 m s−1 of wind speed change

over the lowest 3 km, with zero shear farther aloft. In the shear layer, the vertical shear vector

points eastward, so we will refer to the west and east sides of the storm as the “upshear”

and “downshear” directions, respectively.

The cooling zone was 1.5 km deep and 45 km wide, with θ′c=-4.5K and τc = 600 s. As

already noted, the model domain is translated in an attempt to keep the cooling zone and
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the cold pool it generates as stationary relative to the domain as possible. For this particular

simulation, the domain speed was 11.5 m s−1 in the eastward (downshear) direction. As this

translation rendered the model storm effectively stationary, this value also represents the

storm speed.

The model was run for 9000 s, more than enough time for the storm to develop and attain

a statistically steady structure, at least in the vicinity of the convection. Figures 3 and 4

present control model fields spanning most of this integration period. The former depicts

vertical velocity w along with perturbation potential temperature θ′. Figure 4 depicts storm-

relative horizontal velocity u and perturbation pressure p′. (Though these fields are from

the control run, note we’ve dropped the tildes from these symbols.)

It is seen that the cold pool is already well formed by 2000 s (Fig. 3a). Lifting of air at the

pool’s downshear edge (x ≈ 270 km) has provoked a small amount of parameterized heat

release by this time. By 6000 s, the storm circulation evinces a mature organization which

has become statistically steady in the vicinity of the principal storm updraft. That feature

leans upshear with height, but is compact and relatively strong (Fig. 4b). Lower tropospheric

flow is accelerated upward and rearward (upshear) over the cold pool, whereupon the flow

splits into two principal branches, the front-to-rear (FTR) flow which continues rearward,

and the forward anvil outflow which overturns and spreads upstream of the storm. Beneath

the FTR flow, the rear inflow current is established, residing largely in the lower troposphere

above the spreading cold pool.

The environment responds to the initiation of convective heating by generating compen-

sating subsidence waves which propagate as gravity waves away from the main convecting

region in both directions. We will henceforth focus on the eastward-propagating wave which

moves through the storm’s upstream environment. The leading edge of this wave is marked

by low surface pressure (Fig. 4). Between this leading edge and the storm updraft, the hori-

zontal airflow has been accelerated towards (away) from the convection in the lower (upper)

troposphere. Uninterrupted positive buoyancy spans this region, concentrated in the middle

troposphere. This is a combination of in situ subsidence-induced warming and convectively

generated warming advected by the forward anvil outflow.

The downshear-progressing wave’s propagation speed is about 10 m s−1 relative to the do-

main, making for a 21.5 m s−1 ground-relative motion. Following Nicholls et al. (1991), we

see this phase speed’s dependence upon H, the vertical dimension of the diabatic source it

is responding to, in the expression

c = ū+
NH

π
, (17.10)
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Figure 17.3: Potential temperature perturbation (shaded) and vertical velocity (contoured; interval
2 m s−1) for the control run. Only a portion of the domain is shown.
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Figure 17.4: As in Fig. 3, but for perturbation pressure (shaded) and storm-relative horizontal
velocity (contoured; interval 3 m s−1).
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where ū is the mean wind (9.75 m s−1 above the shear layer) and N is the Brunt-Väisälä

frequency (.004 in the intermediate stability layer). The expected c = 21.5 m s−1 results

when H is taken to be 9 km. This H is the depth of the layer in which diabatically generated

warming and cooling resides, in and beneath the main storm updraft (see Fig. 3).

17.5 Examination of forward anvil outflow strength with

the adjoint model

The adjoint model has been used to examine the dynamical precursors of the enhanced upper

tropospheric forward anvil outflow on the storm’s downshear side. The question asked here

is which fields and locations at earlier times had the most influence on bringing about and/or

determining the strength of the westerly forward anvil outflow at 6000 sec? This question is

addressed by a backward integration of the adjoint model, with a forecast aspect J defined

as being the u field concentrated in the subsidence wave’s leading edge. Figure 5, which

provides a close-up view of the control run at 6000 sec, shows the aspect region is embedded

within the westerly forward anvil outflow, centered at a local westerly wind maximum.

As J is a function of u alone, the adjoint started off with non-zero sensitivity only in û,

the horizontal velocity variable’s adjoint. The initial û field in the aspect region was given

a maximum value of 1 and was smoothly tapered to zero over a region having horizontal

and vertical radii of 3000 amd 800 m, respectively, as depicted in Fig. 5. Using a smoothed

initial condition helps reduce noise in the ensuing backward simulation.

In this case, a positive ∆J value would represent a further enhancement of the westerly

forward anvil outflow already present in the aspect region. Recall that ∆J represents the

product of adjoint sensitivities and control run perturbations, summed over all model fields,

parameters and grid points. If at a given time the adjoint predicts positive sensitivity for

some field at some location, this suggests that placing a positive perturbation with respect

to the control run field there and then should result in subsequent enhancement of the

forecast aspect metric. A positive enhancement can also be obtained by applying a negative

perturbation to a field and location evincing negative sensitivity. In contrast, sensitivities

and control run perturbations with opposite signs would tend to decrease the westerly flow

the forecast aspect represents.

As an example, say the adjoint predicts positive sensitivity to the temperature perturbation

θ′ at grid point i, k. Let’s further assume the control run had warming (θ′i,k > 0 there. The
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adjoint is predicting that if one augmented the warming already present (i.e., specified a

positive θ′′i,k), this would lead to a larger value of J later. If the control run had cooling at

that location instead, then decreasing the negative anomaly at that time would lead to an

subsequent increase in J .

17.5.1 Adiabatic adjoint run

Two backwards runs were made with the forward anvil J , excluding and including the

adjoint’s diabatic terms. Both were integrated for 3500 sec. Excluding the moisture pa-

rameterization terms renders the adjoint model strictly adiabatic. This simulation will be

examined first.

Figures 6 and 7 depict adjoint sensitivity fields (contoured) superimposed upon control run

fields (shaded) at 4000 sec, 2000 sec into this backward integration3. It could be anticipated

that since the forward anvil outflow and subsidence wave were thermally driven that by

and large the sensitivity should become concentrated in the temperature field and backtrack

towards the actively convecting region as time rewinds. Although the sensitivity was ini-

tialized in the û field, it was indeed very rapidly transferred into the temperature adjoint

field. Please note that the contour intervals employed for û, p̂ and ŵ in Figs. 6 and 7 are

respectively 7, 25 and 50 times smaller than the interval employed for θ̂.

As expected, the bulk of the physically relevant sensitivity has stayed with the retrograding

subsidence wave. The temperature adjoint field (Fig. 6a) concentrates positive sensitivity in

the warmed air just behind its leading edge along with negative values located immediately

above. The former says that one way to make the aspect region’s westerly anvil outflow

stronger at 6000 sec is to intensify the warm anomaly located above x ≈ 280 km at 4000

sec. The latter indicates that the subsequent outflow could also be enhanced by cooling the

neutrally buoyant air located above the warm anomaly.

These operations are sensible, both separately and jointly. Intensifying the already warm air

at the subsidence wave’s leading edge would make the horizontal buoyancy gradient across

that boundary larger, increasing the local generation of positive horizontal vorticity. As

depicted qualitatively on the figure, the circulatory tendency associated with this vorticity

generation would tend to encourage ascent in the warm anomaly itself as well as westerly

flow above and to the east of it. Cooling the air above the warm anomaly would have the

3Recall that an adjoint variable φ̂ represents ∂J
∂φ . As J is dimensioned m s−1, then temperature adjoint

θ̂ has units m s−1 K−1, for example.
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Figure 17.5: Close-up view of the control run at 6000 sec, showing location of initial adjoint û
sensitivity.
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(a) potential temperature perturbation and adjoint

(b) horizontal velocity and adjoint

t = 4000 sec
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Figure 17.6: Control (shaded) and adjoint sensitivity (contoured) fields at 4000 sec for the sub-
domain depicted in Fig. 5. (a) potential temperature field (contour interval .05 m s−1 K−1); (b)
horizontal velocity field (contour interval .0075, nondimensional). Shown in panel (a) is the circu-
latory tendency implied by the adjoint sensitivity field.
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complementary effect of encouraging subsidence within the anomaly and westerly flow below

and to the east of its center. Both of these westerly enhancements at the present time

and place would reasonably lead to subsequent enhanced westerly flow in the aspect region

farther downstream.

Furthermore, note that the largest positive sensitivity resides about 1 km above the location

of the warmest air in the control run at at 4000 sec. The adjoint model is indicating that

shifting the present warm and cold anomalies closer together vertically – displacing the

cooled (warmed) locale downward (upward) – would also serve to enhance the subsequent

westerly outflow. This should indeed result because the buoyancy-induced outflows in this

case would be concentrated into a still narrower layer, and would thus be intensified.

In the horizontal velocity field (Fig. 6b), principal center of positive sensitivity is seen to be

located in the forward anvil outflow at the 8 km level above x ≈ 280 km, where u values in

the control run are positive (westerly). The adjoint model is saying that if we increase the

westerly winds at the anvil’s leading edge at 4000 sec, this will result in stronger westerlies

at the forecast aspect region farther downstream 2000 sec later. This seems obvious.

For vertical velocity (Fig. 7a), the adjoint model is again indicating that increasing the

strength of the subsidence wave at the present time would lead to stronger westerly outflow in

the aspect region later. In the range 270 < x < 290 km, there is positive (negative) sensitivity

attached to areas presently experiencing upward (downward) motions. Comparison with Fig.

6a shows these adjoint sensitivities are in quadrature with the θ̂ field, and consistent with

eastward gravity wave phase propagation. Note some sensitivity has already reached into

the main convecting region. There are other features in the sensitivity field as well, but keep

in mind the overall magnitudes of ŵ are extremely small.

The principal signature in the p̂ field (Fig. 7b) is negative sensitivity in the middle tropo-

sphere, above the present surface low center. Perhaps lowering the pressure in the indicated

region would increase the horizontal pressure gradient force exerted on parcels located west

of it. This would accelerate the westerly flow in the forward outflow behind the subsidence

wave’s leading edge at the time depicted. Another interpretation has the adjoint model sug-

gesting that a deepening of the already present low pressure anomaly now would intensify

the anvil outflow later. As the storm’s total depth is constrained by the stable stratosphere,

this might encourage the westerly flow to be squeezed into a shallower layer and thereby

cause its intensification.

Figures 8 and 9 present the control run and adjoint sensitivity fields at 3000 sec. Again, the
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(a) vertical velocity and adjoint

(b) pressure perturbation and adjoint
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Figure 17.7: As in Fig. 6, but for: (a) vertical velocity field (contour interval .001, nondimensional
); (b) perturbation pressure field (contour interval .002 m s−1 mb−1).
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(a) potential temperature perturbation and adjoint

(b) horizontal velocity and adjoint
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Figure 17.8: As in Fig. 6, but at 3000 sec. Temperature adjoint contour interval is .025 m s−1

K−1; for the horizontal velocity adjoint it is .005 (nondimensional).
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(a) vertical velocity and adjoint

(b) pressure perturbation and adjoint
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Figure 17.9: As in Fig. 7, but at 3000 sec. Vertical velocity adjoint contour interval is .002
(nondimensional); for the perturbation pressure adjoint it is .001 m s−1 mb−1)
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largest sensitivities of all are in the temperature field (Fig. 8a), and are especially concen-

trated in the warming near the subsidence wave’s present location. Also notable is the sig-

nificant negative temperature sensitivity located farther aloft. The cooling that was present

there in the control run resulted from parcels in the storm’s main updraft (compare with

Fig. 9a) overshooting their level of neutral buoyancy. Note that the forward anvil outflow

issues from, and is strongest within, the area between these sensitivity centers (Fig. 8b).

The adjoint model is again saying that anything that would serve to make these marked

temperature anomalies stronger and closer together now would result in enhanced westerly

flow in the aspect region later.

In addition to the expected positive û sensitivity in the forward anvil, an area of substantial

negative sensitivity has appeared in the lower troposphere (Fig. 8b), straddling the gust front

located at x ≈ 265 km. Across this zone, the storm-relative control run flow switches from

weak westerly behind the gust front to easterly ahead of it. The adjoint model is predicting

that the subsequent forward anvil outflow would be intensified if that easterly flow were

further enhanced (i.e., u′′ < 0). Weakening the westerlies behind the front are expected to

help, for reasons that are less immediately clear.

The ŵ sensitivity in the main storm updraft (Fig. 9a) seems to be trying to shorten but also

expand that feature laterally eastward. Either might help shift the cooling resulting from

overshooting towards the east. The negative sensitivity above x = 270 km may be attempt-

ing to stretch the subsidence wave’s downdraft westward. Taken together, these alterations

would sharpen the horizontal w gradients across the main storm updraft. The larger hori-

zontal vorticity this would represent would also be consistent with stronger westerly flow in

the anvil region.

The pressure adjoint field (Fig. 9b) suggests a similar interpretation now as at 4000 sec. One

cautionary note needs to be sounded, however. Significant sensitivity has now reached the

convecting region, rendering the adiabatic restriction questionable. The diabatic adjoint run

is examined next.

17.5.2 Diabatic adjoint run

Figures 10 and 11 present the sensitivity fields obtained at 3000 sec when the adjoint’s

diabatic terms were enabled. Inclusion of the cooling zone term in the backwards model had

but a very small effect on the results. The parameterized warming term, active within the

region indicated on Fig. 10a, exerted a much larger impact.
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Outside of the unstable region, the results for potential temperature adjoint (Fig. 10a) qual-

itatively resemble those from the adiabatic simulation. Enhancing the already present warm

and cold anomalies located above the unstable region would again subsequently drive stronger

westerly anvil outflow. The diabatic model, however, puts the largest sensitivity on the east

side of the main storm updraft, just inside the unstable region. This warming is colocated

with positive ŵ sensitivity (Fig. 11a), suggesting that enhancing the updraft here (resulting

in diabatic heating) in the forward model would help increase J . This appears tantamount

to increasing the width of the main storm updraft.

Taken together, the û and ŵ adjoints suggest inducing a clockwise circulation anchored

around z = 6 km above x = 271 km. This circulation would indeed encourage westerly

flow into the forward anvil. As noted above, the adjoint’s diabatic heating term drives the

ascending branch of the circulation. Beyond the unstable region’s east edge, the ŵ and θ̂

sensitivities are in quadrature, likely suggesting eastward gravity wave propagation. The

point of largest negative pressure sensitivity resides near the center of this circulation.

Overall, the importance of the diabatic terms in the adjoint becomes clear. Since the west-

erly outflow is associated with the subsidence wave, anything that acts to strengthen the

latter encourages the former. As the wave itself was triggered by the convection, wave in-

tensification proceeds from convective enhancement. This means more storm updraft and

more diabatic heating within it. The adjoint model’s suggestion of a wider storm updraft

perhaps stands in part for an increase in the vertical mass flux. As more mass is transported

upward, more may be directed into the forward anvil, leading to a strengthening of the upper

tropospheric westerlies so long as the thickness of the outflow layer is not increased. Recall

the sensitivities above and beyond the unstable region appear to be encouraging a narrowing

of that layer.

17.6 Examination of the lower tropospheric storm in-

flow with the adjoint model

17.6.1 Background

FT00’s study was primarily concerned with assessing the realism of the PM model, as re-

vealed through comparisons with traditional, or full physics, cloud model simulations. They

judged the PM model storms’ tendency to substantially and permanently enhance the up-

stream lower tropospheric inflow as unrealistic. This alteration, which commenced during

265



(a) potential temperature perturbation and adjoint

(b) horizontal velocity and adjoint
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Figure 17.10: As in Fig. 8, but for the diabatic adjoint run. Temperature adjoint contour interval
is .03 m s−1 K−1; for the horizontal velocity adjoint it is .005 (nondimensional).
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(a) vertical velocity and adjoint

(b) pressure perturbation and adjoint
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Figure 17.11: As in Fig. 9, but for the diabatic adjoint run. Vertical velocity adjoint contour
interval is .003 (nondimensional); for the perturbation pressure adjoint it is .0015 m s−1 mb−1)
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the storms’ organizational period and appeared in PM simulations made with both low and

moderate CAPE soundings, seemed excessive when comparison was made to model storms

created using full physics cloud models.

Figure 12, adapted from FT00, shows mature phase profiles of ground-relative horizontal

wind taken 20 km ahead of the surface gust front position for three simulations which shared

the same initial wind profile (shown in solid black). The benchmark run (grey dashed

line) was created with the ARPS4 full physics cloud model and Fovell and Ogura’s (1988,

JAS ; hereafter “FO”) moderate CAPE sounding. The other two simulations employed PM

models initialized with a modified sounding (“FO-MOD”) based on the FO environment.

The potential buoyancy a lower tropospheric parcel would experience upon undiluted ascent

was discounted in this sounding to reflect the PM model’s formal lack of water loading and

dry air entrainment. The PM simulations gauge the effect of a model add-on FT00 termed

a “convective sponge”, described below. The “basic model” run did not include this extra

term.

In all three simulations, the model storms have generated forward anvil outflows in the upper

troposphere. Mass continuity dictates some compensating inflow must exist at another level;

in the full physics simulation, it is confined to a relatively shallow midtropospheric layer,

centered at about 5 km. Left largely untouched relative to the initial state was the storm’s

primary inflow source, which is drawn from the lowest 3 km.

In the basic PM model simulation, however, storm-relative inflow was enhanced at all levels

beneath the forward anvil, with the maximum increase located very close to the ground.

This is a significant difference. The full physics model storm’s augmented inflow comes in

the form of dry, middle tropospheric air which might be expected to weaken the convective

intensity. In the PM model storm, in contrast, the maximum mass flux enhancement occurs

where the air’s potential buoyancy is largest.

Further, the magnitude of the enhanced inflow appeared large, and (again owing to mass

continuity) this was likely due to the very intense forward anvil outflow the PM model

storm supported. FT00 suspected that the apparently excessive forcing driving the PM

storm’s anvil outflow reflected a fundamental deficiency in the parameterization. The trailing

region of a storm is typically warm in the middle to upper troposphere, resulting in the

establishment of general high pressure poised above the warmed layer. FT00 judged this

warming was excessively large in the typical PM model simulation, making for a rather

pronounced cross-storm horizontal pressure gradient. This drove the intense westerly winds

4The University of Oklahoma’s Advanced Regional Prediction System.
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Figure 17.12: Instantaneous mature phase vertical profiles of ground-relative horizontal wind,
taken at a location 20 km upstream of the surface gust front position. Also shown is the initial,
undisturbed wind profile. Profiles were taken from simulations from the full physics ARPS model
and also from PM model runs made without and with a “convective sponge” term. The FO-MOD
sounding was derived from Fovell and Ogura’s (1988; “FO”) initial environment, used in the ARPS
run. After Fovell and Tan (2000).

which comprised the storm’s forward anvil outflow. . . and indirectly brought about the rather

dramatically enhanced relative inflow below.

They then reasoned that the trailing region could become too warm because PM model

storm’s constituent convective cells never became starved of moisture as they propagated

through this portion of the storm. In full physics models, the cell updrafts soon cease

generating significant latent heating as they translate rearward. In the PM framework,

however, such heating continues as long as the updraft persists, and of course this heating

serves to maintain the updraft. In this manner, the warming can become uncharacteristically

large.

To address this, FT00 fashioned a “convective sponge”, an addition to the model θ′ equation

which relaxed positive temperature perturbations in the unstable region back to zero over

a relatively long time scale. This kludge was an attempt to suppress the trailing region

warming without unduly impacting the parameterized heat release in the main storm updraft.

As suggested by Fig. 12, the sponge did work to reduce the strength of the forward anvil

outflow, and so the compensating lower tropospheric inflow was correspondingly weaker in

the convectively sponged simulation.
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17.6.2 Further analysis

Subsequent intercomparison between PM and full physics model outputs suggested that the

discrepancies resided in the vertical structure, rather than simply in the magnitude, of the

compensating inflow. The salient difference is the location at which the enhanced inflow

occurs. Again, in the PM model, the maximum easterly induced flow resides near the model

surface and thus served to promote the inflow of parcels with large potential buoyancy. The

traditional cloud model (apparently invariably) places the inflow enhancement in the dry

middle troposphere. The convective sponge kludge didn’t really work because it still didn’t

concentrate the easterly flow into the “correct” layer.

Our understanding of the model inconsistencies was aided by inspection of ground-relative

perturbation horizontal velocity (u′grel) fields in place of the storm-relative plots typically

presented. The u′grel field is obtained by removing both the initial sheared wind profile and

the domain translation speed from the full horizontal velocity field the model prognoses.

The storm-relative flow fields, in retaining the background shear, tends to obscure where

and why the inflow enhancement is occurring.

On Figure 13, the u′grel is superimposed upon the potential temperature perturbation field

for times in the control run ranging out to 9000 sec. Focusing on the storm’s upstream

side, it is seen that as the subsidence wave spreads away from the convection, its wake is

marked by westerly outflow (easterly inflow) in the upper (lower) troposphere. For most of

the extent between this wave and the convection, the maximum easterly inflow perturbation

is located close to the ground.

Now we examine Fig. 14, which presents rather typical results from a full physics multi-

cellular model storm. Enhanced inflow is indeed present throughout the lower and middle

troposphere on the full physics storm’s upstream side. Far from the storm, the maximum

inflow even resides near the surface as in the PM model simulation. Closer to the storm’s

leading edge, however, the enhancement has shifted to the middle troposphere, leaving the

ground-relative perturbations near the ground to be very small. A vertical profile taken

through this zone would look qualitatively similar to the full physics result presented in Fig.

12.

What does it take to shift the enhanced inflow layer into the middle troposphere, at least in

the vicinity of the convection? To address this question, two diabatic adjoint model simula-

tions were started at 9000 sec, both employing forecast aspects consisting of the horizontal

velocity field within a spatially confined zone residing in the enhanced upstream inflow. In
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potential temperature perturbation (shaded) and 
ground-relative horizontal velocity perturbation (contoured)

t = 3000 sec

t = 6000 sec
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Figure 17.13: Potential temperature perturbation (shaded) and ground-relative horizontal velocity
perturbation (contoured; interval 3 m s−1) for the control run. For the latter, both the initial
sheared wind profile and the domain translation speed have been removed from the full u field.
The locations of the forecast aspects employed are also indicated (see text).
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Figure 17.14: Potential temperature perturbation (shaded) and ground-relative horizontal velocity
perturbation (contoured; interval 1 m s−1 between -7 and 2 m s−1) for a typical multicellular case
simulated by a full physics model (the ARPS model).

the first simulation, the aspect is placed in the lower troposphere; the second shifts the as-

pect to the middle troposphere. The initial aspect locations are shown in Fig. 13c. These

starting positions were suggested by Fig. 14.

For the lower tropospheric aspect, the question being asked here is what would it take

to decrease the strength of the easterly winds present at this level at this time? This is

tantamount to inquiring after the mechanism that would permit the layer of easterly winds

– which are needed owing to mass continuity anyway – to shift upward away from the

lower troposphere. Decreasing the easterly flow there corresponds to the encouragement

of a westerly perturbation. Recall that a positive ∆J would indicate an enhancement of

the westerly wind, so we are looking for combinations of TLM perturbations and adjoint

sensitivities that would result in positive products.

It was again found that the sensitivity very quickly shifted into the temperature field which

subsequently dominated the sensitivity results for both simulations. Figure 15a shows the

temperature adjoint field at 5500 sec resulting from the lower tropospheric aspect. Negative

temperature sensitivity is seen concentrated in the middle troposphere, just upstream of the

storm’s leading edge. Thus, the adjoint model is saying that actively cooling the control

run storm at this location and time would subsequently result in weaker enhanced inflow

in the upstream lower troposphere, since the combination of a negative thermal alteration
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Figure 17.15: Potential temperature perturbation field from the control run (shaded) at 5500
sec and the adjoint sensitivity (contoured) fields resulting from the (a) lower tropospheric and (b)
middle tropospheric forecast aspects identified in Fig. 13c. In (a), the contour interval is .2 m s−1

K−1; in (b), it is .15 m s−1 K−1.
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(cooling) with negative sensitivity yields a positive ∆J . The shaded field reveals there is some

warming present within the sensitive region. Weakening this warming, or even instituting

local cooling here, would bring about the desired effect.

For the middle tropospheric aspect, we are interested in increasing the easterly flow since

that is consistent with elevating the enhanced inflow layer. Thus, we now look for TLM

perturbations and adjoint sensitivities that result in negative contributions to ∆J . The

temperature sensitivity field at 5500 sec for this aspect is depicted in Fig. 15b. This aspect

puts positive sensitivity in the same place where negative sensitivity resided for the lower

tropospheric aspect. The two simulations are actually telling the same story: instituting

cooling in this area at this time would encourage easterly midtropospheric flow even as it

discourages such flow in the lower troposphere. In other words, the enhanced inflow layer

would be elevated from near the surface, where it resides in the control run, to the middle

troposphere, where the full physics model says it belongs.

Reinspection of Fig. 14 reveals there is indeed local cooling present at the leading edge

of the full physics model storm, something that is absent from its PM counterpart (Fig.

13). Analysis revealed that this cooling resulted from the lifting of stable air in the vicinity

of the main storm updraft. This air of middle tropospheric origin was compelled to rise

upon encountering the storm updraft. Although the two-dimensionality of these simulations

undoubtedly exaggerates this effect somewhat, the same phenomenon has been found to be

quite pronounced in three-dimensional model storms as well (not shown). Further analysis

indicated that the upstream modification could be interpreted, at least in part, as a gravity

wave response to heating – and cooling – occurring in and around the main storm updraft

(see, for example, Nicholls et al. 1991, in JAS ).

The PM model is quite capable of handling the gravity wave response; what is missing is the

cooling. Thus, the flaw in the PM framework is that all ascending air in the unstable region

is presumed to be saturated thereby always yielding condensational warming. In actuality,

the gently rising air at the periphery of convective updrafts may represent stable air that is

and remains subsaturated on ascent, as demonstrated in Fig. 16. The left panel shows the

updraft emanating from the gust front located at x = 289 km is capped by chilled air. The

right panel contrasts this θ′ field with the equivalent potential temperature (θe) distribution.

θe is a nearly conserved quantity (apart from mixing), and thus provides an indicator of

the air’s level of origin. Most of the chilled air possesses small values of θe, indicating a

midtropospheric source.

Although the cooling resulting from this stable midtropospheric air’s displacement is small
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Figure 17.16: Close up view of storm’s leading edge in a full physics ARPS model simulation. (a)
potential temperature perturbation (shaded/contoured) and vertical velocity (contoured, interval
2 m s−1). (b) equivalent potential temperature (shaded) and potential temperature perturbation
(contoured, interval 1 K).

in magnitude and localized, it turns out to have a rather dramatic effect on the storm inflow

structure. A simple, if crude, “fix” to capture this cooling might be to presume that only

updrafts stronger than some small value w0 > 0 should result in warming. That is, we

replace (17.2) with

Q+ = γ∗max(w,w0). (17.11)

In this way, the weak ascent (0 < w < w0) on the updraft periphery will be strictly dry

adiabatic. Figure 17 demonstrates the impact of this alteration on simulations made using

FT00’s anelastic PM model and the moderate CAPE FO-MOD sounding. The upper panel

shows θ′ and u′grel for an “unfixed” control run; the fields bear substantial resemblance to

those of the low CAPE control run we have been analyzing. For the lower panel, the w0

threshold was 1.5 m s−1. Note the elevated zone of weak cooling which has appeared just

upstream of the gust front and the impact this has had on the location of the enhanced

inflow. The result, while still imperfect, is very much improved. It is noted that low CAPE

environment was not amenable to this fix; even very small positive values of w0 caused those

storms to perish.

It is telling that neither adjoint simulation placed sensitivity in the model storm’s trailing

region, at least by the time depicted in Fig. 15. To see whether any sensitivity would appear

there for an earlier time, the adjoint integrations were extended back to 3500 sec. Owing

275



20 40 60 80
x (km)

5 -

10 -

0 -

5 -

10 -

0 -

z (km)

(a) original PM model

(b) modified PM model

<< 0 2 6 8 >>θ' (K)

potential temperature perturbation (shaded/contoured) and
ground-relative horizontal velocity perturbation (contoured)

Figure 17.17: Potential temperature and ground-relative horizontal velocity perturbation fields
from two PM model simulations, without and with local cooling in the vicinity of the storm leading
edge. For u′grel, the contour interval is 1 m s−1 but only contours between -7 and 2 m s−1 are
drawn. These simulations were made using FT00’s anelastic PM with the FO-MOD sounding.
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to their inherent approximations and limitations, adjoint simulations probably should not

be carried on too long. Thus, we started these sensitivity runs at 6000 sec, using the initial

forecast aspects depicted on Fig. 13b. We are essentially posing the same questions as before.

The temperature sensitivities resulting from these two aspects for 3500 sec are shown in

Fig. 18. In the vicinity of the storm’s leading edge, the fields are rather comparable to

those shown in Fig. 15. There is little sensitivity westward of the leading edge, and nothing

of the type or at the location we were initially expecting to uncover5. In this application,

the adjoint model proved to be a useful tool in disproving one hypothesis, suggesting and

proving another, and leading to an improvement of both the PPM model framework and our

understanding of convective storms.

5The sensitivity farther upstream is from transients associated with the abrupt model startup and appear
to be dynamically unimportant.
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Figure 17.18: As in Fig. 15, but for 3500 sec. These adjoint runs were started at 6000 sec, using
the (a) lower and (b) middle tropospheric forecast aspects depicted on Fig. 13b. In (a), the contour
interval is .15 m s−1 K−1; in (b), it is .1 m s−1 K−1.
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Appendix A

Justification of (5.8) and (5.9)

For the leapfrog scheme, the change function had two roots:

λ+ =
√

1− a2 − ia

λ− = −
√

1− a2 − ia.

For the negative (−) root, the polar form is

λ− = −|λ|eiθ− ,

with θ− defined as in (5.7) using the − root components of λ:

θ− = arctan
a√

1− a2
= arcsin(a).

For the leapfrog scheme, |λ| = 1. Thus, we obtain:

λ− = −eiθ−

= − cos θ− − i sin θ−

= − cos[arcsin(a)]− i sin(arcsin(a))

= −
√

1− a2 − ia,

yielding the required expression. The latter expression was obtained because

cos[arcsin(x)] =
√

1− x2

holds. Since eiπ = −1, we can also write:

λ− = ei(θ−+π).
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For the positive root, the polar form must be

λ+ = |λ|eiθ+

with

θ+ = arctan
−a√
1− a2

= arcsin(−a)

= − arcsin(a).

Note that θ− = −θ+, and again |λ| = 1. Therefore,

λ+ = eiθ+

= cos θ+ + i sin θ+

= cos[− arcsin(a)]− i sin(arcsin(a))

=
√

1− a2 − ia,

which is what we wanted. The latter expression employed

cos[− arcsin(x)] = cos[arcsin(x)] =
√

1− x2.

Since θ− = −θ+, we can write both expressions in terms of θ−, and drop the subscript on θ.

This is how the equations were presented in (5.8) and (5.9).
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Appendix B

Formulation of the TLM with
Gateaux differentiation

B.1 Explanation

The more mathematically involved approach utilizes Gateaux (G-) differentiation, a general

method of which Taylor series expansion is a special case. In this approach, we first rewrite

the model equation (16.1) as

N(u, α) =
∂u

∂t
− Fu(u, α) = 0. (B.1)

At this point, all we’ve done is to define a function N which is zero because of the property

of the model equation. For the control run, the function is N(uC(x, z, t), αC), while for the

TLM version of the alternative simulation it is N(uC(x, z, t) + u′′(x, z, t), αC + α′′). The

Gateaux expansion of the latter about the former yields

N(uC + u′′, αC + α′′)−N(uC , αC) = V N + h.o.t., (B.2)

where again the higher order terms will be neglected. The expression V N on the RHS is

specified by:

V N =
d

dε
N(uC + εu′′, αC + εα′′)|ε=0 = 0, (B.3)

where ε is a small number. In this particular application, V N=0 because both N(uC , αC)

and N(uC + u′′, αC + α′′) are zero separately by definition in (B.1).

The above came from the problem of finding the extremum of a functional, which in this

case is N(uC+εu′′, αC+εα′′), via the Euler-Lagrange approach1. To proceed, we first replace

1Chan Man Fong et al., Advanced Mathematics for Applied and Pure Sciences, 1997, p. 748.
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N(uC + εu′′, αC + εα′′) with the model equation on the RHS of (B.1), yielding

V N =
d

dε

[
∂(uC + εu′′)

∂t
− Fu(uC + εu′′, αC + εα′′)

]
|ε=0 = 0.

Now the bracketed term is differentiated with respect to ε. In the Fu term, the simplfying

substitutions u1 = uC + εu′′ and α1 = αC + εα′′ are used in the sequence below:

V N =

[
d

dε

∂(uC + εu′′)

∂t
− d

dε
Fu(u1, α1)

]
|ε=0

=

[
∂u′′

∂t
− ∂Fu
∂u1

∂u1

∂ε
− ∂Fu
∂α1

∂α1

∂ε

]
|ε=0

=

[
∂u′′

∂t
− u′′∂Fu

∂u1

− α′′∂Fu
∂α1

]
|ε=0.

Finally, the expression is evaluated at ε = 0, at which point u1 becomes uC and α1 becomes

αC , yielding:

V N =
∂u′′

∂t
− u′′∂Fu

∂u
|C − α′′

∂Fu
∂α
|C = 0.

Recognizing that V N = 0 in this case, we can rearrange the expression and see it is the

same TLM that was (naively?) constructed via truncated Taylor expansions:

∂u′′

∂t
= u′′

∂Fu
∂u
|C + α′′

∂Fu
∂α
|C (B.4)

B.2 A simple example

As an demonstration, the foregoing is applied to the differential equation embodied in (16.9).

This starts off with:

N(u, α) =
∂u

∂t
+ αu = 0,

where here Fu(u, α) = −αu. Note that ∂Fu

∂u
= −α and ∂Fu

∂α
= −u. For the control run,

u = uC and α = αC , so the partial derivatives evaluated for the control run are

∂Fu
∂u
|C = −αC ,

∂Fu
∂αC
|C = −uC .

Now we define

N(uC + εu′′, αC + εα′′) =
∂(uC + εu′′)

∂t
+ (αC + εα′′)(uC + εu′′) = 0.

The G-differential V N in this case is

V N =
d

dε
[N(uC + εu′′, αC + εα′′)] |ε=0 = 0.
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Substitution of our example model equation into the above and differentiation with respect

to ε yields:

V N =
d

dε

[
∂(uC + εu′′)

∂t
+ (αC + εα′′)(uC + εu′′)

]
|ε=0 = 0,

then

V N =

[
∂u′′

∂t
+

d

dε

[
αCuC + εαCu

′′ + εα′′uC + ε2u′′α′′
]]
|ε=0 = 0,

and finally, after dropping perturbation products (the approximation sign is implied), we

end up with

V N =

[
∂u′′

∂t
+ αCu

′′ + α′′uC + 2εu′′α′′
]
|ε=0 = 0.

The last term in the bracketed expression disappears when the expression is evaluated at

ε = 0. After this is done, we see we have

∂u′′

∂t
+ αCu

′′ + α′′uC = 0.

Note that from the foregoing, αCu
′′ = −u′′ ∂Fu

∂u
|C and α′′uC = −α′′ ∂Fu

∂α
|C , so what we actually

have is (after rearrangement):

∂u′′

∂t
= u′′

∂Fu
∂u
|C + α′′

∂Fu
∂α
|C ,

the same TLM that Taylor series would have produced.
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