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ABSTRACT

A steadily maintained line heat or mass source turned on in an unbounded, steadily moving, uniformly
stratified flow will in general create ever-increasing vertical displacements of the fluid. Lin and Smith viewed a
maintained heat source as a train of heat pulses. A pulse occurring a time T before the observation time creates
a negative displacement proportional to 7! at the heat source position when T is large. They pointed out that
superposing the pulse responses leads to a displacement that grows logarithmically with time.

This paper uses group velocity arguments to recreate the gravity wave field a time 7 after a heat pulse. The
T~ decay of the displacement is'shown 1o be a geometrical consequence of dispersion in two dimensions. The
growing response to a maintained source can be understood as the result of energy being pumped into the
gravity wave modes, whose group velocity is near zero, faster than it can spread in physical space due to
dispersion. A steady response is shown to be possible only if the heat source distribution has no projection onto
the modes of zero group velocity. If the fluid is bounded both above and below, the vertical wavenumbers of
gravity wave modes are quantized. Unless the layer depth is resonantly tuned, there are no normal modes of
zero group velocity and a steady response develops. .

The same arguments allow the work of Smith and Lin to be generalized to more complicated situations, e.g.,
when there is either ambient rotation or localization of the heat source in all three dimensions, and show that
a steady state will develop in response to a maintained heat source in these cases because the response to a pulse
heat source decays faster than 7', Analogous results hold for a mass source or flow over a ramp. Only very
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large vertical displacements or wave breaking are likely to alter these conclusions.

1. Introduction

A number of meteorological phenomena can be
modeled as the response of a stably stratified atmo-
sphere moving with respect to a heat or mass source.
Examples involving heat sources include orographically
forced precipitating clouds (Fraser, et al., 1973; Bar-
cilon et al., 1980; Smith and Lin, 1982), flow over
heated islands (Garstang et al., 1975) and urban heat
islands, and the modification by squall lines and me-
soscale convective systems of their environment (Ray-
mond, 1986). The response to a vertically specified heat

source is also basic to theories of wave-CISK (Ray-.

mond, 1983). Flow up onto a plateau or over the nose
of a steady density current can be idealized by replacing
the windward slope of the obstacle by an equivalent
mass source.

One can idealize several of these situations as local-
ized fixed line heat sources placed in an unbounded
steadily moving, stably stratified fluid. We use the fol-
lowing terminology: A “line” heat (or mass) source is
one which is uniform in the horizontal direction y,
that 1s, transverse to the direction x of the mean flow.
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It is “fixed” if it does not move with the fluid, but
always heats in the same place with respect to some
other reference frame, which we will call the “fixed”
frame. The frame moving with the mean fluid velocity
is called the “advected” frame. For orographically in-
duced heating, the “fixed” frame does not move with
respect to the earth’s sutface. However, for a density
current moving into a stagnant air mass, the “fixed”
frame would move with the nose of the density current,
and the advected frame would be stationary with re-
spect to the earth’s surface. The heat source can be
either “localized”, if all of the heating takes place at
one point in x and z or “distributed” otherwise. We
will consider heat “pulses” in which all the heating
occurs at one time and “maintained” heat sources,
which are turned on at some time ¢ = 0 and are steady
thereafter.

Theoretical arguments (Smith and Lin, 1982; Lin
and Smith, 1986, hereafter referred to as LS) show that
a maintained line heat source in a moving unbounded
Boussinesq fluid forces vertical displacements which
do not become steady, but increase logarithmically with
time. Lin and Smith found that the energy for the dis-
turbance is produced by a downward displacement of
fluid as it passes through the region of heating. This
reinforces the disturbance by heating fluid that is al-
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ready warm. A similar unbounded transient response
occurs as a stratified fluid flows over a ramp (Klemp,
personal communication). There is a direct analogy
between two-dimensional stratified flow and two-di-
mensional unstratified rotating flow (see, for instance,
Yih, 1965, chap. 6). Applied to Lin and Smith’s result,
this analogy implies that in a rotating fluid moving
uniformly in a direction perpendicular to the rotation
axis, a fixed linear mass source aligned perpendicular
to both the rotation axis and the current direction will
also produce a growing response due to the buildup of
energy in inertial waves.

This response is rather surprising. If a heat source is
placed in a stratified fluid with buoyancy frequency N
flowing at a speed U between rigid plates a height H
apart, then the transient response remains finite unless
NH/U is an integer multiple of 7, when a resonance
occurs. One might expect that the vertical radiation of
energy by gravity waves forced by the heat source would
if anything diminish the response.

In this article, we will use group velocity arguments
based on the dispersion relation for gravity waves to
understand the response to pulse and maintained heat
and mass sources in a moving stratified Boussinesq
fluid. In section 2a and 2b, we recapitulate the argu-
ments of LS, deriving from their results a formula for
the displacement due to a localized line heat pulse and
showing how a maintained heat source can be regarded
as a succession of small heat pulses whose effects are
superposed. In section 2¢, we show how the response
to a heat pulse can be completely understood using
group velocity arguments based on the dispersion re-
lation for gravity waves. We will show that it is the
continuous forcing of wavenumbers near ko = (0,
+N/U) by a maintained line heat source which is cru-
cial to the ever-growing transient response in an un-
bounded domain or a domain only bounded below.
These wavenumbers have very small group velocities
and cannot rapidly disperse away the energy that is fed
into them. The technique allows SL’s line of argument
to be generalized to check whether any localized source
of energy in a medium permitting dispersive waves will
lead to a steady state response. The flavor of the ar-
guments is similar to those of Bretherton (1967), who
showed how the linear response to a cylinder that sud-
denly starts moving transverse to the rotation axis of
a rotating fluid can be thought of as a superposition of
inertial waves that gradually act to produce a Taylor
column along the rotation axis.

In section 3, we discuss the effects of distributing the
source over a large area in x and z. We argue that the
heating distribution will produce a steady response only
if it has no projection on the wavenumbers =k, asso-
ciated with waves of zero group velocity. We discuss
the effect of boundaries and of vertically varying N and
U. The primary effect of having two boundaries is to
discretize the allowed vertical wavenumbers. Unless
NH/U = nr, there are no waves of zero horizontal
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group velocity in which energy can pile up, and a
maintained line source will force a steady response.
Section 4 extends the arguments to a mass source.
In section 5, we use the method of section 2 to show
that a maintained heat source of finite extent in the
transverse direction does allow a steady state to set up.
This problem, unlike the line heat source problem, does
not appear to have closed form solutions for particular
heating profiles, s¢ that the group velocity arguments
provide a source of information nat duplicated by other
means. Similarly, a line heat source in a moving fluid
on a rotating earth is also shown to lead to a steady
state and the amplitude of the vertical displacement is
estimated. The infinite response appears to be rather
special to two-dimensional flow in a nonrotating at-
mosphere. Section 6 presents the conclusions.

2. The hydrostatic response to a localized pulse of heat

a. Basic equations

We will follow the tradition of most theoretical stud-
ies of gravity waves use the Boussinesq approximation
(Spiegel and Veronis, 1961), and assume that the fluid
density can be regarded as a constant py except that it
leads to a vertical acceleration, the buoyancy B = —gp'/
po, where p' is the density perturbation from some cho-
sen reference state depending only on z. Most atmo-
spheric motions are more accurately described by the
anelastic equations (Ogura and Phillips, 1962). In
hindsight, we will see that our results carry over directly
to a compressible atmosphere with mean density p(z)
because the inverse density scale height (~107* m™)
is usually small compared to the vertical wavenumber
NU(~103m ' forN=10%s"'and U= 10ms™')
of the waves which are most important in determining
the response to a maintained heat source, so that these
waves have almost the same dispersion relation as for
a Boussinesq fluid with the same buoyancy frequency.
One need only multiply all perturbation velocities and
displacements by [p(z)/po] "% In the same spirit, we
will make the hydrostatic approximation because it
somewhat simplifies the gravity wave dispersion rela-
tion. We will again see that all of our results apply just
as well even if the hydrostatic approximation were not
made, because the waves which dominate the response
to a maintained heat source have small horizontal
wavenumbers k € N/U and are very well described by
the hydrostatic approximation.

Consider a fluid with constant buoyancy frequency
N moving at a constant speed U in the x direction. We
phrase the heating in terms of a buoyancy source be-
cause the buoyancy is the dynamically relevant quan-
tity. The Boussinesq hydrostatic momentum, conti-
nuity and buoyancy equations for the perturbation ve-
locities %, w, the perturbation pressure p, and the
perturbation buoyancy B about this state due to a
buoyancy source q(x, z, ?) are:
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U + Uix = —py/po, (1a)
0 = B - p./po, (1b)

U, +w, =0, (lc)
B+ UB,+ N*w=gq. (1d)

b. The response to localized and distributed line buoy-
ancy pulses and maintained sources

Consider the response to a localized buoyancy pulse
q(x, z, 1) = god(x)3(2)d(2); (2)

6 is the Dirac delta function. An extension of this prob-
lem was considered by SL, who considered a pulse
source of heating at the single height z = 0, but dis-
tributed in the horizontal with a half-width 5. Math-
ematically, they chose g(x, z, £) = (C,To/gXQob"/[x*
+ bz])ﬁ(z)a(t), where C,, is the isobaric heat capacity of
air, Ty is a reference temperature and () is a heating
rate. The factor C,To/g, which does not appear in their
definition of the heating rate, rescales a heating rate
into a rate of buoyancy production. The total amount
of buoyancy added by the heating integrated over all
x and z, the “strength” of the pulse, is qo = (CpTo/
2w Qob. Interpreted as a distribution, b/(x2 + bz) -
wé(x) as b — 0. Hence one may obtain the vertical
displacement 7,,(x, z, f) in response to a localized
buoyancy pulse by replacing (C,T,/2)7Qob by go and
taking the limit of their Eq. (7) as b~ 0 and @y = «©
such that g, remains fixed:

M, 2, 1) = —~(got/2wNX?) cos(Nzt/X),  (3)

where X = x — Ut is the horizontal coordinate in the
advected frame. Viewed in the advected frame, (3) is
just the response to a heat pulse in an initially stationary
fluid. We will stick to the fixed frame because of our
focus on fixed heat sources. A snapshot of the displace-
ment field at a particular time is shown in Fig. 1. In
section 2c we will show how this figure can be fully
reconstructed from the gravity wave dispersion relation.
At the heating level z = 0, 1,,(x, 0, {) = —gpt/2xNX>2.
Note that (3) breaks down at X = z = 0. To compen-
sate the downward displacement at other x’s, there
must be concentrated rising motion occurring at x = Ur
(X = 0) in the heated fluid as it is advected along by
the mean flow. In anticipation of superposing the pulse
response from various times to obtain the response to
a fixed maintained buoyancy source, it is particularly
important to find the displacement at the source po-
sition S (x = z = Q):

Mps(®) = my0, 0, 1) = —go/2xNU?t. )

Consider a distributed heat pulse g,(x, 2)3(?) of the
same strength g, but finite characteristic width A x and
height Az. The strength is the integral of g (x, z) over
all space. One can regard this source as a spatial integral
of localized pulses. The response at S is almost the
same as for a single localized pulse when the responses
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FIG. 1. The displacement field at time 7 afier a localized impulsive
buoyancy source in a stratified fluid. The dashed lines are the nodal
lines z = (n + Y2)wX/Nt on which there is no vertical displacement.
The solid lines are dye lines that were initially horizontal and have
been displaced in response to the source.

to all of these sources are almost in phase at S, and as
long as S is outside the advected region of heated fluid
so that the positive spike in displacement in the heated
fluid need not be considered. The localized pulse re-
sponse at S has a vertical half-wavelength of #U/N,
and varies in the horizontal as X 2. Hence the distrib-
uted pulse response at .S will be well approximated by
(4) as long as

Ax < \X| = Ut (5a)
Az < wU/N, (5b)
i.e., if the Froude number F = U/(NAz) » = ' and ¢

> Ax/U.

. These arguments can be substantiated by comparing
them with LS’s analytical calculations of the vertical
displacement 70,4,(t) (‘dp’ for distributed pulse) at S for
a heating distribution gu(x, z) = go{b/m(x? + b?)} {H(d

— |zI)/2d}. Here H(%), the Heaviside step function, is

.1 when £ = 0 and O otherwise. This source is evenly

distributed over a height range —d < z < d and is at
least half its peak strength over the range —b < x < b.
Figure 2 shows nos(?) as a function of time when U/Nd
= 1. Taking Ax = 2b, one sees that for ¢t = 2Ax/U
= 4b/U, the response shows the ™! decay predicted by
(4) that is characteristic of the response to a localized
pulse.

Now consider a distributed heat source gu.(x, z, t)
= gq(x, z)H(?) of finite size that is turned onat 7 = 0
and maintained. It may be regarded as a succession-of
very short heat pulses g;(x, z)A7 occurring at times 0,
A7, 2A7, . ... The vertical displacement at S at time ¢
due to the pulse that occurred at time 7 is 94,s(7),
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F1G. 2. The vertical displacement at S for SL’s distributed heat
source when U/Nd = 1, reproduced from their Fig. 3. Time is in
units of b/U.
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where T'= t — 7. The total vertical displacement 74,,5(#)
at S at time ¢ due to the distributed maintained heat
source is found by superposition:

t

t
Nams(t) = f Naps(T)AT ~ f “Mps(T)dT
0 Ax/U

= —(qgo/27NU?) log(Ut/AX) (¢t > Ax/U). (6)

Here we have derived an approximation to the dis-
placement at S by assuming that 5,,s(T) is roughly
equal to the localized pulse displacement #,,5(7") when
T > Ax/U and assuming that the contribution to the
displacement from times T less than Ax/U, which is
independent of ¢, is negligible by comparison. This will
be true at large times . The displacement grows large
and negative at S. As pointed out in LS, the heating
of air that is already increasingly warm is the source
of energy for the growing response. If large negative
displacements do not exist around S in the region of
heating, then there will be no source of energy for large
displacements elsewhere. Hence, in what follows we
continue to concentrate on the displacement at the
source position.

¢. Group velocity arguments and the response to a line
buoyancy pulse

So far we have largely recapitulated SL’s line of rea-
_ soning showing that a maintained line buoyancy source
leads to growing displacements. A crucial part of this
analysis is that the displacement 7, ,5() at the position
of a localized heating pulse only decays as fast as ™!
at large times, so that its integral diverges logarithmi-
cally. It is illuminating to use group velocity arguments
(Lighthill, 1965) to explain this dependence. These ar-
guments, which are the cornerstone of this paper, are
very powerful, and they allow one to generalize SL’s
arguments by examining the pulse response in cases
that the fluid is rotating or the heat source is three-
dimensional, neither of which permits an analytic so-
lution.

There are two linear hydrostatic gravity wave modes
of a given wavenumber k = (k, m). They have fre-
quencies w * (k) = Uk = Nk/m (Gill, 1982, p. 260)
and group velocities

¢g * (k) = (czo C) = (U, 0) £ (N/m, —Nk/m?). (7)

Let us call them the «w* and w™ modes, respectively.
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The Boussinesq hydrostatic wave energy density in
physical space is (Gill, 1982, p. 140, with w neglected
compared to # in the hydrostatic approximation);

E(x, 1) = po{t?/2 + BY/2N?}. (8)

The total wave energy is found by integrating E over
physical space. 4

One can also define a spectral energy density in
wavenumber space E(k, ¢). Let f(x, z) be an arbitrary
square-integrable function. Then f has a Fourier trans-
form .

—00

Sk, m) = 27)~? f " f_ c:o Sexp(—ikx — imz)dxdz.
: 9

' Parseval’s equality (Sokolnikov and Redheffer, 1966,

p. 72) states that

4n f_ Z f_ Z \f [2dxdz = f_ z f_ z \f Gk, m)Pdlkedm,
(10)

where Fourier transformed variables are italicized.
Hence a reasonable definition of the spectral energy
density E(k, ?) is

'E(k, 1) = pof{[ul* + |BI*/N*}/8x>. (11)

The total wave energy at any time ¢ can be found by
integrating E(k, f) over all wavenumbers k.

The energy spectrum (i.e., the dependence of E(k,
?) on k) due to a localized buoyancy pulse (1a) is par-

_ticularly simple. Just after the heating at 1 = 0%, the

buoyancy has been increased impulsively at x = z = 0,
but the fluid is still at rest: B(x, 0*) = god(x)é(z) and
w(x, 07) = 0. Hence (9) and (11) imply that Bk, 0%)
= go and E(k, 0") = ppgo>/87*N? do not depend on k
for this case. Since u# = 0 initially, the spectral energy
is evenly split between the w* modes with wavenumber
k:

E*(k) = E(k)/2 = pogo’/167°N>. (12)

For linear waves in an unbounded homogeneous me-
dium, spectral energy imparted to wavenumber k in
each of these frequencies remains in that wavenumber
and frequency. Thus the E*(k, 7) do not depend on
time, and we will henceforth write the spectral energy
as E*(k).

The key concept of dispersive wave theory is the
wave packet, a region of wave disturbance which is
confined in space within some characteristic distance
£ of a central position x(¢) and is made up of waves
whose wavenumbers do not differ from a carrier wave-
number k. by more than a characteristic amount «. In
order that the wave packet have a well defined carrier
wavenumber, £ must be significantly larger than the
carrier wavelength A, = 27/|k.|. Wave packets are lo-

. calized both in physical space and wavenumber (spec-

tral) space. The distribution of spectral energy between
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wavenumbers in the wave packet is fixed, but the center
of the wave packet moves at a speed cg(k.) and the
width of the wave packet increases due to dispersion
of the waves in the packet as described below, so the
spatial distribution of wave energy changes with time.

These concepts also apply to a localized pulse source
of wave energy at a position S. The response to this
source can be regarded as the superposition of a spec-
trum of wave packets of different carrier wavenumbers
k., each localized around S with a characteristic width
equal to a few times A (k). As time goes on, the wave
packets separate, and one may regard the spectral en-
ergy in a wavenumber Kk, as being spatially concentrated
around x/(f) = cy(k.)t. This is nicely illustrated in Fig.
1. According to (5), the w* modes of wavenumber k.
= (k, m) should be observed at position x, = Ut £ Nt/
m, z, = — +Nkt/m?. Consider the ™ mode of wave-
number kg = (0, N/U), for instance. We find x. = z,
= 0 because c(ko) = 0. Indeed, near S the nodal lines
of the displacement shown in Fig. 1 are approximately
horizontal and separated by a vertical distance w/m
= 7 U/N as would be expected for a wave of wavenum-
ber ko. The w* mode of wavenumber —k, also has
group velocity zero and contributes to the displacement
at S.

We can use the correspondence between wavenum-
ber and position to calculate how the spectral energy
in any fixed band of wavenumbers is spread over an
increasing area of physical space by dispersion. Of par-
ticular interest to us is a wave packet with carrier wave-
number ko with group velocity zero, since its energy
will remain near S. Consider a wave packet made up
of the w™ modes in the upper stippled trapezoidal region
in wavenumber space of Fig. 3a, centered around k.

. If Ak and Am are small, this region is almost rectan-
gular and has an area AkAm. The above correspon-
dence implies that the energy in these waves is spread
over the region R(¢) in physical space shown in Fig. 3b
and 3c at an earlier and a later time. The region R(¢)
expands linearly with time in each direction due to the
nonzero group velocity of waves on the borders of the
trapezoid. If Ak and Am are small, the area of R is
J~AkAm, where J™ is the Jacobian

T~ (ko, ) = |8(cget, C:t)/A(k, m)|*¥o

= U%?*/IN% (13)
Here R expands proportional to ¢ in each direction
(Fig. 3b, ¢), because each wave moves away from S at
its group velocity.

To calculate the energy density in R(f), one must
also account for the w™ modes with wavenumbers near
—K; in the lower stippled trapezoid, which also have
small group velocities and correspond to the same re-
gion R(f) in physical space shown in Figs. 3b, c¢; an
analogous calculation to (13) shows J(—ko, £) = J(ko,
1). The average energy density in R(z) is the sum of
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(a)

Ak UPt/N)

(b) AmUA/IN)

(c)

FIG. 3. The energy excited by a localized buoyancy pulse in the
™ modes in the upper stippled trapezoid and in the »* modes in the
lower stippled trapezoid in wavenumber space in (a) is localized ac-
cording to group velocity arguments in the stippled trapezoid in
physical space around S in (b) at some time and in the stippled trap-
ezoid in (c) at a later time.

contributions from the total energy in the two wave
packets divided by the area of R(z):

E 0, 1) = E*(ko)/J " (ko, ) + E™(—Kko)/J (—ko, 1)
= poqo’/8T U, (14)
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By taking Ak and Am to be small, R(¢) can be made
to enclose an arbitrarily small area around S, so (14)
will be taken to give the energy density at S.

It remains to translate this statement about the
physical space energy density into a prediction of
N1,s(f), the vertical displacement at S at a time ¢ after
a buoyancy pulse localized at S. By symmetry, the ver-
tical velocity is an even function of z. Mass continuity
then implies # = 0 along the x-axis and in particular
at S. Thus, one can use (8) to recover the buoyancy at
S from (14). The air which is at S at time 7 was at x
= ~{t at the time of the buoyancy pulse, so it was not
heated at that time. For air which has at no time been
heated, the buoyancy is due entirely to the vertical dis-
placement, and B(x, /) = —N?y(x, #). Hence we obtain:

Mps(t) = —B1 0, )/N* = —{2E, (0, 1)}'/*/N
—go/2xNU>t. - (15)

It is important to recognize that while this result was
for simplicity derived under the hydrostatic approxi-
mation, (15) will also hold for large times even if the
hydrostatic approximation is- not made because the
response at S at large times relies only on the propa-
gation characteristics of gravity waves with k < m,
which are always hydrostatic. This can be verified by
calculating the Jacobians (13) at k = +k, using the
nonhydrostatic dispersion relation w*(k) = Uk + Nk/
(k* + m%)'2 (Gill, 1982, p. 260); they are identical to
their hydrostatic counterparts.

The ™! dependence of 7 is a geometrical effect, which
relies only on the fact that there are wavenumbers with
zero group velocity around which there is a finite rate
of dispersion J. The small, but nonzero, group velocities
of nearby wavenumbers spread their energy into a re-
gion in space that expands linearly with time in each
direction, so that the energy density, a quadratic func-
tion of #, decreases as 2.

The logarithmically increasing response to a main-
tained buoyancy source does rely on one special feature
of internal gravity waves. The buoyancy pulses that
combine to make up the maintained source produce
displacements that are all in phase at S, because the
waves of zero group velocity also have zero frequency.
In a system in which this is not true, such as barotropic
Rossby waves in a uniform zonal current on a #-plane,

_an obstacle (or any other steady wave energy source)
will produce a finite response; the pulse response (cor-
responding to the obstacle being present only for a short
interval that starts at a time ¢ before the response is
observed) still produces displacements of order ¢!, but
they do not add in phase to produce a divergent re-
sponse to a steady obstacle.

il

3. Distributed heat sources, boundaries and vertical
inhomogeneities

In this section we will characterize the heat source
distributions which, when steadily maintained, lead to

~
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a steady state response. Smith and Lin pointed out that
a steady response will occur if the horizontally inte-
grated heating is zero. In the appendix, we show that
this is a special case of a more general criterion: If a
buoyancy source g,,(x, z)H(¢) is turned on at ¢ = 0,
then a finite, steady displacement field 5(x, z) will set’
up only when

Q0 .

f_ f_ " dxdzgy(x, 2) exp(xiNz/U) = 0:  (16)

i.e., when there is no projection of the heat source on
the wavenumbers +k, = (0, £N/U) corresponding to
the w* and w™ modes which have zero group velocity.

This is physically easy to understand. After a pulse

of heating, the displacement at any fixed position

is ultimately dominated by the w* modes near
exp(—iko* x) = exp(—iNz/U), and the w~ modes near
exp(iko - xX) = exp(iNz/U), which have very small group
velocities. A maintained source, or train of pulses, is
continuously pumping energy into these modes unless
(16) holds. In two dimensions, dispersion cannot spread
this energy fast enough to prevent the logarithmic
buildup of displacement with time.

The effect of horizontal boundaries on the response
when U and N are uniform can be found by using the
method of images. A single boundary, at z = 0 for
instance, below a heat source g,(x, z), z > 0, can be
replaced by a source g,,(x, —z) = —g,(x, z). The steadi-
ness of the response can then be diagnosed from (16).
In general, the addition of the image source does not
make the projection zero unless it would have been
zero without the lower boundary, but some patholog-
ical cases can be found. For example, a source g,(x,
z) = g(x)8(z — wU/2N), where g(x) is any positive in-

" tegrable function of x, will produce a steady response

when a boundary is placed at z = 0, but in an un-
bounded fluid the response will grow with time.

Two boundaries a distance H apart have a much
more striking effect on the response. They can be re-
placed by an image source distribution in which g,, is
extended from 0 < z < H to all space by the relations
gn(X, z + 2 JH) = gm(x, 2) and (X, 2 jH — 2) = —qm(X,
2),j =0, 1, £2, - « ", The vertical wavenumbers m,,
= pw/H in this extended heat source are quantized, so
the steady state criterion (16) will be satisfied unless
N/U = nn/H for some integer n, when there is a normal
mode of zero frequency that can be forced to resonate
by the steady heating. '

We show in the appendix that a similar criterion to
(16) holds even when N and U vary with z, as long as
there is a continuous spectrum of normal modes of
zero frequency [such as exp(imz), where m is arbitrary
and can be continuously varied, in the case of constant
N and U]. This will be the case if the Scorer parameter
S = N*/U? — U,,/U becomes positive and uniform as
z = *oo. The criterion holds even if there are critical
levels U = 0 for stationary waves.

If S < 0 as z - *oo0, then stationary waves are
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trapped, and there is a discrete spectrum of steady
modes. The response will be steady unless there hap-
pens to be a mode of zero horizontal group velocity,
in which case a resonance occurs that is similar to that
which can be set up by two boundaries.

4. Mass sources

Raymond (1983) pointed out that in the hydrostatic
approximation, heat sources and mass sources have
equivalent effects on the fluid outside the source region.
The linear response to a buoyancy source g(x, z, t) in
a stratified fluid moving with an ambient horizontal
speed U is governed by (la-d). If w is partitioned as w
= w, + g/N?, then the buoyancy and continuity equa-
tions can be written in terms of the ‘adiabatic’ vertical
velocity w,:

B, + UB,+ N*w, =0, (17a)
Uy + Wy, = M = —q,/N>. (17b)

In the hydrostatic approximation, w does not appear
in the vertical momentum equation. If w, is identified
as the vertical velocity, then (la, b) and (17a, b) are
the linear hydrostatic equations of motion given an
equivalent mass source M = —g,/N>.

Raymond (1983) showed that the response to a lo-
calized pulse mass source M(x, z, 1) = Myd(x)6(z)d(t)
is

Mmpm(X, 2, £) = (Mo/27X) sin(Nzt/X), (18a)

Ui prlx, 2, £) = (MoN/2wX) cos(Nzt/X). (18b)

At the original source position x = 0 (X = —Uft), u; pus
= —MyN/2=x Ut. If the source is of finite width, then
the deceleration will be reduced at times less than or
comparable to Ax/U, but will be unchanged at large
times. This mass source is equivalent to a buoyancy

“source gu(x, z, 1) = —N*Myd(x)H(2)8(?). Except in the
heated fluid (X = 0, z> 0), w, = w, so the displacement
due to the heat source gy should be the same as the
displacement (18a) due to the equivalent mass source.
Since d9),/3z = q, (X, z, t), we should therefore recover
the displacement due to a point buoyancy impulse for
nonzero X by differentiating 7, with respect to z.
Comparison with (3) shows that this is indeed true. We
can therefore anticipate that our group velocity argu-
ments about heat sources should be generalizable to
appropriate mass sources.

A mass source turned on at time zero and main-
tained can be regarded as a sequence of mass pulses
injected into the flow at successive times 7 > 0. By
superposition of the u; pys(f — 7) from 0 < 7 < ¢, it is
clear that at the source position there is an increasing
horizontal velocity deficit proportional to log(f). Phys-
ically, the energy source for these perturbations is the
relatively high pressure at the mass source, which makes
the injected mass do work on the fluid.

A sufficient condition that a distributed mass source
M,.4(x, z) can produce a steady response can be found
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by finding an equivalent heat source such that M,
= —¢,.az/N? and then applying the criterion (16). After
one integration of (16) by parts in z, we obtain two
terms, a boundary term which is the x integral of g,
X exp(+iNz/U) evaluated between the limits oo in
z, and an area integral. The boundary term is indeter-
minate unless the x integral of g,,; = 0 as z > o0,
in which case it vanishes. This condition translates to
the condition that there be no net mass source inte-
grated over all space:

f f dxdzM uq(x, z) = 0; (19a)

-0 -0

The remaining integral from the integral by parts must
also vanish to satisfy (16), so we also require

f N fw dxdzM o (x, 2) exp(xiNz/U) = 0. (19b)

If both (19a) and (19b) are satisfied, the response due

to the maintained mass source M,,; will approach a
steady state (although these conditions may not be
necessary).

Two physical problems which can be modeled by
mass sources in moving stratified flows are the flow up
over a ramp or plateau and the flow due to a density
current. Suppose that a moving stratified fluid with a
horizontal velocity far upstream equal to U flows up
over a bottom surface z = A(x) such that 7 = 0O as
x—> —oo and h = hy as x — oo. If Ay is small, then
the boundary condition can be linearized to the con-
dition that w = Uh, at z = 0. A steady mass source
Uh,(x)é(z) distributed along a flat bottom (z = 0) pro-
duces an identical response.

The. response given by (18a, b) applies to a heat
source in a fluid unbounded in all directions. Consider
a mass source 2Uh(x)é(z) (of integrated strength M,
= 2Uhy) in an unbounded fluid. By symmetry, it causes
no vertical displacements on the line z = 0. Thus it
automatically satisfies the boundary condition w = 0
on z = 0. Furthermore, half of the injected mass ends
up above z = 0, reproducing the “plateau” mass source
considered in the previous paragraph.

Equation (19a) suggests that the flow will not be
steady. Indeed, if the plateau suddenly grew up at time
zero out of the surface z = 0, then the flow would
increasingly decelerate as it approached the plateau to
a minimum speed #y;,(¢) in the middle of the windward
slope of the plateau which is found by using (18b),
corrected for the finite source width Ax:

t
Umin(l) =~ L - U pms(r)dr
X

= —(Nho/) log(Ut/Ax). (20)

When un,;,(f) becomes comparable to —U, nonlinear
effects will become important, possibly leading to the
formation of a stagnant region upstream of the sta-
tionary mass source.
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Benjamin (1968) showed that a steady inviscid den-
sity current due to the flow of a shallow homogeneous
layer of fluid of density p + Ap into a homogeneous
fluid that has a lesser density p is impossible, due to
the impossibility of simultaneously conserving energy
and momentum. One might wonder whether this con-
clusion was still correct if the less dense fluid were
stratified and gravity waves produced by the density
current could correct the momentum imbalance.
Viewed in a frame moving with the density current,
the denser fluid is just a (deformable) plateau-shaped
obstacle to the oncoming flow, so the argument above
shows that a linear steady state will not be achieved in
response to a shallow density current even if the less
dense fluid is stratified.

It is interesting to estimate how fast the displace-
ments and decelerations should grow when a density
current with a quasisteady nose profile moves into a

_ stratified atmosphere, assuming that an insignificant
fraction of the ambient air is entrained into the density
current. Benjamin’s (1968) formula for the speed of
a density current moving into stagnant air is U
= (2ghoAp/p)'?. Taking Ap/p = 0.05 and assuming that
the density current has a depth 4y = 1000 m behind
its nose, we obtain U = 10 m s™. The density current
is equivalent to a mass source My = 2Uhy = 20 000
m? s™'in an unbounded fluid. If ¥ = 1072 s™! and
surface air rises to the height /g in a horizontal distance
Ax = 1000 m, the horizontal velocity at the nose is
decelerated to 10 m s~ — 3.2 log{#/(100 s)} according
to (20). This formula predicts stagnation of surface air
ahead of the nose roughly twenty minutes after the
formation of the density current; the nonlinear devel-

-opment of gravity waves in the stable layer and/or en-
trainment into the head of the density current must be
crucial to the further development of the flow and the
force balance and shape of the nose of the density cur-
rent.

5. The effects of the third dimension and of rotation

The infinite response to a localized maintained heat
source is specific to two-dimensional flow in a non-
rotating atmosphere. In this section, we use group ve-
locity arguments to estimate the displacement field in
response to a buoyancy source that is localized in both
horizontal directions and a line buoyancy sources in a
rotating fluid. These estimates show that in both of
‘these cases, a maintained buoyancy source produces a
displacement field which tends toward a steady state.

a. Three-dimensional heat sources

Let 94.3(x, ¥, 2, £} be the displacement field at time
t caused by a maintained distributed buoyancy source
aso(x, v, 2)H(r) centered at the origin S with charac-
teristic length Ax, width Ay and height Az. Asin section
2, this can be regarded as the superposition of the dis-
placements 7n4,3(x, ¥, z, T), where T =t — 7,due to a
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succession of distributed buoyancy pulses gsp(x, ¥, 2)
X 8(t — 7) at times 0 < 7 > ¢. In particular, the dis-
placement at S due to the maintained source is
t
Nam3s() = J;) Napas(T)dT. (21)
If the pulse displacement n,4,35(7") at S decays faster
than 7! at large times, the integral has a finite limit
at large times and a steady state is approached. Suppose
that 7> Ax/U, Ay/U and the source Froude number
is large. As shown in section 2, the hydrostatic ap-
proximation can be introduced without causing sig-
nificant errors in 7,,35(7); this is desirable since it sim-
plifies the calculations involving the dispersion relation.
Furthermore, the arguments of section 2 show that
n4p3s(T) is approximately equal to the displacement
M p3s(T) in the hydrostatic approximation due to a lo-
calized buoyancy pulse god(x)8(3)8(z)é(f) whose inte-
grated buoyancy input is the same as that of gsp(x, ¥,
2)8(¢). Hence, it suffices to estimate #;,35(T) at large
times 7. :
Group velocity arguments similar to those of section
2 show that 5,,35(f) decays faster than 32 for large
times. The two hydrostatic gravity wave modes have
dispersion relations w*(k) = Uk + Nx/m and group
velocities

c.~(k) = (U, 0, 0) = (Nk/xm; Nl/xkm, =N k/m?), (21)

where k = (k, [, m) and « = (k? + [?)'/2. The w™ modes
with wavenumbers close to ko = (0, 0, N/U) and
modes with wavenumbers close to —ko have ¢, ~ 0, if
k/m is positive and I/k is small.

The energy density Es(?) at S can be calculated just
as in section 2. It is due to the modes with very small
group velocities. The w~ modes with wavenumbers
close to ko = (0, 0, N/U) and »* modes with wave-
numbers close to —k have ¢, =~ 0, if k/m is positive
and //k is' small. ,

The spectral energy put into each mode by the
buoyancy pulse at ¢ = 0 can be found as in the two
dimensional case. At ¢ = 0%, w(k) = v, (k) = 0 and b(k)
= go. The left side of Parseval’s equality (7b) and hence
the denominator of the definition (8) of the spectral
energy density have additional factors of 2« due to the
additional dimension, so that E(k) = {{u|> + [v]* + (bl%
N?%)}/167. Evaluating this expression at ¢ = 0" and
splitting the spectral energy symmetrically between the
two modes to satisfy the condition of no velocity at ¢
= 0*, we obtain E~(k) = E*(—k) = go*/327°N>.

The spectral energy in the ™ modes whose wave-
numbers lie in some volume dV centered on ko.= (0,
0, N/U) is E~(k)dV. According to group velocity ar-
guments, these wavenumbers will mainly be localized
to a region in physical space whose volume is av
= Jip(ko, 1)dV, where

J3p(ko, 1) = dCaxt, Cgt, CeD)/OK, I, m)|k_fk°
= N33 /xmP[¥"% = oo, L (23)
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so that the energy density in physical space Eg~ at §
due to the w™ modes is E(ko)/J3p(Ko, ) = 0. A similar
argument holds for the w* modes. This should be in-
terpreted as follows: The dispersion of modes whose
wavenumbers are near +k, is very large; depending on
the ratio of the small quantities k and /, ¢, can lie any-
where on a horizontal ring of radius N/m = U centered
at (U, 0; 0). Only the small fraction of these modes
with ¢, close to zero contribute to the displacement at
S. Even if J%p were finite, Es would decay like 3. The
extreme dispersion implies Es decays faster than 73,
By symmetry, there are no horizontal velocities on the
plane z = 0; therefore the three-dimensional analogue
of (8) implies 1 ,35(f) = {2Es(t)/N*}'/2, which decays
faster than 32 as claimed. A rather difficult asymptotic
analysis, available from the author as a technical report,
shows that in fact 1,,35() = —qo/(4nNU>t?) for large
time.

Since 1 p35(f) decreases faster than ! at large time,
a maintained three-dimensional heat source does ul-
timately force a steady response. The fundamental rea-
son for the rapid decrease in the displacément after a
three dimensional buoyancy pulse is the dispersion of
energy in the y (transverse) direction, which reduces
the energy density at S.

An eclongated (Ay » AXx) maintained buoyancy
source ¢sp(x, ¥, Z)H(t) can induce quite large vertical
displacements at the center S of the source. Buoyancy
pulses from early times 7 such that 7=t — 7> Ay/U
produce very small displacements because of dispersion
in the transverse direction, as argued above. However,
those pulses with Ax/U < T < Ay/U can be expected
to produce displacements at S similar to the displace-
ment 7,,;s(7’) appropriate to a localized maintained
line source, if ¢p is replaced in Eq. (12) by a cross sec-
tional x-z integral of g;p at y = 0. This can be under-
stood by dividing up the elongated source into a num-
ber of sources, each of which has a breadth Ax. Let R
be one of these sources from one end of the original
clongated source. A buoyancy pulse at R at a time 7
causes a significant response at S at those times 7 + T
when a significant fraction of the waves with ¢, = ¢,.
= 0 (k, ] €« m = £N«/Uk) generated by R have reached
S. These waves have c,, = Ni/km = U(I/k). Since wave
energy is equally distributed among the small wave-
lengths, I/kis O(1) and ¢, is O(U) for most of the wave
energy reaching S. Thus it takes a time 7 = O(Ay/2U)
for the wave energy from a pulse at R to significantly
affect the displacement at S. At times 7' < Ay/2U, the
response at .S would only be weakly affected if addi-
tional sources with y > Ay/2 were added onto the end
of the line; the response at S to pulses of buoyancy
from the elongated source at such times T'is nearly the
same as if the source were infinitely long. The lower
cutoff on T is caused by the finite source width Ax as
discussed in the two-dimensional case. The steady state
displacement due to a maintained elongated source will
be dominated by the logarithmically large contribution
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from the times when the response is well approximated
by the displacement due to a localized line buoyancy
pulse:

. Ay/U
mp(t > ©) = f Nms(T)dT
Ax/U

= go/2eNU? log(Ay/Ax) (Ay > Ax). (26)

As the source becomes more line-like, the downward
steady state displacements near the source become in-
creasingly large.

b. A line heat source in a rotating environment

Consider a localized line buoyancy pulse at the origin
S'in a fluid moving with speed U relative to a reference
frame rotating about the vertical with Coriolis param-
eter /. Due to the rotation, there are no inertia-gravity
waves in the fluid whose group velocities are zero. Some
waves have group velocities which are arbitrarily close
to zero, so that their effects are felt at S for some time,
but rotation causes energy in all waves with ¢;; = 0 to
be advected downstream with the fluid. Hence, the dis-
placement 7, ,,5(T) at S due to a localized buoyancy
pulse a time T before the observation time decays more
rapidly than 77!, and the response to a maintained
source is finite.

In the hydrostatic approximation, the dispersion re-
lations and group velocities of the two gravity wave
modes of wavenumber k are

(k) = Uk + Nkjam, @7

¢*(k) = U = (Na/m, —Nak/m?),  (28)
a = {1 + (fm/Nk?} "2, (29)

The group velocities of the waves relative to the mean .
flow U = (U, 0) are smaller than in the nonrotating
case by a factor «, which approaches zero for waves
with k < m that have almost horizontal phase surfaces.
There are no waves with ¢, = 0, although there are
waves with k < m for which ¢, is arbitrarily close to
zero. At sufficiently large times, group velocity argu-
ments suggest that the w* modes with wavenumber k
will be observed at x = ¢;*(k)¢, or from (28),

z = £(—Nakt/m?). (30a)

Equation (30a) can be inverted to determine the wave-
numbers of the ™ and the »™ modes which will be
observed at some fixed position x at time ¢. Let X = x
— Ut. We first note that k/m = —z/X, so that « = {1
+ (fX/Nz)*}~"/; we can then find m and lastly find &:

k*(x, t) = £(—Nazt/X? Nat/X). (30b)

Figure 4 illustrates the wave pattern produced by a
localized buoyancy pulse god(x)8(3)d(z) in a rotating
fluid at a time comparable to f~! as deduced from
(30b). The dashed nodal lines of zero vertical displace-
ment correspond to places where the phases ¢ = k*x

x=Ut £ Nat/m,
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FIG. 4. (a) Lines of zero vertical displacement for a point impulsive heat source in a moving, rotating, stratified fluid (dashed). The lightly
and heavily stippled boxes in physical space correspond according to group velocity arguments with the similarly demarcated regions in

wavenumber space in Fig. 4(b).

+ m*z — w*t of the displacements produced at position
(x, z) by the w* and the w~ modes differ by an odd
multiple of #. Using (27) and (30b), one finds the phase
difference ¢* — ¢~ to be 2Nzt/aX; nodal lines occur
where Nzt/aX = (n + 1/2)w for some integer n. For
Nz/fX > 1, the vertical spacing between nodal lines is
wX/Nt as in the nonrotating case; for Nz/fX < 1, nodal
lines become more widely spaced. Physically, the hor-
izontal group velocity of low-frequency waves with a
given vertical wavenumber relative to the mean flow
is retarded compared to the nonrotating case, so the
vertical wavenumber of the waves observed at any fixed
X at some time must be smaller to compensate, leading
to an increased spacing between nodal lines as z be-
comes small. '

As z approaches 0, the dominant »* modes become
purely inertial oscillations with frequencies =+ f'sgn(z/
X) and phase difference 2 f sgn(z/X).

The energy density at S can be again predicted by
group velocity arguments as in section 2. The spectral
energy density in each mode produced by a localized
buoyancy pulse is E*(k) = go>/8%*N? as in the non-
rotating case, because the presence of the Coriolis force
does not change the expression (6) for the energy den-
sity (Gill, 1982, p. 266) and hence also does not change
the expression (8) for the spectral energy density. The
spatial energy density E(x, 1) = {E*(k*)/|J* (k")
+ E~(k7)/|/,"(k7)}. The Jacobians J,%(k) = d(cz !,
c20/8(k, M)y = —N?a?/(m™)*. When the Jacobians
are evaluated for the wavenumbers k*(0, z, 7) which
are found at x = 0 and some height z, we find J,*(k*)
= U*%?/N?%a? and E(0, z, t) = go2c?/87*U*> At S,

where a = z = 0, these arguments predict that the
energy density Es(z) (and thus the displacement) is zero.

Figure 4b illustrates geometrically why the energy
density is small near S. According to (30b), the lightly
stippled rectangle of Fig. (4a) will contain waves whose
wavenumbers lie in the corresponding region in Fig.
(4b). Since fX/Nz > 1 in this rectangle, its correspond-
ing area in wavenumber space is nearly the same as if
there were no rotation. The waves which fill the heavily
stippled region of Fig. 4a surrounding .S occupy a much
smaller region in wavenumber space (heavily stippled
in Fig. 4b) and hence produce a smaller energy density
in physical space.

Group velocity arguments correctly predict the local
wavelength and energy density only where these quan-
tities or varying slowly compared to a local wavelength.
As z = 0, (30b) implies A(x, {) = 2#/|k(x, &)l > ©
since a = 0, so group velocity arguments will locally
break down. We interpret the prediction that Es = 0
to actually mean that Eg(7) decays faster than 72 for
large times. The displacement 7, ,,s5(¢) is no larger in
magnitude than (2{Es(t)))"*/N; thus ns(?) decays
faster than ¢! as claimed. In fact, direct evaluation of
the Fourier transform integrals shows that when fi > 1,
Miprs(f) = —go cOs(ft ~ w/4)/(2"2x*ANUf 1237), an
inertial oscillation decaying like £~*2, This calculation
is also available from the author as part of a technical
report.

For times f < 1, the region |z| < fUt/N of diminished
group velocities cover such a small fraction of a vertical
wavelength N/U that the effect of rotation on the buoy-
ancy pulse response is negligible. ,
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Consider a maintained buoyancy source (i.e., a series
of buoyancy pulses) in a rotating fluid. The rapid decay
and the oscillatory form of the displacement at S
due to buoyancy pulses from times 7= O(f ') prior
to the observation time imply that an approxi-
mately steady displacement at S is reached within a
time O(f ™).

The smaller the characteristic width Ax of the source,
the more the displacement at S can build up due to
the responses to buoyancy pulses from times Ax/U
< T < f~! prior to the observation time when the pulse
response is not reduced by the finite source size or by
rotation. A crude estimate of the steady state displace-
ment at S can be found by integrating the two-dimen-
sional localized pulse response from (15) over these
times:

V/a
Nprs(t = ©) =~ f Mps(T)dT
Ax/U

= (qo/27NU?) log(U/fAx). (34)

To summarize, the response to both rotating and
three-dimensional heat pulses can be clearly under-
stood using group velocity arguments. In contrast to
the two-dimensional nonrotating case the displacement
at the original source position S diminishes faster than
! at large times in both cases, permitting a steady
displacement field to form in response to a maintained
heat source. For a three-dimensional source, the re-
duced response is due to strong dispersion of wave en-
ergy in the direction transverse to the flow. For a ro-
tating source, it is due to the reduced upstream prop-
agation of the energy relative to the mean flow in the
low-frequency waves that dominate the response at S.

The importance of rotation and three-dimensionality
can be estimated for some physically interesting cases.
Smith and Lin (1982) investigated the effect of the la-
tent heating produced by orographic rain. In LS, an
example was given with U= 10 m s™}, N = 107257,
and a rainfall rate of r = 2.5 mm h™! over a width Ax
= 40 km on the windward side of the mountain, which
produces buoyancy at a rate go = (gpwL/poC,To)rAx
= 2300 m* s, where L is the latent heat of vaporiza-
tion of water vapor, p,/po is the ratio of the density of
liquid water to a reference air density, and the remain-
ing symbols were defined in section 2. Without rotation
or three-dimensionality, the downward displacement
Nams(t) at S due to the heating alone (which must be
superposed on the displacements forced by the orog-
raphy) can be estimated from (6). This implies 74,.s(¢)
~ —366 log{#/(4000 s)}m, in good qualitative agree-
ment with SL’s numerical results at £ = 13 000 s. As
pointed out by SL, the heating induced subsidence may
significantly reduce the rainfall rate (and hence the
heating) at later times. According to (26), the three
dimensionality of the source suppresses the growth of
the displacement after a time ¢ = Ay/U. If we consider
a mountain range of breadth Ay = 300 km, the dis-
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placement should build up until 30 000 s, resulting in
a steady downward displacement on the order of 750
m. According to (34), rotation limits the downward
displacement after a time £ = f~! = 10 000 s to about
350 m.

6. Conclusions

A maintained line buoyancy source in a steadily
moving stratified fluid creates a logarithmically growing
response after it is turned on. The response can be
understood by thinking of the source as a train of
buoyancy pulses. A pulse from a time T before the
observation time ¢ causes a downward displacement
proportional to 7! at the original heating position;
these displacements add to create the growing response.

The main thrust of the present paper has been to
use group velocity arguments to understand the pulse
response for the two-dimensional line sources and then
to generalize these arguments to construct the response
to two-dimensional line buoyancy pulses in a rotating

“fluid, three-dimensional pulses, and line mass pulses.

Superposition then allows us to determine whether a
maintained heat or mass source ultimately produces a
steady state response in these cases. The response to a
mass pulse again decays as 7!, so steady linear flow
over a maintained effective line mass source such as a
ramp-shaped mountain or a steady inviscid shallow
density current cannot occur in a uniformly stratified
fluid. However, rotation or three-dimensionality causes
the displacement at the original position of a buoyancy
pulse to decay faster than 7! and allows a steady state
to set up in response to a maintained source. The am-
plitude of the steady state displacements at the position
of a maintained source are O(log(U/fA X)) for a line
source of width Ax in a rotating frame and O(log(Ay/
AXx)) for an elongated three-dimensional source of
width Ax and breadth Ay.

The displacement field near the original position of
a line buoyancy or mass pulse at large time 7 is dom-
inated by wavenumbers k = (0, £N/U) of very small
group velocity. The dispersion of these wavenumbers
causes the energy density at S to decrease as T2 in
two dimensions. This is reflected in a 7! decrease of
the displacement 7. Since the frequency of these modes
is close to zero, the displacements due to pulses at dif-
ferent times are in phase, forcing the displacement to
build up. Waves from a three-dimensional pulse dis-
perse in the transverse direction also, so the displace-
ment decreases faster than 7!, In a rotating frame
there are no gravity waves of precisely zero group ve-
locity relative to the fixed frame, so the displacement
again decreases faster than 7! at large times.

A steady state response to a maintained distributed
buoyancy source is possible if the buoyancy source has
no projection on the modes of zero group velocity, so
that very little energy will be pumped into the nearby
modes of small group velocity, preventing the build-
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up of the displacement. This generalizes SL’s criterion
for a steady state that the horizontally averaged heating
at any level should be zero.

The potential nonlinear effects due to the growing
displacement field would be a quite intriguing subject
for further analytical and numerical investigation. Two
nonlinear processes that could stop the growth of the
displacement field are wave reflection due to modifi-
cation of the stability and velocity fields by wave steep-
ening and breaking, and downward displacements at
the heat source S on the order of a quarter wavelength
wU/2N of the standing wave of zero group velocity,

which would cause the fluid moving into the heated -

region to not necessarily have experienced the full effect
of the downward displacements at the level of the
buoyancy source, because this fluid started too far
above this level.

In the orographic rain example of section 5, rotation
limits the downward displacement at the position of
the heat source well before it reaches the quarter-wave-
length threshold = U/2N = 1500 m at which nonlinear
effects must become important. But in the density cur-
rent example of section 4, neither rotation or three-
dimensionality can prevent the rapid buildup of de-
celerations and vertical displacements ahead of the nose
and nonlinear effects must become important. Suitably
interpreted, group velocity arguments should prove
their utility as a tool for understanding even the non-
linear response of the atmosphere to a localized internal
forcing.
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APPENDIX

Criteria for a Steady Response to a Distributed
" Maintained Heat Source

We look for steady solutions of the Taylor-Goldstein
equation including heating g(x, z) when U(z) and N*(z)
may vary with height. Let S(z) = N*/U? — U,./U be
the Scorer parameter, and let w(k, z) be the Fourier
transform of w(x, z) in the x direction. Then

U{w.. + S(zyw} = q(x, 2). (A1)

Here, w(k, z) obeys the  radiation conditions w
oc exp{ip % |z| sgn(k)} as z = £oo. We are assuming
that as z = +oo0, N and U tend to constant asymptotic
values, so that u, = lim S'/*(z) are well-defined and

z=>*o0
positive. The displacement 7(x, z) from the upstream
conditions is required to remain finite at all heights,
i.e., n(x, z) is bounded as x = oco. Equivalently,

Uw(, 2) = f Uw(x, z)dx = n(o0, z) 1is finite.

The Green'’s function for (A1) given these boundary
conditions is
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Gz, 2') = ci1(25)24(22), k>0
GA(z,z)= C—¢1—(Z>)¢2—(Z§), k<0.
(A2)

z> and z_ are the larger and smaller of z and z/, re-
spectively. ¢;. and ¢,. are homogeneous solutions of
(A1) with ¢,.(2) ~ exp{*iu,z} as z = oo and ¢,.(2)
~ exp{xiu_z} as z = —oo. The c; are normalization
constants. w(k, z) can be written in terms of the Green’s
function:

G(z,z', k) = [

+: k>0

w(k, z) = J: dz'G(z, z')q(k, z’) k(__, k<0

) . (A3)

If w(0, z) is to be finite, then

lim w(k, z) = lim w(k, z) = w(0, z) < co.
k=0t k=0~

It is useful to examine this condition in the region above

the heating at which N and U have reached their

asymptotic values for large z. Then, since z > z' in

(A3),

lim wik, 2 = csbis(2) | d224(2a00, 2,

k0%

lim w(k, z) = c-¢1(2) f dz'$,-(z')q(0, z'). (A4)
k0~ -

At large z, ¢,14(2) and ¢,-(2) have different behaviors,
so the only way the two expressions can be equal is if

f_ dz'$2+(z')9(0, 2') = 0,

[ a2 a0, 23 =0 (A5)

Now ¢,.(2) and ¢,(z) are also linearly independent
(since they have different behaviors as z = o0), so any
homogeneous solution ¢(z) can be written as a linear
combination of ¢,,(z) and ¢,_(z). Hence a necessary
condition for a steady state is

J-_ B dx J:m dzp(2)q(x, z) = 0, (A6)

where ¢(0, z) has been expressed as f . 4(x, z)dx. In
the case that N and U are constant, ¢(z) can be chosen
as exp(*ipz), giving the condition (13).

So far, we have shown that a finite steady state dis-
placement is possible at large positive z only if (A6) is

satisfied. Now we show (A6) also guarantees the dis-
placement is finite at other z’s. At any z,

lim w(k, z) = C+¢|+(Z)f dz'¢$2.(2")q(0, z’)
k—~0* -

+C+¢2+(Z)f dz'¢1(z")q(0, 2'), (A7)
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and similarly for

lim w(k, z).

k>0
Except at a critical level where ¢, and ¢,. may diverge,
these integrals are just pieces of integrals of the form
(A6), so they do not diverge. Furthermore,

lim w(k, z),
k->0*

,}‘l{)‘- w(k, 2)

are both solutions of the same homogeneous Eq. (A1),
so they can differ by only a homogeneous solution of
(Al). The matching as z — oo guarantees that this
homogeneous solution is zero, so the two limits agree.
Thus w(0, z) = n(c0, z)/U and hence the displacement
as x = oo is well defined and finite except possibly at
critical levels. Thus, if (A6) holds, then there will indeed
be a steady state.
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