VOL. 46, NO. 11

JOURNAL OF THE ATMOSPHERIC SCIENCES

Improving the Anelastic Approximation

DALE R. DURRAN
Department of Atmospheric Sciences, University of Washington, Seattle, Washington

(Manuscript received 11 August 1988, in final form 7 November 1988)

ABSTRACT

A new diagnostic equation is presented which exhibits many advantages over the conventional forms of the
anelastic continuity equation. Scale analysis suggests that use of this “pseudo-incompressible equation” is justified
if the Lagrangian time scale of the disturbance is large compared with the time scale for sound wave propagation
and the perturbation pressure is small compared to the vertically varying mean-state pressure. No assumption
about the magnitude of the perturbation potential temperature or the strength of the mean-state stratification
is required.

In the various anelastic approximations, the influence of the perturbation density field on the mass balance

is entirely neglected. In contrast, the mass-balance in the “pseudo-incompressible approximation” accounts for
those density perturbations associated (through the equation of state) with perturbations in the temperature
field. Density fluctuations associated with perturbations in the pressure field are neglected.

The pseudo-incompressible equation is identical to the anelastic continuity equation when the mean strati-
fication is adiabatic. As the stability increases, the pseudo-incompressible approximation gives a more accurate
result. The pseudo-incompressible equation, together with the unapproximated momentum and thermodynamic
equations, forms a closed system of governing equations that filters sound waves. The pseudo-incompressible
system conserves an energy form that is directly analogous to the total energy conserved by the complete
compressible system.

The pseudo-incompressible approximation yields a system of equations suitable for use in nonhydrostatic
numerical models. The pseudo-incompressible equation also permits the diagnostic calculation of the vertical
velocity in adiabatic flow. The pseudo-incompressible equation might also be used to compute the net heating
rate in a diabatic flow from extremely accurate observations of the three-dimensional velocity field and very
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coarse resolution (single sounding) thermodynamic data.

1. Introduction

Researchers studying small-scale atmospheric cir-
culations frequently approximate the full equation of
continuity with the anelastic continuity equation

V-(pV)=0, (1)

where V is the three-dimensional velocity vector, phys-
ical height is the vertical coordinate, and p is defined
in one of two different ways. These different definitions
for p are not equivalent and result from different ver-
sions of the anelastic approximation.

Equation ( 1) was first discussed by Batchelor (1953),
who defined p (z) to be the density in an adiabatically
stratified, horizontally uniform reference state. The
name ‘“‘anelastic”” was coined by Ogura and Phillips
(1962) who derived (1), together with approximate
momentum and thermodynamic equations, through a
rigorous scale analysis. Their scaling analysis assumes:
first, that all deviations of the potential temperature 660
from some constant mean value © are small, and sec-
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ond, that the time scale of the disturbance is similar
to the time scale for gravity wave oscillations. As a
consequence of the first assumption, their definition
of p is identical to Batchelor’s. Hereafter, the approx-
imate equations described by Ogura and Phillips will
be referred to as the “original anelastic approximation.”
An important attribute of the original anelastic system
is that it does not support sound waves, allowing the
governing equations to be numerically integrated using
a much larger time step than that required to integrate
the complete compressible system. The original an-
elastic system also conserves energy.

One advantage of the rigorous scaling arguments
presented by Ogura and Phillips is that they allow one
to estimate the validity of the approximation without
actually solving the equations. The terms that are ne-
glected in the original anelastic equations are an order
€ = §6/0 smaller than those which are retained. Thus
in the case of dry convection, where mixing will keep
the environmental lapse rate close to adiabatic, ¢ will
be small and the anelastic equations can be used to
represent nonacoustic modes with complete confi-
dence. If the phenomenon of interest is deep moist
convection or gravity wave propagation, however, the
mean-state stability can be sufficient to make e rather
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large. As an example, the 66 across a 10 km deep iso-
thermal layer is approximately 40% of the mean ©. In
such a case, the a priori error estimates obtained from
the original anelastic scaling analysis are rather dis-
couraging.

Since some of the largest errors in the original an-
elastic approximation are generated by deviations of
the mean-state potential temperature from a constant
reference value, several authors (Dutton and Fichtl
1969; Gough 1969; Wilhelmson and Ogura 1972; Lipps
and Hemler 1982) have presented alternative “sound-
proof” equations in which the thermodynamic vari-
ables associated with the adiabatic reference state are
replaced with their values in the actual mean state.
Although these authors make different approximations
in the momentum equations, and thus derive different
“anelastic” systems, they all obtain a continuity equa-
tion of the form (1) in which p (z) is defined as the
density in the actual (nonadiabatic ) mean state. Here-
after, when p is defined with respect to the actual mean
state, (1) will be referred to as the “modified anelastic
continuity equation” in order to distinguish it from
the original anelastic continuity equation proposed by
Ogura and Phillips (1962). In this paper, the behavior
of the modified anelastic continuity equation will be
examined in connection with the particular set of ap-
proximate governing equations (hereafter, the “mod-
ified anelastic system”) proposed by Wilhelmson and
Ogura (1972). The Wilhelmson~Ogura system is not
necessarily the “best” of the various approximate sys-
tems that include the modified anelastic continuity
equation; for example, the system developed by Lipps

and Hemler (1982) has better energy conservation .

properties. Wilhelmson and Ogura, however, write the
momentum equations in a form that is convenient for
comparison with the original anelastic and the pseudo-
incompressible systems, and their equations have been
widely used in numerical models.

It is difficult to construct a priori estimates of the
error associated with the various soundproof systems
involving the modified anelastic continuity equation,
because most of these systems have not been derived
through a consistent scale analysis. The system pro-
posed by Lipps and Hemler (1982) is the exception,
but in this case one scaling assumption is that df/dz
is small, a condition that is not well satisfied in very
stable regions like the stratosphere. In this paper, we
demonstrate that sound waves can be filtered from the
governing equations with minimal approximation by
replacing the compressible continuity equation with
the “pseudo-incompressible equation”

V- (GOV) =, @)

Cp
where p(z) and 6(z) are the vertically varying
mean-state density and potential temperature, 7(z)
= (p(2)/ po)*/% is the mean-state Exner function, and
H is the rate of heating per unit volume. No significant
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modifications are required in the other governing
equations. The primary difference between (1) and (2)
is the presence of the mean potential temperature inside
the divergence operator in the pseudo-incompressible
equations, In the limit e = O, when the original anelas-
tic continuity equation must hold, (2) reduces to (1)
because df/dz and the heating become negligible.

The remainder of this paper is organized as follows.
Section 2 discusses the derivation of the pseudo-in-
compressible equation (2) through scale analysis. The
physical nature of this approximation is discussed in
section 3. Section 4 provides a quantitative comparison
of the pseudo-incompressible and anelastic continuity
equations. The energy conservation properties of the
pseudo-incompressible and anelastic systems are com-
pared in section 5. Practical applications of the pseudo-
incompressible approximation are discussed in section
6. Section 7 contains the conclusions.

2. Derivation of the pseudo-incompressible equation
through scale analysis

The equation of state for dry air may be written

T = (p% pa)R/%. (3)
Taking the logarithm and total derivative of (3) yields
& Dr_1Dp 1Db @

Rre Dt p Dt 6 Dt

where
D 9 i} d i)

Tt U— v W,
o Yty e

Substitution from the continuity and thermodynamic

equations into (4) gives

(5)

Let the total thermodynamic fields be divided into a
vertically varying mean state and a perturbation as fol-
lows:

w(z)+ 7 (x,y,z,1);
(z)+p'(x, ¥, 2, t);
(z)+0(x,p,z,1).

T
p
(]

DI

Substituting for p# from the equation of state (3), and
assuming that 7’ < 7, (5) may be approximated as

v D’
C T V.V= RH

Rz Dt ' Ri dz cppoT R’

cowdn

(6)

If the first term in (6) can be neglected, the equation
of state for the mean fields may be used to write the
remaining terms as
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w dpb H
2 yv.v= 7
pb dz TV (7

b7’
which is equivalent to the pseudo-incompressible
equation (2). Therefore, let us examine the circum-
stances under which the first term in (6) is negligible.
Since the heating rate has no essential influence on this
question we temporarily assume that the flow is adi-
abatic.

Define the following scales and nondimensional
variables: (x, y) = L(x*, y*), z = Dz*, (u, v) = U(u¥,
v¥), w=Ww* 0 =00*% 7 =1.-7*% o = Pr*, t = Tt*
In the preceding, 7 is a Lagrangian time scale
and unity is the scale for w. Suppose O(du/dx)
= O(dw/9z), so that U/L = W/D, then the nondi-
mensional adiabatic form of (6) can be written
CP@P'*E fijﬁ dr* _g *, V* =
c2T Dt*  RL 7* dz* + L vev 0.

(8)

where V* is the divergence in nondimensional coor-
dinates and ¢, is the speed of sound in the basic-state.
The first term can be neglected with respect to the last
term when '

c,OP < U
5.
T " L

(9)

The nondimensional x-momentum equation can be
written

UDu*  ¢,0P g or*

7o P a0

(10)

In order to have a nontrivial balance in (10), the scale
for P may be chosen such that P = UL/(c,0T). Sub-
stituting for P in (9), one obtains the criteria

s L. (11)
Cs

Therefore, the use of the pseudo-incompressible equa-
tion is justified when the Lagrangian time scale asso-
ciated with the disturbance is much greater than the
time scale associated with sound wave propagation. The
only additional assumption which must be made is
that =’ < 7.

3. The pseudo-incompressible approximation

It has just been demonstrated that the pseudo-in-
compressible equation is a good approximation when
the Lagrangian time scale of the motion is much greater
than the time scale for sound wave propagation and =’
< 7. The following provides an alternative physical
interpretation of the approximation required to obtain
the pseudo-incompressible equation. Let us define a
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“pseudo-incompressible density” p* satisfying the

equation of state:
_ R R/cey
T = (-—-— p*ﬂ) .
Do

Equation (12) is identical to the full equation of state
(3) except that the total pressure 7 has been replaced
by the mean-state pressure w. Unlike the true density,
p* is unaffected by changes in the perturbation pressure
field. The term “pseudo-incompressible” has been
chosen because the response of p* to compression or
expansion is limited to that forced by changes in the
mean-state pressure.

Consider the following set of equations for an in-
viscid flow:

(12)

Du ar’

Zu 0= =0, 13
o ot el o-=0 (13)
Dv o'
v om _ 14
b Hut G =0, (14)
Dw o 0
hedid o _ .2 1
D Tl T8 (15)
Dh__H ()
Dt ¢, p*m
Dp* -
V.-V=0 17
D +p (17)

Equations (13)-(15) are identical to the momentum
equations in the complete compressible system (note
that although the hydrostatically balanced mean-state
pressure has been removed, the pressure-gradient term
has not been linearized ). Equation (16) is identical to
the complete thermodynamic equation except that the
effects of the perturbation pressure field are ignored in
the coefficient of the heating term'. The essential dif-
ference between these equations and the complete
compressible system is found in (17), where the
pseudo-incompressible density has been substituted for
the true density in the mass balance.
The preceding system of equations can be simplified
by eliminating p*. Note that
p*0 = pb (18)
because the mean fields satisfy the equation of state.
This relationship can be used to replace p* by p8/0 in
the heating term in the thermodynamic equation. As
a slightly less trivial exercise, one can take the convec-

! This is consistent with an approximation commonly used in nu-
merical models in which the influence of #’ on H is neglected by
omitting the dependence of the saturation mixing ratio on the per-
turbation pressure (Withelmson and Ogura 1972).
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tive derivative of (18) and substitute, from (16) and
(17), to obtain

l{__p*gv v = wdPt
T dz

(19)

If (18) is used again, to replace p*6 by pfin (19), one

obtains the pseudo-incompressible equation (2).
Thus, the equatlons (2)and (13)-(16) (with p* re-

placed by p8/6 in the heating term in the thermody-

namic equation ) form a closed system of five equations

in the unknowns u, v, w, 8 and «’, and this system is
exactly equivalent to the set of equations (12)-(17).
Comparison of (12)~(17) with the complete equations
governing compressible fluid flow demonstrates that
the physical assumption, associated with the replace-
ment of the exact continuity equation with the pseudo-
incompressible form (2), is that the influence of per-
turbation pressure on perturbation density can be ne-
glected in the mass balance. Note that the pseudo-in-
compressible equation allows one to filter sound waves
and close the system of governing equations without
making any approximations in the momentum equa-
tions.

4. A comparison of the anelastic and pseudo-mcom-
pressible equations

The complete equation of continuity may be written

1 Dp
Dt+V V=0.

(20)

Equation (20) reduces to the modified anelastic
continuity equation when p~' Dp/ Dt is approximated
as(w/p)dp /dz. Thus, the physical approximation as-
sociated with the use of the modified anelastic continuity
equation is that the perturbation density field has no
influence on the mass balance. Similarly, the original
anelastic continuity equation may be obtained by con-
structing a mass balance which neglects all perturba-
tions about the density profile in the adiabatic reference
state. At least at a superficial level, these appear to be
stronger physical constraints than that associated with
the pseudo-incompressible approximation.

Further comparison of the anelastic continuity
equations with the pseudo-incompressible equation is
easiest when the flow is adiabatic. Therefore, the re-
mainder of this section will focus on the case of adi-
abatic flow. Diabatic effects will be specifically consid-
ered in section 6. The relations

1 dp N g

= ) = e,

p az g G

1 dpb
L (21)
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can be used to express the original anelastic continuity
equation as

g
V:V-w=S5=0, (22)
Sa
the modified anelastic continuity equation as
N2
v-v—w(—+%)=o, (23)
g &

and the new pseudo-incompressible equation (assum-
ing adiabatic flow) as
vV-v-wE =y,

5

(24)

where ¢, = (YRT)'/? is the-speed of sound in the mean
state and c;, is the speed of sound in the adiabatic ref-
erence state. The difference between the pseudo-in-
compressible and original anelastic forms lies in the
temperature dependence of the speed of sound At the
topofa 10 km deep isothermal layer, g/ c2 can be 40%
greater than g/c,%. The difference between the modified
anelastic continuity equation and the pseudo-incom-
pressible equation is contained in the term N?w/g; it
is surprising that the pseudo-incompressible form is
actually independent of the vertical gradient of poten-
tial temperature (i.e., the Brunt-Viisild frequency),
but the modified anelastic form is not. In an isothermal
atmosphere N?/g is roughly 40% of g/c2. Evidently
the difference between either (22) or (23) and the
pseudo-incompressible form (24) can be significant
when the mean stratification is very stable.

The anelastic continuity and pseudo-incompressible
equations can easily be compared against each other
by performing diagnostic calculations. Suppose that
the atmosphere is isothermal and the horizontal di-
vergence is constant with height (and the motion is
adiabatic). Equations (22)-(24) may be vertically in-
tegrated, subject to the condition w = O at the lower
boundary. The vertical velocity obtained from the
original anelastic continuity equation is

Vi Vi

H;
(1-z/H )Cc/R [1—(1~- z/Hs)cp/R],

(25)

Woa = —

where H; = ¢,0/g is the scale height in the reference
state and V.V, is the horizontal divergence. The
modified anelastic continuity equation yields the re-
lation

V.-V,
ma = — ——2 (1 — e~"1%) (26)
ae !
and the pseudo-incompressible equation gives
V-V, .
Wpi=—a—ze—_a—22(1—e #), (27)
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where «; and «; are defined in (21). At a height of 10
km in a 250 K atmosphere, the original anelastic ver-
tical velocity w,, exceeds the pseudo-incompressible
result w,; by 23.6%, and the modified anelastic vertical
velocity w,,, exceeds w,; by 26%. Which velocity is
correct? The true continuity equation is not a diagnostic
equation, so it does not allow any of these results to
be compared with the “true” solution. The actual ver-
tical velocity could perfectly satisfy either anelastic
continuity equation, or it could perfectly satisfy the
pseudo-incompressible equation, or it could be some-
thing completely different—in each case the imbalance
is accommodated by the density tendency Dp’/Dt.

Thus, one cannot determine the relative superiority
of (1) and (2) without reference to a complete solution
of the governing equations. Exact solutions to the
compressible equations are in short supply, but analytic
solutions are available describing the behavior of small
amplitude waves in an isothermal atmosphere. Let us,
therefore, examine the effects of each approximate
equation on the propagation of linear waves in an iso-
thermal atmosphere.

The governing equations for two-dimensional (x, z)
perturbations about a basic state at rest may be written

%"t—/+ c,,éi—’:— 0, (28)
%+cp5%=g%, (29)
%HI—I+QN2W’—O (30)

1%%'*‘%% Z—j—w'(%+62%—2)=0
,(31)

In the preceding, the flow is assumed to be adiabatic
and inviscid, and the Coriolis acceleration is neglected.
The basic-state variables p, 8, and 7 are functions of
z; perturbations are denoted by primes. The complete
linearized continuity equation is obtained by setting
01 =1,8,=01in(31); 6, = 8, = 0 gives the linearized
form of the pseudo-incompressible equation (2); and
6, = 0, 6; = 1 gives the linearized modified anelastic
equation (1). Discussion of the linear solutions to the
original anelastic equations will be deferred until the
end of this section.

It is useful to remove the effect of the decrease in
density with height by defining new variables

= \1/2 - \1/2
= (_p_) u', W= (L) w,
Po Po

=\1/2 . = \1/2
(o 2 (2
Po

=

£y, (32)
Po 0
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where pj is a constant reference density. In terms of
these new variables, the governing equations become

%+%+m=& (34)

g-t(?ﬂvzw:o, (35)

%%+%+%—@+M§y=a<%)
Here

In the case of an isothermal atmosphere, N2, ¢, and
T are constant, and solutions may be obtained of the

form
’ (ﬁy Wa 59 ;l') = (uO, Wo, 605 7TO)ei(k)ﬂ-mz—w‘)' (38)

Substituting (38) into the governing equations (33)-
(36) and eliminating 1, and 6, one obtains

NZ
(k2 - ;615 w2)7r0 + [wm + iw(F + 8, ?)]Wo =0,

(39)
(N? — w®)wy + (wm — iwD)my = 0. (40)

First consider the complete solution (the case §,
=1, 8, = 0). Equations (39) and (40) yield the dis-
persion relation

2 N2
w2=c—s[(k2+m2+r2+—2—>
2 Cs

N22
i[(k2+m2+1‘2+-2) -

S

4 N2k2 1/2
5 } } . (41)
Cs
The frequencies for sound waves are obtained by se-
lecting the positive sign in (41). The choice of the neg-
ative sign yields the dispersion relation for gravity
waves, which can be accurately approximated as
2 _ N2k2 '
k*+m?+ T2 + N?/¢?
The dispersion relation obtained using the pseudo-in-
compressible equation (5, = §, = 0) is
N3k?
K2+ m?2+T?°
Note that sound waves have been filtered out by the
pseudo-incompressible approximation. The error in

(43) will be negligible whenever m > N/c;,. In an iso-
thermal atmosphere this requires the vertical wave-

w

(42)

2 _
Wpi =

(43)
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length to be much less than 100 km, a condition easily
satisfied in most meteorological applications.

The dispersion relation associated with the modified
anelastic continuity equation (8, = 0, §, = 1) is

N%k?
k*+ m?>+T?*+TN?/g+ imN?/g’

This equation contains a more serious error. There will
be a spurious growth in the wave amplitude with time
because w?2,, is complex. How rapid is this erroneous
growth rate? One way to assess the practical importance
of the error is to consider steady-state waves forced by
air flowing over topography. Then the spurious growth
with time appears as a spurious increase in wave am-
plitude with height. If the basic-state cross-mountain
windspeed U, is constant, the dispersion relations for
steady waves may be obtained by replacing w with Upk
in (41)-(44).

The correct expression for the vertical wavenumber,

_Qﬁ)_ g

(44)

2 _—
Wma =

—— 4
¢ 4R*T*’ (43)
may be obtained from (41) using the fact that, in an
isothermal atmosphere,

:

N? = r

& _ g (=R
Cp To R To 2 Cp ’
The vertical wavenumber associated with the modified
anelastic continuity equation, obtained from (44) is

(46)

m, = — —&_
4 2cpTO
U02k2 g2 1/2
+|m?2— 7 TRe]Ty (+ca) . (47)

According to (47), the increase in wave amplitude with
height is

p 2 exp( ) (48)

4
2 Cp To
The wave amplitude in the correct solution increases
with height like p ~'/2. When T, = 250 K, the error,
in the modified anelastic amplitude, grows exponen-
tially to a value of 22% at 10 km. No spurious growth
‘is produced if one uses the pseudo-incompressible
equation [although there is a slight error in the vertical
wavelength as discussed in connection with (42)
and (43)].

At the beginning of this section, diagnostic calcu-
lations for w,,, and w,; were compared by integrating
" the modified anelastic continuity equation and the
pseudo-incompressible equation through a 10 km
depth in an isothermal atmosphere. The modified an-
elastic result exceeded the pseudo-incompressible result
by 26%. The preceding linear analysis, in which the
modified anélastic system gave rise to a 22% overesti-
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mate, suggests that most of this 26% difference can be
attributed to errors in the modified anelastic formu-
lation. Now consider the original anelastic system, and
recall that the diagnostically calculated w,, exceeded
wyi by 23.6%. Since w,, and w,,, differed by less than
3%, and since w,; is approximately correct while w,,,,
is at least 20% too large, it appears that the pseudo-
incompressible result is also more accurate than the
result obtained from the original anelastic continuity
equation.

The linearized versions of the original anelastic
equations may be obtained by specifying a constant
value for@ in (28)~(30), and modifying (31) by setting
0; = 6, = 0 and replacing ¢, with ¢,,. After these
changes, (28)-(30) have coefficients that are indepen-
dent of z, but (31) contains ¢, , which has a polyno-
mial dependence on z. As a consequence of this poly-
nomial dependence, the linear solution to the original
anelastic system will not exhibit the simple combina-
tion of exponential and periodic vertical structure
found in the previous solutions. The exact magnitude
of the error arising from this incorrect vertical structure
is hard to determine because it is difficult to obtain
closed form analytic solutions for the original anelastic
equations. The previously discussed diagnostic calcu-
lations suggest, however, that the error will be similar
to that obtained using the modified anelastlc approx-
imation.

5. Energy conservation

Before examining the fully nonlinear case, consider
the energy conservation properties of the linearized
equations (28)~(31). The perturbation energy equa-

tion for the complete compressible system (8, = 1, 8,
= (}) may be expressed
' OE"  dpu’  dp'w
- +—=0, 49
' ot ox 0z (49)
where E’ is the total perturbation energy
1 ﬁ 2 12 g 0'2 1 p
+ 0
E = 2(u +w N20) 2502’ (50)

and p' = cpﬁﬁr'. Use of the pseudo-incompressible
equation (8, = 6, = 0) leads to an identical perturbation
energy equation except that E’ is replaced by
- 2 pr2
! 1 ’ g 0
E, = 2(”2+w2+7v_2ﬁ) (51)
On the other hand, E; is not conserved if one uses the
modified anelastic continuity equation (6, = 0, 6, = 1),
in which case

dE,; dp'u'  dp'w' _ do
+ + =cprw L.
o | ox | ez PV 4

Energy conservation can be recovered if we return
to the original anelastic equations, from which one may

(52)
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obtain a perturbation energy equation of the form (49),
except that E' is replaced by

2 012
E:,,,=‘;—"(u'2+w'2+5——), (53)

N? 9?
where p,(z) is the density in an adiabatic reference
state with potential temperature ©. In addition, the
perturbation pressure appearing in the energy flux in
(49) is replaced by the less accurate approximation p’
= ¢,p,07’. As shown by Lipps and Hemler (1982),
energy conservation can also be obtained using the
modified anelastic continuity equation if the pressure
gradient terms in (28) and (29) are written as
c,d(07')/dx and c,d(fx")/dz. This system conserves
an energy form identical to E},;. One of the major rea-
sons that the system proposed by Lipps and Hemler
conserves energy is that it’s derived under the assump-
tion that d@/dz is small, thereby eliminating the trou-
" blesome energy source/sink term in (52).

Now consider energy conservation in a finite-am-
plitude inviscid, adiabatic flow. The original anelastic
equations, as presented by Ogura and Phillips (1962),
may be expressed as

o H 0 = O (54)
%‘Z’Jrc,,@%;_':o, (55)
20 g, (56)
%’;=0, (57)
V(p.V) =0, (58)

where 7' is the deviation of the Exner function pressure
from its value in the adiabatically stratified reference
state. As shown by Ogura and Phillips, these equations
conserve the energy form

!

E, = pa [%(u2 + 02+ w?)—gz %] . (59)

Unless the actual mean state is close to adiabatic, the
use of a constant O in the coefficient of the pressure
gradient can introduce significant errors in (54)-(56).
Wilhelmson and Ogura (1972) addressed this problem
by replacing © with the vertically varying mean state
6(z) in (54)-(56), by including the mean stratification
in (57), and by replacing (58) with the modified an-
elastic continuity equation. As discussed by Wilhelm-
son and Ogura, however, there is no known energy
form that is conserved by the resulting modified an-
elastic system.

The pseudo-incompressible system, consisting of
(13)-(16) together with either (2) or (17), has the
advantage of treating the pressure gradient terms with-
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out approximation while conserving “total pseudo-in-
compressible energy’”:

(u? +v2+ w?)
2

Here E* differs from the total energy in the complete
compressible system in that p* replaces the actual den-
sity in the expressions for the kinetic and potential en-
ergy, and the internal energy of the mean-state replaces
the actual internal energy. The pseudo-incompressible
system requires that, in the absence of diabatic pro-
cesses,

E* =p*[ +gz]+c,)]o'f. (60)

OE*
ot

+ V-[(E* +p*)V] =0, (61)
where p* = p + ¢,p07 ~ p + p' (p' is formally equal
to the deviation of the pressure from its mean value
only when the pressure perturbation is small).

6. Practical implications

There are two major uses for the anelastic continuity
equation. It is often used as a diagnostic relation to
compute the vertical velocity from the horizontal
windfield, and it is used, together with the complete
set of approximate anelastic equations, in the numerical
simulation of small-scale atmospheric circulations
(particularly for deep-convection and gravity waves).
In this section, we will discuss the applicability of the
pseudo-incompressible approximation to each of these
activities.

First, consider the problem of diagnosing the vertical
velocity. The comparisons presented in section 4 sug-
gest that the pseudo-incompressible equation should
be used to diagnose the vertical velocities associated
with adiabatic motion in deep, strongly stable regions
such as the stratosphere. In the more weakly stratified
troposphere, the difference between the two equations
is greatly reduced, and probably dwarfed by other data
analysis errors. In particular, if each equation is inte-
grated through a 10 km deep layer, one might expect
25% differences in the isothermal stratosphere, but only
8% differences in the less stable troposphere.

One complication associated with the use of the
pseudo-incompressible equation is the need 1o evaluate
H, the heating rate per unit volume, in diabatic flows.
A typical upper bound on the heating rate produced
by convection in numerical simulations of midlatitude
squall lines is H/c,pT < 107™* s~! (Fovell, personal
communication). Thus, the complete neglect of the
heating term in a region of moist convection might be
expected to introduce inaccuracies comparable to a 0.1
m s~! uncertainty in the horizontal windspeed when
calculating horizontal divergence over a 1 km grid in-
terval. While this error is not large, it is probably wiser
to evaluate the vertical velocity from the conventional
anelastic equation, as that equation does not require
knowledge of H. Furthermore, since convection is
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generally found in regions where the background strat-
ification is weak, there would be little advantage in
using the pseudo-incompressible form even if H were
known. On the .other hand, less error is incurred in
neglecting the heating in the stratosphere, where the
maximum cooling rates might be 10 K day™, due to
radiative flux divergence at cloud tops. This cooling
rate is roughly equlvalent to a convergence of 10~ 6s~!,
ora 0.1 cm s™! error in the horizontal velocity when
calculating divergence over a 1 km grid interval.
Therefore, it is probably best to diagnose vertical ve-
locities, in the strongly stable stratosphere, using the
adiabatic form of the pseudo-incompressible equa-
tion—even when diabatic processes are active.

Another possible diagnostic calculation that might
be performed using the pseudo-incompressible equa-
tion is the evaluation of the heating rate in convective
clouds from Doppler-radar measurements of the ve-
locity field. If one could obtain direct observations of
the three-dimensional velocity field, and the mean-state
profiles of p and 8, one could calculate the net heating
due to latent heat exchanges, radiation and turbulent
dissipation. Fine resolution thermodynamic data are
. not required for this calculation, a single rawinsonde
sounding would suffice. According to the preceding es-
timates, the velocity data would have to be sufficiently
accurate to determme the three-dimensional divergence
to within 107° s™! in order to evaluate the strongest
heating rates to within +10%. This appears to be be-
yond our current capabilities, but advances in remote
sensing may someday make it practical. The attrac-
tiveness of this approach lies in the fact that very few
approximations are required in the derivation of the
diagnostic equation [i.e., the neglect of sound-wave
frequencies and the assumption 7 < 7(z)].

Now consider the application of the pseudo-incom-
pressible approximation to the numerical simulation
of small-scale atmospheric circulations. As in the tra-
ditional anelastic system, the replacement of the com-
_ pressible continuity equation with the pseudo-incom-
pressible equation reduces the number of prognostic
governing equations. The pressure is therefore calcu-
lated through a diagnostic equation, obtained by re-
quiring

0 1 oH
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If the Coriolis terms are neglected for simplicity, (62)
can be combined with the momentum equations (13)-
(15) to yield
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This equation forces the pressure gradient to generate
time tendencies in the velocity field that maintain the
pseudo-incompressible relationship (2). Equation (63)
is very similar to the Poisson pressure equation used
in traditional anelastic models; but there are two new
features that make its solution somewhat more difficult.
The first is the presence of the heating term on the
right-hand side. If the entire model is integrated with
leapfrog time differencing, 6H /3t must be approxi-
mated as a one-sided difference, backward in time, be-
cause H***' is not available when calculating =. Even
then, the governing equations must be integrated in a
slightly unnatural order because H’ represents the
heating associated with the leapfrog time step between
6"~ and "%, A suitable integration order would be:
1) obtain the velocities at z from the momentum equa-
tions, 2) obtain "4’ together with H’ from the ther-
modynamic equation, and 3) obtain 7* from (63). The
second difficulty is introduced by the presence of 6(x,
¥, z, t) in the coefficients on the left-hand side of (63).
In the traditional anelastic pressure equation, the left-
hand side coefficients are only functions of z, and this
specialized coefficient structure can be exploited to in-
crease the computational efficiency of the Poisson sol-
ver. Therefore, the more general coefficient structure
in (63) may necessitate the use of slower numerical
algorithms for the solution of the pressure equation.
These concerns notwithstanding, the equations (13)-
(16) and (63) have been successfully implemented in
a numerical model for the simulation of moist con-
vection (Fovell and Durran, personal communica-
tion). At present, we are continuing to examine the
question of how to best formulate the numerical al-
gorithms, and the equations themselves (should one
use 7 or p?), in order to produce the most efficient
solution. v

7. Conclusions

An alternative to the anelastic continuity equation—
the pseudo-incompressible equation—has been pre-
sented. The validity of this equation rests on two as-
sumptions. First, the Lagrangian time scale of the dis-
turbance should be much greater than the time scale
for sound wave propagation, and second, the pertur-
bation pressure should be small in comparison with
the vertically varying mean-state pressure field. Unlike
the anelastic approximation, no assumptions are re-
quired concerning the magnitude of the potential tem-
perature perturbations or the mean-state stratification.
Like the anelastic approximation, the pseudo-incom-
pressible approximation filters sound waves.

It has been shown that the physical approximation,
associated with the replacement of the complete com-
pressible continuity equation with the pseudo-incom-
pressible form, is that a portion of the perturbation
density field can be neglected in the mass balance.
Those density perturbations that arise in response to
fluctuations in the perturbation pressure field are ne-
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glected. Density perturbations which arise through
fluctuations in the temperature field are figured into
the mass balance. This may be compared with the de
facto approximation in the anelastic continuity equa-
tion, in which the influence of the perturbation density
field is completely neglected in the mass balance.

A quantitative comparison of the pseudo-incom-
pressible equation with two versions of the anelastic
continuity equation was presented for the case of adi-
abatic inviscid flow. All the approximate equations are
equivalent when the mean-state stratification is adi-
abatic. The difference between them increases nonlin-
early with increasing static stability; it is small for the
relatively weak stratification typically found in deep
layers of the troposphere. The pseudo-incompressible
equation, however, appears to be distinctly superior to
either anelastic form for application to the stratosphere,
where the typical lapse rate is isothermal. The errors
associated with the use of the pseudo-incompressible
equations to represent linear gravity wave propagation
in a 10 km deep isothermal layer are very small,
whereas the errors associated with the use of either
anelastic formulation can exceed 20%.

The pseudo-incompressible approximation yields a
system of equations suitable for use in nonhydrostatic
. numerical models. It appears likely that the pseudo-

compressible system can be integrated numerically with
only a modest increase in computation time over that
required to integrate the anelastic equations. The
pseudo-incompressible system conserves an energy
form that is closely related to the actual total energy
conserved by the complete compressibie equations.
Unlike the various anelastic approximations, energy
conservation is achieved independent of the mean-state
stratification.
The pseudo-incompressible equation can also be
used to diagnostically calculate the vertical velocity in
an adiabatic inviscid flow. If diabatic processes are
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present, however, the need to specify the heating rate
introduces uncertainties in the calculation, and there-
fore, the traditional anelastic form is recommended
for diagnostic calculations of the vertical velocity in
regions of moist convection. On the other hand, if the
vertical profiles of p and 6 are known, together with
extremely accurate measurements of the three-dimen-
sional velocity field, the pseudo-incompressible equa-
tion could be used to compute the net heating rate.
This heating calculation would not require detailed
knowledge of the thermodynamic fields.
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