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ABSTRACT

A benchmark solution that facilitates testing the accuracy, efficiency, and efficacy of moist nonhydrostatic
numerical model formulations and assumptions is presented. The solution is created from a special configuration
of moist model processes and a specific set of initial conditions. The configuration and initial conditions include:
reversible phase changes, no hydrometeor fallout, a neutrally stable base-state environment, and an initial
buoyancy perturbation that is identical to the one used to test nonlinearly evolving dry thermals. The results of
the moist simulation exhibit many of the properties found in its dry counterpart. Given the similar results, and
acceptably small total mass and total energy errors, it is argued that this new moist simulation design can be
used as a benchmark to evaluate moist numerical model formulations.

The utility of the benchmark simulation is highlighted by running the case with approximate forms of the
governing equations found in the literature. Results of these tests have implications for the formulation of
numerical models. For example, it is shown that an equation set that conserves both mass and energy is crucial
for obtaining the benchmark solution. Results also suggest that the extra effort required to conserve mass in a
numerical model may not lead to significant improvements in results unless energy is also conserved.

1. Introduction

There are many methods for evaluating the perfor-
mance of a numerical modeling system. For example,
the model can be shown to reasonably reproduce an
observed meteorological event. Or, it can be demon-
strated that the model produces realistic features and
evolutions of a phenomenon for which the model was
designed to study; for example, a cloud model can be
shown to reasonably predict the details of clouds, or a
model designed to study the planetary boundary layer
can be shown to accurately reproduce the statistical
properties of this feature.

The most powerful methods for evaluating a numer-
ical modeling system are comparisons to cases with
known results that can be derived through dynamical
analysis, or to benchmark solutions that converge under
certain conditions. Examples of commonly used analytic
and/or benchmark cases include certain mountain wave
solutions (e.g., Clark 1977; Dudhia 1993), inertia-grav-
ity waves (Skamarock and Klemp 1994), a nonlinearly
evolving cold pool and density current (Straka et al.
1993), and a rising warm thermal (Tripoli 1992; Wicker
and Skamarock 1998). Simulations such as these are
important for a number of reasons, such as establishing
the fidelity of a new numerical modeling system, or

Corresponding author address: George H. Bryan, 503 Walker
Building, University Park, PA 16802.
E-mail: bryan@essc.psu.edu

testing the accuracy, efficiency, and efficacy of a new
numerical technique.

Unfortunately, none of these analytic/benchmark cas-
es include moist processes. Moreover, despite the vary-
ing methods used to include moist processes in numer-
ical models, there does not appear to be a commonly
agreed-upon method to evaluate a moist model for-
mulation. Typically, a model developer will demonstrate
that a model produces reasonable fields of parameters
such as vertical velocity, cloud/rainwater mixing ratios,
rainfall, etc. for a case of deep, moist convection. While
this is an important and necessary step in the devel-
opment of a numerical model, the lack of a known so-
lution limits the conclusions that can be drawn from
such tests. Another common method compares the re-
sults from a new model to published results from a
different model. While, again, this is an important step
in evaluating the fidelity of a new numerical model, this
method makes it possible to propagate questionable as-
sumptions through time.

This paper presents a new simulation that can be used
as a benchmark for testing numerical models with mois-
ture. The design of the simulation is analogous to the
nonlinear warm thermal benchmark case used by Tripoli
(1992) and Wicker and Skamarock (1998), but includes
phase changes of water vapor and cloud water.

The numerical model used for this study is described
in section 2. The dry warm thermal simulation is pre-
sented in section 3. Then, the moist test case is presented
in section 4. The utility of the test case is demonstrated
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in section 5 by evaluating common assumptions made
in numerical models and the effects these assumptions
have on the test case. A summary and conclusions are
presented in section 6.

2. The numerical model

a. Governing equations

For the benchmark simulation, the following pro-
cesses are ignored: hydrometeor fallout, ice-phase mi-
crophysics, the Coriolis force, and subgrid-scale tur-
bulence. Under these assumptions, the governing equa-
tions1 for a moist atmosphere are

Du 1 ]pi 5 2 2 d g, (1)i3Dt r (1 1 r ) ]xa t i

]uDr ja 5 2r , (2)aDt ]xj

]uDT p Drj yc 5 2 2 (L 2 R T ) , (3)vml y yDt r ]x Dta j

Dry 5 2ṙ , (4)condDt

Drc 5 ṙ , (5)condDt

(Bannon 2002), where

D ] ]
5 1 u . (6)jDt ]t ]xj

In this paper, Einstein summation convention is used.
In (1), the subscript ‘‘i 5 1, 2, 3’’ signifies the x, y, and
z components, respectively, and dij is the Kronecker
delta. The symbols ra, p, T, ry , rc, and rt are, respec-
tively, dry air density, pressure, temperature, water va-
por mixing ratio, cloud water mixing ratio, and total
water mixing ratio. An assumption implicit in the left-
hand side of (3) is that the temperature of the liquid
water drops is always equal to the air temperature.

In the numerical model, a nondimensional pressure
(p) and potential temperature (u) are solved, which are
defined as

R /cpp
p [ , (7)1 2p00

where p00 5 1000 mb, and

T
u [ . (8)

p

To derive governing equations for these two variables,
we use the equation of state,

1 Definitions of terms and notation not presented in the text are
provided in the appendix.

p 5 r RT(1 1 r /«),a y (9)

with (2) and (3) to derive a prognostic pressure equation,

c ]u R cD lnp L Drpml j y pmly y5 2 2 2 . (10)1 2Dt c ]x c T R c Dtvml j vml m vml

Then, using (7) and (8), prognostic equations for p and
u are derived, yielding

c ]u R cD lnp R R L Drpml j y pmly y5 2 2 2 (11)1 2Dt c c ]x c c T R c Dtp vml j p vml m vml

and

Rc ]uD lnu R pml jm5 2 21 2Dt c c c ]xvml p vml j

cc L R R Drpmly y y y2 2 1 2 . (12)1 2[ ]c c T c c R Dtvml p vml p m

Equations (11) and (12) are used in the present model.
It is also worthwhile to point out that a different form
of the temperature equation can be derived by using
(10) to eliminate the divergence term on the right-hand
side of (3), yielding

DT 1 Dp L Dry y5 2 . (13)
Dt r c Dt c Dta pml pml

This equation is similar in form to that used in the fifth-
generation Pennsylvania State University–National
Center for Atmospheric Research Mesoscale Model
(MM5; Dudhia 1993).

The thermodynamic equations presented here differ
slightly from those used in most numerical models. Tra-
ditionally, the specific heats of water vapor and liquid
water are ignored in numerical models, so that Rm ù R,
cpml ù cp, and cvml ù cy , yielding the traditional potential
temperature equation,

D lnu L Dry y5 2 . (14)
Dt c T Dtp

However, it has been shown by several studies (e.g.,
Lipps and Hemler 1980; Tripoli and Cotton 1981; Ban-
non 2002) that these terms are necessary for accurate
conservation of total energy. Our approach has been to
retain all terms in the thermodynamic and pressure equa-
tions.

Due to the first term on the right-hand side of (12),
the potential temperature equation has a source term
even in the absence of phase changes. Thus, potential
temperature, as defined by (8), is technically not a con-
served variable when water (in any phase) is present.
It is interesting to note that an alternative definition for
nondimensional pressure given by

R /cm pmlp
p̃ [ (15)1 2p00

with a potential temperature defined as
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T
ũ [ (16)

p̃

results in the following prognostic equations:

]uD lnp̃ R R L R Drjm m y y y5 2 2 21 2Dt c ]x c c T c Dtvml j pml vml vml

D Rm1 lnp̃ ln and (17)1 2Dt cpml

D lnũ L Dr D Ry y m5 2 2 lnp̃ ln . (18)1 2Dt c T Dt Dt cpml pml

The final term on the right-hand side of (17) and (18)
is nonzero only when phase changes occur,2 since

c cD R R Dr Drpv plm y y lln 5 2 2 . (19)1 2 1 2Dt c R c Dt c Dtpml m pml pml

It could be argued that this definition of potential tem-
perature is preferable for use in a numerical modeling
system, since it is truly conservative in the absence of
moist processes. We have chosen not to use this form,
since the formulation of the pressure gradient in the
momentum equations becomes more complicated if p̃
is used instead of p; specifically, if the pressure gradient
terms were written as ] /]xi, additional terms involvingp̃
the spatial derivatives of ry and rc would be necessary.
We have also found that a model formulated with andp̃

is more expensive to run than a model using p andũ
u, with no perceptible improvements in accuracy.

b. Numerical techniques

The equations actually solved in the numerical model
are

](u u ) ]u]u ]p9i j ji 5 2 1 u 2 c ui p r]t ]x ]x ]xj j i

u ]Dr
1 d g 2 1 1 K (20)i3 d1 2u ]xr 0 i

](u p) ]u c ]u]p Rj j pml j
5 2 1 p 2 p

]t ]x ]x c c ]xj j p vml j

R cR L y pmly1 2 p ṙ (21)cond1 2c c u R cp vml m vml

](u u) ]u Rc ]u]u Rj j pml jm5 2 1 u 2 u 21 2]t ]x ]x c c c ]xj j vml p vml j

cc L R R pmly y y1 2 u 1 2 ṙ (22)cond1 2[ ]c c p c c Rvml p vml p m

2 The tendencies of and will also be nonzero is the presencep̃ ũ
of hydrometeor fallout, due to the Drl/Dt term.

](u r ) ]u]r j y jy 5 2 1 r 2 ṙ (23)y cond]t ]x ]xj j

](u r ) ]u]r j c jc 5 2 1 r 1 ṙ . (24)c cond]t ]x ]xj j

The advection terms are written as the sum of a flux-
form term and a divergence term [i.e., the first two terms
on the right-hand side of (20)–(24)]. Writing the ad-
vection terms in this way, as opposed to the advective
form [second term on the right-hand side of (6)], can
sometimes improve conservation of the variable being
advected in a numerical model (e.g., Wilhelmson and
Chen 1982; Dudhia 1993), although Xue and Lin (2001)
point out that it is sometimes possible to formulate an
advective form that is numerically equivalent to the flux
form with similar conservative properties. However, it
should be stressed that not all terms are written in a
conservative form, so the numerical model does not
exactly conserve mass, momentum, or energy.

In (20), the subscript ‘‘0’’ refers to a hydrostatic base
state that varies only in the z direction, and primes refer
to deviations from this base state. The hydrostatic equa-
tion governing the base state is

dp g0 5 2 . (25)
dz c up r 0

The density potential temperature, ur (Emanuel 1994,
p. 113), is defined as

(1 1 r /«)yu 5 u . (26)r (1 1 r )t

Following the technique introduced by Klemp and
Wilhelmson (1978), the portions of the governing equa-
tions that support acoustic waves are integrated on a
smaller time step than other terms. The final term on
the right-hand side of (20) is a divergence damper, where
Kd is a constant and D 5 ]uj/]xj; this term helps main-
tains stability of the time-splitting technique (Skamar-
ock and Klemp 1992). For the simulations presented
here, the model is integrated with third order Runge–
Kutta time differencing and fifth-order spatial deriva-
tives for the advection terms (following Wicker and Ska-
marock 2002).

To account for phase changes, the model uses a sat-
uration adjustment technique, similar to that proposed
by Soong and Ogura (1973). In this technique, the equa-
tions are advanced forward in two steps: a dynamical
step and a microphysical step. In the dynamical step,
the model equations are integrated forward with all
terms involving phase changes neglected. Then, the mi-
crophysics step is applied, in which only the terms in-
volving phase changes are included. This technique is
identical to that used by Klemp and Wilhelmson (1978).

Pressure tendencies due to phase changes are included
in the microphysics step. Since changes in pressure af-
fect the saturation vapor pressure, an iterative scheme
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FIG. 1. Results of the dry thermal simulation for u0 5 300 K. (a)
Perturbation potential temperature (u9) is contoured every 0.2 K, and
the zero contour is omitted. (b) Vertical velocity is contoured every
2 m s21, and negative contours are dashed.

had to be developed for condensation. In this iterative
scheme, equations (21)–(24) are advanced forward us-
ing a guess for ṙcond. The new values of u and p are
then used to calculate a new value of saturation mixing
ratio (rvs), which is then used to calculate a new guess
for ṙcond. This cycle is repeated until the newest value
of u converges (to within machine accuracy) to the pre-
vious value. During each iteration, the value of ṙcond is
determined by the following equation from Rutledge
and Hobbs (1983),

r 2 ry vsṙ [ , (27)cond
2L ry vsDt 1 1

21 2c R Tp y

where Dt is the time step. The iterative technique usually
converges in 4–6 iterations.

The ability of the model to conserve mass and energy
is evaluated by calculating the total mass (rt) and the
total energy (Et) in the domain during a model integra-
tion, where

r [ r (1 1 r ) and (28)t a t

E [ r c T 1 c r T 1 c r T 2 L rt a y vv y pv l y l[
1

2 2 21 (1 1 r ) (u 1 y 1 w ) 1 (1 1 r )gz .t t ]2

(29)

The dry air density, ra, is determined using the equation
of state, (9). The definition of total energy used here is
the sum of internal, potential, kinetic, and latent ener-
gies—it differs from that used in other studies by the
inclusion of the latent energy, which is required to ac-
count for the effects of moist processes. For simulations
with no flow across the boundaries, and without external
sources of mass, momentum, or energy, the domain-
total sum of rt and Et should, theoretically, remain con-
stant over time.

3. The dry simulation

A simulation presented by Wicker and Skamarock
(1998) was chosen as the dry reference case. The sim-
ulation is two-dimensional, with a domain height of 10
km and width of 20 km. Rigid wall boundary conditions
are specified on all four sides of the domain. The initial
unperturbed environment is calm (zero initial winds ev-
erywhere), hydrostatic, and neutrally stable, defined by
a constant potential temperature of 300 K. The initial
value of pressure at the surface is 1000 mb, and the
initial vertical pressure field is obtained by integrating
the hydrostatic equation upwards. A warm perturbation
is placed at the center of the domain, which is specified
by

pL
2u9 5 2 cos , (30)1 22

where

2 2x 2 x z 2 zc cL 5 1 , (31)1 2 1 2! x zr r

xc 5 10.0 km, zc 5 2.0 km, and xr 5 zr 5 2.0 km. No
physical or computational diffusion is applied.

Results of a simulation with 100-m grid spacing after
1000 s of integration are presented in Fig. 1. Similar to
the results of Wicker and Skamarock (1998), the thermal
rises and expands over time. Two ‘‘rotors’’ develop on
the sides of the thermal, while the top of the thermal is
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FIG. 2. Vertical velocity for dry thermal simulations when (a) u0

5 270 K, and (b) u0 5 240 K. Contour interval is 2 m s21; negative
contours are dashed.

stretched. Large u gradients develop in the middle of
the thermal (i.e., within the ‘‘arch’’ spanning between
the two rotors).

An interesting extension of this benchmark simulation
that, to our knowledge, has not been presented before,
is the relative independence of the results to the base-
state value of potential temperature. Specifically, if the
initial unperturbed state is hydrostatically balanced and
neutrally stable, and if an identical initial buoyancy per-
turbation is applied, the results are similar no matter what
value of potential temperature is used. For example, Fig.
2 presents the results of simulations where initial envi-
ronments of 240 and 270 K are used. In all cases, an
identical initial buoyancy perturbation is applied, where
buoyancy for the dry case can be defined as

u9
B 5 g . (32)

u0

For identical initial buoyancy profiles in the two sim-
ulations, the specification of initial potential temperature
perturbation is given by

u9|300u9 5 u , (33)0 300 K

where u0 is the reference value of potential temperature
for the new simulation, and u9 | 300 is the perturbation
potential temperature field from the 300-K simulation
given by (30). The results displayed in Fig. 2 are very
similar to the 300-K reference simulation. Although the
fields from these various simulations are not exactly the
same, the key point is that the thermal has the same
structural details, suggesting a relative independence to
the exact thermodynamic value of the neutrally stable
base state. Therefore, this property of the solution pro-
vides a benchmark for testing new model formulations.

4. The moist simulation

Seeking to obtain a similar result for a moist atmo-
sphere, we again specify the initial environment to be
hydrostatic and characterized by exactly neutral stabil-
ity. In the dry case, it is possible to define neutral sta-
bility based on only one thermodynamic variable—po-
tential temperature. However, a moist atmosphere is not
as simple. To simplify the specification of the moist base
state, two assumptions are made: 1) the total water mix-
ing ratio is constant at all levels, that is, rt 5 ry 1 rc

5 constant; and 2) phase changes are exactly reversible,
that is, Dry 5 Drvs 5 2Drc. Under these two assump-
tions, a neutrally stable environment can be obtained
using one conservative thermodynamic variable (see,
e.g., Durran and Klemp 1982). We use the wet equiv-
alent potential temperature, defined for a reversible
moist adiabatic atmosphere by

2R /(c 1c r )p pl tp L rd y yu 5 T exp (34)e 1 2 [ ]p (c 1 c r )T00 p pl t

(Durran and Klemp 1982; Emanuel 1994, p. 120), where
Pd is the partial pressure of dry air. Using (25), (26),
and (34), the vertical profiles of p, u, ry , and rc can be
obtained if values for ue and rt are provided. The value
of rt must be greater than rvs at all levels, so that the
initial sounding is saturated, and rc . 0 at all levels.

All other parameters are the same as for the dry case,
that is, the surface pressure is 1000 mb, the initial wind
field is zero, grid spacing is 100 m, and the domain
dimensions are as before. No microphysics parameter-
ization is used, other than the assumption of reversible
phase changes. Precipitation fallout is not allowed.

The following simple test can be performed using a
numerical model to prove that the initial state has been
computed accurately, and that the model is configured
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FIG. 3. Results of the moist thermal simulation for ue 5 320 K
and rt 5 0.020. (a) Perturbation wet equivalent potential temperature
( ) is contoured every 0.5 K. The zero contour is omitted. (b) Verticalu9e
velocity, contoured every 2 m s21.

properly for the benchmark simulation: if no buoyancy
perturbation is applied to the model’s initial conditions,
then no motions should arise. In practice, we have found
that small vertical motions (of order 1024 m s21) may
develop during this test due to truncation errors in the
vertical momentum equation (particularly in the balance
between the vertical pressure gradient term and the
buoyancy term) and/or in the microphysics code (par-
ticularly the code that handles condensation), although
the present model has been carefully coded so that no
vertical motions develop.

For the complete moist thermal simulation, the initial
buoyancy field is identical to the dry benchmark case
when u0 is 300 K. For moist conditions, buoyancy is
given by

urB 5 g 2 1 . (35)1 2ur 0

Therefore, using (35) for the moist case, (32) for the
dry case, and the definition of ur, the initial u field is:

(1 1 r ) u9|t 300u 5 u 1 1 . (36)r 0 1 2(1 1 r /«) 300 Kvs

Since it has been assumed that rt 5 constant, and ry 5
rvs(p, T), the buoyant perturbation has slightly more
water vapor and slightly less cloud water than the base-
state sounding.

The results after 1000 s of integration for a case in
which ue 5 320 K and rt 5 0.020 are presented in Fig.
3. The results of this moist case are very similar to the
results of the dry case (Fig. 1), especially with regards
to the structural details such as the two rotors that form
on the sides of the thermal and the thin arch that con-
nects them. The moist thermal rises slightly faster than
the dry thermal, and after 1000 s the vertical velocity
field has higher maximum and minimum values. Nev-
ertheless, the structural details are remarkably similar.

It is important to reiterate that the model formulation
for this simulation does not neglect any term in the
governing equations. In particular, the specific heat of
liquid water (cpl) is included, and the diabatic contri-
bution to the pressure equation is included; it is a com-
mon assumption in numerical models to neglect these
two effects. Furthermore, the error in total mass and
energy conservation is quite small (about 1024 %), es-
pecially compared to model formulations that ignore
certain terms in the governing equations (which will be
presented in the next section). Given this high degree
of accuracy in mass and energy conservation, and the
similarity to the dry case, it seems reasonable that this
case can be considered a moist benchmark to which
moist numerical models can be compared. Additionally,
as in the dry case, the simulation proposed here is re-
markably insensitive to the values used to define the
initial neutrally stable sounding. For example, Fig. 4
shows the results from simulations with ue 5 360 K
and rt 5 0.024, and a case with ue 5 280 K and rt 5

0.004. Again, the results are nearly identical. These re-
sults show that the design of the moist simulation is
robust, that is, the correct result is not dependent on a
specific initial thermodynamic environment. This is an
important point, since it provides further confidence that
the results of the simulation truly represent a benchmark
solution.

5. Sensitivity to model formulation

a. Governing equations

The assumptions of reversible phase changes and the
absence of hydrometeor fallout clearly make this test
case a simplification of reality. However, we have found
the case to be valuable for testing the formulation of
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FIG. 4. Results of moist thermal simulations for: (a) ue 5 360 K
and rt 5 0.024; and (b) ue 5 280 K and rt 5 0.004. Vertical velocity
is contoured every 2 m s21.

TABLE 1. Summary of thermodynamic and pressure equations.

Equation set Thermodynamic equation Pressure equation

A
Du Ly5 ṙcondDt c pp

]uDp R j
5 2p

Dt c ]xy j

B
Du Ly5 ṙcondDt c pp

]uDp R RL Rj y y5 2p 1 2 p ṙcond1 2Dt c ]x c c u cy j p y y

C
cDu c L R R pmly y y5 2 u 1 2 ṙcond1 2[ ]Dt c c p c c Rp vml vml p m

c ]u RR cDp R RLpml j y pmly5 2p 1 2 p ṙcond1 2Dt c c ]x c c u c R cp vml j p vml p m vml

D
Duil 5 0
Dt

]uDp R j
5 2p

Dt c ]xy j

numerical models, such as defining the governing equa-
tions of the model, and for testing numerical techniques
involving moist terms. As an example, four different
model formulations are tested and presented in this sec-
tion. Three of these model formulations are found in
the literature. The fourth ignores a term that scale anal-
ysis suggests has negligible effects on the potential tem-
perature tendency. In all of these cases, only the ther-
modynamic equation and/or pressure equation is mod-
ified.

The four equation sets are summarized in Table 1.
Equation set A makes two approximations that are com-
monly used in nonhydrostatic cloud models: the diabatic
contribution to the pressure equation is ignored, and the
specific heats of water vapor and liquid water are ne-
glected. This equation set is similar to that used in the
Klemp–Wilhelmson model (Klemp and Wilhelmson
1978), in the Penn State–NCAR Mesoscale Model
(MM5; Dudhia 1993), and in the Advanced Regional
Prediction System (ARPS; Xue et al. 2000), as well as
several other numerical models. For equation set B, only
the specific heats of water vapor and liquid water are
neglected in the thermodynamic and pressure equations.
Since the diabatic contribution to the pressure equation
is included, this equation set conserves mass. This for-
mulation is similar to that used in the Coupled Ocean–
Atmosphere Mesoscale Prediction System (COAMPS;
Hodur 1997), and in some respects is similar to models
that integrate a density equation rather than a pressure
equation (e.g., the Weather Research and Forecasting
(WRF) model, Skamarock et al. 2001). In equation set
C, the specific heats of water vapor and liquid water are
included, as is the diabatic contribution to the pressure
equation, but the term involving divergence in the ther-
modynamic equation [first term on the right-hand side
of (12)] is neglected; scale analysis suggests that this
term is small and, therefore, negligible. To our knowl-
edge, this equation set has not been used in the literature,
but is included here as an example of how approximate
forms of the governing equations can be tested numer-
ically. Equation set D uses the ice–liquid water potential
temperature (uil) of Tripoli and Cotton (1981) for the
thermodynamic equation, where uil is defined as
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FIG. 5. Vertical velocity from moist thermal simulations for various model formulations: (a) equation set A, (b) equation set B, (c)
equation set C, and (d) equation set D. See text and Table 1 for details. Contour interval is 2 m s21.

21L ry 0 lu [ u 1 1 , (37)il 1 2c max(T, 253)p

where rl is the liquid water mixing ratio (which is simply
rc in the benchmark simulation), and the ice phase has
been ignored. Equation set D also neglects the diabatic
contribution to the pressure equation, and the specific
heats of water vapor and liquid water in the pressure
equation. This equation set is similar to that used in
Regional Atmospheric Modeling System (RAMS) (Piel-
ke et al. 1992) and in the University of Wisconsin Non-
hydrostatic Modeling System (Tripoli 1992).

Before proceeding, it should be noted that all of the
equations listed in Table 1 become identical to the
‘‘benchmark’’ equations in the absence of water. There-
fore, simulations of the dry thermal case (section 3) are
identical for all model formulations presented here.
However, if water vapor is present but no liquid water
develops (i.e., phase changes either do not occur or are
not allowed), then the various equations sets are not
identical. This is because the terms involving divergence
in the thermodynamic and pressure equations [second

terms on the right-hand side of (11) and (12)] only go
to zero when water vapor and liquid water mixing ratios
are zero.

For these simulations, the initial environment is de-
fined by ue 5 320 K and rt 5 0.020. The results in Figs.
5 and 6 clearly show the dramatic impact of neglecting
terms from the complete thermodynamic and pressure
equations—none of the simulations using approximate
equations compare well with the benchmark solution
(Fig. 3). In all of these cases, the thermal rises much
slower than the thermal in the benchmark run, which
reaches about 8.2 km. In the ue fields, large undershoots
(i.e., anomalously low values, depicted by dashed con-
tours in Fig. 6) develop in all cases.

Other useful conclusions can be drawn from these
results. In particular, the w and ue fields from runs A
and B are very similar. Both thermals rise to ;6.9 km,
and the vertical motion patterns are nearly identical.
This result suggests that the extra effort required to con-
serve mass in a numerical model (by including the dia-
batic contribution to the pressure equation) may not lead
to significant improvements in results unless total en-
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FIG. 6. As in Fig. 5, except for perturbation wet equivalent potential temperature ( ). Contour interval is 0.5 K; negative contours areu9e
dashed. The zero contour is omitted. Near the right-hand side of each panel, the height of the top of the thermal is indicated, along with
the height of the top of the thermal from the benchmark (BM) simulation.

ergy is also conserved (as in the benchmark). Despite
the similarity of the w and ue fields, the time series of
mass and energy errors are dramatically different (Fig.
7). The time series for run A (the short-dashed lines in
Fig. 7) has an oscillatory nature, with a period of about
62 s. In contrast, the same time series for run B (dotted
lines in Fig. 7) evolves smoothly, with only very minor
changes through the simulations. Furthermore, run A
loses considerable mass and energy throughout the sim-
ulation, with a total mass error that is about 30 times
greater than the mass error in the benchmark simulation
after 1000 s. Run B has nearly identical mass errors to
the benchmark simulation, and has a slight increase in
total energy. It is unclear how such dramatically dif-
ferent runs in terms of mass and energy errors can have
such similar dynamic and thermodynamic fields (e.g.,
Figs. 5 and 6).

The results from run C were surprising. Among all
the simulations, this run least resembles the benchmark
case. The thermal only reached 5.8 km, and the vertical
motion pattern is quite different from the other runs.

However, it is interesting to note that mass and energy
errors from run C are comparable to those in the bench-
mark simulation (Fig. 7). Apparently, this formulation
produces unacceptable results due to an approximation
that was made in only one equation, without making a
consistent approximation in another equation. Perhaps
a ‘‘counterbalancing’’ assumption in the pressure equa-
tion would improve the results. It is worthwhile to note
that other equations sets make consistent approxima-
tions throughout, for example, in equation set B, the
specific heats of water are ignored in every equation.
On the other hand, equation set A ignores a term in the
pressure equation, but does not make a counterbalancing
approximation in any other equation, yet the results from
equation set A are more acceptable than the results from
equation set C. Whatever the reason behind the poor
results of equation set C, this test highlights the danger
of neglecting terms that may seem unimportant under
a scale analysis.

The simulation that used uil as the governing variable
(run D) produced w and ue fields that most closely match
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FIG. 7. Time series of (a) total mass error, and (b) total energy error from simulations using
the five equations sets. Error is expressed as 1024 % of the total mass/energy at the beginning
of the simulation.

the benchmark result. The thermal reaches ;7.6 km,
and becomes only slightly distorted in shape. Although
the results from the run D formulation are encouraging,
this formulation has the largest total mass and total en-
ergy errors out of all runs presented here (Fig. 7). On
the other hand, uil has other advantages that are not
revealed by this test case. As discussed by Tripoli and
Cotton (1981), uil is an appropriate variable to use in
mixing terms for subgrid-scale turbulence closures. The
test case that has been presented here does not include
subgrid turbulent processes, nor is a constant back-

ground mixing coefficient added. Background mixing
was avoided here in order to focus on the formulation
of the governing equations, and to highlight the im-
portance of mass and energy conservation in numerical
models. It is possible that any disadvantages of uil that
are revealed by this simulation are superceded by a more
accurate representation of mixing processes.

Although the model used in this paper does not ex-
actly conserve mass, momentum, or energy, the results
strongly suggest that conservation of these basic vari-
ables can be necessary to obtain accurate results in some
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instances. This result supports the need to construct nu-
merical models around conservation principles, which
is the driving principle behind several recent model de-
velopment efforts (e.g., Ooyama 2001; Skamarock et
al. 2001; Satoh 2002).

The results of this section suggest that the form of
the governing equations used in a numerical model may
have a profound effect on the simulation of deep, moist
convection. On the other hand, one might wonder
whether these results only come about due to the un-
physical initial environment that must be used to obtain
the benchmark solution. Despite the unphysical aspects,
this design is required in order for a benchmark solution
to be obtained—without this setup, a ‘‘correct’’ solution
would not be known, and it would be impossible to
objectively evaluate the various model configurations.

Another potential criticism of the simulations pre-
sented in this section is the value chosen for rt, which
is abnormally high for the imposed temperature sound-
ing. A comparison of simulations with different values
for ue and rt reveals that the differences presented here
(Figs. 5 and 6) are accentuated over those one would
expect to find in more ‘‘normal’’ environments. Nev-
ertheless, it is clear that the mass-conserving and en-
ergy-conserving form of the thermodynamic and pres-
sure equations can produce the desired results in all
environments, and that these equations should be pre-
ferred over approximate equation sets.

We have conducted additional simulations using re-
alistic initial environments (e.g., conditionally unstable
and subsaturated initial conditions) to address whether
the conclusions drawn from this paper hold for more
typical uses of numerical models. We have simulated
several forms of deep moist convection, including mul-
ticell thunderstorms, supercells, and squall lines using
the three-dimensional numerical model with the various
equation sets. For these simulations, the Kessler micro-
physics parameterization is used, hydrometeor fallout is
allowed, and a complete subgrid turbulence model is
included. Overall, results using the five equation sets
are similar. In particular, convective organization is not
modified in the any of the tests we have performed (e.g.,
all of the simulations with environments favoring su-
percells do produce supercells). However, some of the
conclusions noted in this paper are evident in subtle
ways. For example, the simulations with the mass- and
energy-conserving equation set tends to have the stron-
gest updrafts, the highest cloud tops, and the most rain-
fall. Simulations with the benchmark equation set tend
to have about 10% more rainfall than simulations with
equation set A. Based on these results, we have con-
cluded that the form of the governing equations used
in a numerical model does have an impact on the results,
although perhaps a small impact for most uses.

b. Numerics and assumptions

The moist benchmark simulation proposed here can
also be used to test other components of the modeling

system. For example, we tested whether saturation ad-
justment was necessary on the Runge–Kutta time steps.
In one case, saturation adjustment was applied once,
after the three Runge–Kutta steps were advanced with
only dry processes. This simulation was compared to
one in which saturation adjustment was applied during
each of the three Runge–Kutta steps. The results were
nearly identical. Since the former approach is consid-
erably less expensive, we have decided to retain this
method in our modeling system.

In another test, we replaced the unapproximated
buoyancy term [fourth on the right-hand side of (20)]
with the following commonly used approximate for-
mulation for buoyancy:

u9
B ù g 1 0.61r9 2 r9 . (38)y l1 2u0

Again, the results were nearly identical to the bench-
mark simulation, confirming the usefulness of this ap-
proximation. These are just a few examples of the utility
of the proposed benchmark simulation.

6. Summary and conclusions

A simulation has been designed to evaluate moist
nonhydrostatic numerical models. The simulation shares
many common characteristics with a dry benchmark
simulation that has been used in previous studies. Given
a statically stable initial environment, with an identical
initial buoyancy perturbation, the moist simulation pro-
duces qualitatively similar results to the dry simulation,
such as nearly identical structural details. Also, like the
dry case, the moist simulation is virtually independent
of the exact thermodynamic values of the initial state,
provided the environment is neutrally stable. For these
reasons, this experimental design is considered to be a
benchmark that can be used to evaluate the design of
moist nonhydrostatic numerical models.

Using this benchmark, it was shown how the for-
mulation of governing equations can impact the evo-
lution of a rising thermal. Some results obtained from
these tests include:

• Both mass-conserving and energy-conserving equa-
tion sets were required to produce acceptable results.

• When using a common form of the thermodynamic
equation, the inclusion of a mass-conserving pressure
equation did not improve the result.

• The neglect of one typically small term from the ther-
modynamic equation unexpectedly produced the
worst results, highlighting the danger of using scale
analysis to neglect terms from the governing equa-
tions.

• The results of a simulation using ice–liquid water po-
tential temperature (Tripoli and Cotton 1981) was
closest to the benchmark solution, despite having the
largest total mass and total energy errors.
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The benchmark case is limited for several reasons,
including neglect of physical and computational mixing,
neglect of ice phase, neglect of hydrometeor fallout, and
assumed reversibility of phase changes. Despite these
limitations, we have found this case to be extremely
useful for evaluating the accuracy and efficiency of nu-
merical techniques and assumptions in a numerical mod-
el with moisture.
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APPENDIX

Definition of Constants and Thermodynamic Vari-
ables Not Defined in the Text

Vari-
able

Description Value or definition

cp Specific heat of dry air
at constant pressure

1004 J kg21 K21

cpl Specific heat of liquid
water at constant pres-
sure

4186 J kg21 K21

cpml Specific heat of moist air
at constant pressure

cpml 5 cp 1 cpvry

1 cplrl

cpv Specific heat of water
vapor at constant pres-
sure

1885 J kg21 K21

cy Specific heat of dry air
at constant volume

717 J kg21 K21

cvml Specific heat of moist air
at constant volume

cvml 5 cy 1 cvvry

1 cplrl

cvv Specific heat of water
vapor at constant volume

1424 J kg21 K21

g Acceleration due to
gravity

9.81 m s22

Ly Latent heat of vaporiza-
tion

Ly 5 Ly0 2 (cpl 2 cpv)
(T 2 T0)

Ly0 Reference value of Ly 2.5 3 106 J kg21

rl Liquid water mixing ra-
tio

rl 5 rc in this work

R Gas constant of dry air 287 J kg21 K21

Rm Gas constant of moist air Rm 5 R 1 Ry ry

Ry Gas constant of water
vapor

461 J kg21 K21

T0 Reference temperature 273.15 K
« Ratio of R to Ry « 5 R/Ry
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