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ABSTRACT

A two-dimensional, nonlinear, nonhydrostatic model is described which allows the calculation of moist
airflow in mountainous terrain. The model is compressible, uses a terrain-following coordinate system, and
employs lateral and upper boundary conditions which minimize wave reflections.

The model’s accuracy and sensitivity are examined. These tests suggest that in numerical simulations of
vertically propagating, highly nonlinear mountain waves, a wave absorbing layer does not accurately mimic
the effects of wave breakdown and dissipation at high levels in the atmosphere. In order to obtain a correct
simulation, the region in which the waves are physically absorbed must generally be included in the computational
domain (a nonreflective upper boundary condition should be used as well).

The utility of the model is demonstrated in two examples (linear waves in a uniform atmosphere and the
11 January 1972 Boulder windstorm) which illustrate how the presence of moisture can influence propagating
waves. In both cases, the addition of moisture to the upstream flow greatly reduces the wave response.

1. Introduction

Although mountain waves have been the subject of
extensive study, most previous theoretical work has
neglected the effects of moisture on the dynamics of
these waves. This is apparently not a critical omission,
since the results from dry mountain wave theory have
been successfully used to explain qualitatively most
of the features in observed waves. Nevertheless, the
presence of extensive cloudy regions can significantly
affect the wave dynamics, since the structure of moun-
tain waves is strongly dependent on the atmospheric
stability, and that stability is greatly reduced wherever
the atmosphere is saturated. Barcilon ez al. (1979) noted
that the stability reduction produced in low-level clouds
could decrease the mountain wave drag to as little as
one half the dry value. Durran and Klemp (1982a)
found that changes in upstream moisture can signif-
icantly modify the structure and amplitude of trapped
mountain lee waves.

The primary impediment to the study of moist
mountain waves is the complexity of the equations
which govern moist flow. It is very difficult to obtain
analytic solutions to these equations if the moist pro-
cesses are approximated in a realistic manner. As a
result, most previous studies have relied on a very
idealized treatment of the moist processes. The simplest
such idealization was employed by Smith and Lin
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(1982), who obtained linear analytic wave solutions
for fixed heating and cooling functions based on ob-
served rainfall rates. Since the heating and cooling are
prespecified, there is no explicit relation between latent
heat release and the condensation rate; indeed the cal-
culated streamlines often show descent in the heating
regions. Thus, although this approach can provide
valuable information about the interaction between
thermal and orographic forcing, it cannot be easily
used to produce self-consistent solutions for actual
moist flows.

The influence of moisture can also be introduced
through its effect on the stability, without explicitly
calculating latent heating and cooling rates. As noted
by Lalas and Einaudi (1974) and Durran and Klemp
(1982b), the linear wave equation has exactly the same
form in both dry and saturated environments provided
that the Brunt-Viisila frequency is suitably adjusted
to reflect the influence of moisture. Thus, in principle
one could include the effects of condensation and
evaporation by solving the dry equations for an at-
mosphere in which the cloudy regions are replaced by
dry regions of suitably reduced stability. Fraser ez al.
(1973) and Barcilon ez al. (1979) have used this ap-
proach to determine the effects of reversible conden-
sation on linear hydrostatic mountain waves. Barcilon
et al. (1980) used a similar procedure to study the case
of completely irreversible condensation by assuming
that all downdrafts are unsaturated so that cloudiness
(and low stability) is limited to regions of upward dis-
placement and upward motion. One of the significant
advantages to this type of approach is that the linear
solution can be obtained analytically whenever the
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mean state is sufficiently simple. On the other hand,
if the mean state does not permit analytic solutions,
this approach is considerably less attractive. An ad-
ditional complication arises in specifying the cloud
boundaries, which are determined by the wave struc-
ture, and therefore are not known a priori. In order
to obtain a self-consistent flow, Barcilon et al. (1979)
used a numerical iteration scheme to match the cloud
boundaries with regions of upward displacement.

A third approach has been followed by Durran and
Klemp (1982a), who used a computer model to nu-
merically integrate the equations of motion governing
the flow of moist air over a topographic barrier. The
numerical modeling approach allows the investigator
to study a wide variety of situations which are not
amenable to analytic solution (i.e., nonlinear, non-
hydrostatic, or time dependent waves produced by
nonuniform wind, temperature and humidity sound-
ings over terrain of arbitrary shape), and, in particular,
it allows a more accurate treatment of the moist pro-
cesses.

The purpose of this paper is to provide a detalled
description of the mountain wave model used in Dur-
ran and Klemp (1982a), to document its verification,
and to demonstrate its utility by presenting calculations
showing some effects of moisture on propagating
mountain waves. In Section 2, we present the physical
equations and boundary conditions used in the model,
and their numerical formulation. The model’s accuracy
and sensitivity are examined in Section 3. In Section
4, we present examples which show that the presence
of moisture can have a significant impact on the dy-
namics of idealized and observed mountain waves.

2. Formulation of the numerical model
a. Model equations

The model is designed to calculate the two-dimen-
sional airflow over an infinitely long, uniform moun-
tain barrier. The Coriolis force is neglected, since we
will consider only high Rossby number flows over nar-
row mountains. Under these assumptions, the mo-
mentum, pressure, thermodynamic and moisture
equations may be written in the following form:

gd—';+cp0Mg§=D,,, ()
%+cﬁM3—:=g%’+Dw, )
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dt

MONTHLY WEATHER REVIEW

VOLUME 111
dq,
gt— = Mqu + un, (&)
dq.
E =M, + D, . (6)
dq,
_C-;t_ = Mq’ + DQI’ (7)
where
ﬁ = ﬂ +u i +w 9
a Jt dx 8z’
and
0, =0(1 +0.61q,), 0\ =01 —q,),

3 Rfcp R/ev
_ p R )
N+a=|— ={—pf .

(Po) (po oM @)
In the above, p is the pressure, p = 1000 mb, p the
total density, R the gas constant for dry air, ¢, the
specific heat of dry air at constant pressure, ¢, the
specific heat at constant volume, L the latent heat of
vaporization, 6 the potential temperature, and u# and
w are the horizontal and vertical velocity components.
The mixing ratios of water vapor, cloud water, and
rain water are ¢,, 4., and g,. The terms D and M
contain the contributions from subgrid scale mixing
and cloud microphysics. Overbars denote the undis-
turbed horizontally homogeneous mean state.

The cloud microphysics are included through a
Kessler parameterization and are identical to those
used in the convective cloud model of Klemp and
Wilhelmson (1978). The terms which represent the
microphysics are presented in detail in the Appendix.
Subgrid scale turbulence is parameterized as a function
of the larger scale flow via a first-order closure for-
mulation which depends on the relative strengths of
stratification and shear (Lilly, 1962). The details of
this parameterization may also be found in the Ap-
pendix.

b. Terrain following coordinate transformation

Since mountain lee waves are forced by the irreg-
ularities in the earth’s surface, it is very important to
accurately represent the terrain in the model. This is
most easily accomplished when the mountain profile
coincides with a coordinate surface. The following
transformation of the vertical coordinate (Gal-Chen
and Somerville, 1975) is used to map the lowest co-
ordinate surface to an irregular lower boundary

g' = i’(i__ZSz . (9)
Z;— Z

In this equation, z(x) is the terrain elevation, and z,
the depth of the model domain.

The basic model equations may be written in trans-
formed form as
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1) Horizontal momentum equation
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2) Vertical momentum equation
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4) Thermodynamic equation

5) Moisture equations
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c. Finite differencing for the compressible equations of
motion

Equations (10)-(16), which govern the dynamics of
mountain waves are compressible, and therefore in-
clude sound waves. While the sound waves are not
meteorologically significant, they travel at high speeds
and thus severely limit the time step in explicit nu-
merical integration schemes, In order to remove this
computational burden, many researchers have chosen
the anelastic equations, which do not admit sound
waves, as the basis for their models. However, the an-
elastic system requires the solution of a Poisson equa-
tion for the pressure at each time step, and when a
coordinate transformation is present, the Poisson so-
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lution procedure becomes less efficient because the
transformation complicates the coefficient structure of
the pressure equation.

We have adopted an alternate approach which re-
tains the fundamental prognostic equation for pressure,
and appears to be at least as computationally efficient
as the anelastic approach. In this technique (Klemp
and Wilhelmson, 1978), the sound wave modes are
integrated separately, with a smaller time step than
that used for the other processes of meteorological
interest. Although all the terms in Egs. (10)-(16) have
some influence on sound waves, only the pressure gra-
dient terms in the momentum equations and diver-
gence terms in the pressure equation are responsible
for rapid sound wave propagation. Therefore, in the
two time step approach, the pressure gradient and di-
vergence terms are linearized, and (10)-(12) are re-
written as follows.

w + eyl + G = fo,
w, + CpaMH‘K;- = fws
=2
w, +
¢,

ﬁ [60r (s + Gup) + H@Byw)] = £, (20)
Di

(18)
(19)

where
_2 = RHO M-

v

The remaining terms, which are not responsible for
rapid sound wave propagation (advection, buoyancy,
subgrid-scale mixing, and the nonlinear parts of the
divergence and pressure gradient terms) are collected
in f,, f,, and f;.

If the time derivatives were approximated by or-
dinary leapfrog differencing, all the other terms in Eqs.
(18)-(20) would be evaluated at the middle time level
and used to advance the integration between ¢ — At
and ¢ + At in a single step. In the two time step ap-
proach, the terms which comprise f,, f,, and f, are
evaluated in exactly that manner, but the integration
between ¢t — At and ¢ + Af no longer occurs in a single
step. Instead, it is advanced by several smaller time
steps of length Ar, during which the left-hand sides of
Egs. (18)-(20) are continuously updated. The length
of the small time step is chosen to guarantee the stability
of the sound waves. The large time step is chosen to
ensure stable and accurate integration of the meteo-
rologically significant processes. The integration of the
thermodynamic and moisture equations is not affected
by sound waves, so these equations (which are differ-
enced in the standard leapfrog manner) will not be
included in this discussion.

It should be emphasized that the purpose of the two
time step technique is to treat the sound wave modes
in a stable manner. Efficiency in the small time step
calculations is achieved at the expense of accuracy in
the sound wave modes themselves, but, since the sound
waves are not believed to be meteorologically signif-
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icant, they need not be accurately integrated. The
gravity wave modes are still accurately computed.

. The small time step stability requirement (Courant-
Friedrichs-Lewy condition) is cAT/(Ax? + Az} < 1.
In mountain wave modeling, Ax is typically much
larger than Az, so extra efficiency can be achieved by
making the small time step implicit in the vertical.
The finite difference representation of the small time
step equations, with the coordinate transformation in-
cluded, is

8,4+ cBu(Bxm” + Goym ) = fil, @1
8.W + CpB3HO T = plfy, (22)
_2 .
. + T+AT,
8,7 e o, u
52
+ G +- = How =f1, (23)

'

where the spatial finite diﬂ‘erence operators are defined
as

bred(®) = (1/nAB[S(E + nAE/2)

— ¢(& — nAE/2)), (24)
Wﬁ)ﬂf = %d)(& + nAE/2) + $(& — nAE/2), (25)

and a time average is defined
o0 =t o+ a0+ e, @9)

and W = pf,w. For computational efficiency, only
those vertical differences which remain in the limit of
flat terrain are treated implicitly. Since G < H for most
realistic terrain profiles, the length of the small time
step is usually not significantly restricted by the explicit
treatment of the vertical differences mtroduced by the
coordinate transformation.

In the original Klemp-Wilhelmson formulation the
parameter ¢ is zero, in which case the time differencing
is Crank-Nicolson which is unconditionally stable.
However, this alone is not adequate to ensure the sta-
bility of the entire big-step small-step integration cycle.
A weak instability was encountered in the sound wave
modes while simulating mountain waves in deep, very
stable environments. This was eliminated by adjusting
e. When 0 < ¢ < 1 the scheme is unconditionally
stable, and in addition it slowly damps the sound wave
modes. Tests were run comparing the effects of different
values of € on the mountain wave solutions. A value
of € = 0.2 was sufficient to completely eliminate the
sound wave instability without perceptibly influencing
the gravity waves. The gravity waves are not affected
because they change very slowly over a single small
time step.

In the large time step, the time differencing is leap-
frog, horizontal advection is fourth order, and vertical
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advection is second order. Buoyancy, diffusion and
coordinate transformation terms are computed to at
least second-order accuracy. The microphysics are in-
cluded through a two-step procedure proposed by
Soong and Ogura (1973). In the first step, the tem-
perature and moisture variables are advected and dif-
fused; in the second step, they are adjusted to the correct
thermodynamic balance. The details of the large time
step finite differencing are given in the Appendix.

d. Boundary conditions

‘The ground is the only physical boundary associated
with the mountain wave problem. We require the nor-
mal velocity to vanish at the surface

0z,
w=uZ at ¢=0.

“ dx
As a result Gu + Hw = 0 at { = 0, so the vertical flux
terms in (10)~(16) vanish at the lower boundary. The
subgrid scale mixing terms also require additional
boundary conditions at the surface. All mixing normal
to the boundary is assumed to vanish at the boundary
point, which prevents the mean state vertical gradients
from being distorted by mixing near the ground.

The radiation boundary condition, which requires
that all energy transport be directed out of the domain,
is approximated at the upper boundary. This condition
is crucial for the successful simulation of vertically
propagating mountain waves. There are, however,
physical situations in which downward propagating
waves reflect from sharp gradients in the atmospheric
structure or regions of wave overturning and break-
down and have a significant impact on the wave dy-
namics below. In such instances the correct solution
can be obtained only by applying this boundary con-
dition abave the reflecting layers.

The radiation boundary condition is approximated
by adding an absorbing layer to the top of the domain.?
The effective mean viscosity in the absorber is chosen
so that waves entering from below have negligible am-
plitude when they arrive at the top of the absorbing
layer where the actual boundary condition is w = 0.
Reflections, which might otherwise be produced by
vertical variations in the viscosity, are'minimized by
ensuring that the strength of the absorber increases
gradually with height. These requirements impose a

(27)

3 A new radiation upper boundary condition (Klemp and Durran,
1983), in which the pressure at the upper boundary is determined
from the Fourier transformed vertical velocity, has recently been
incorporated in this model. It appears to improve significantly the

model efficiency without sacrificing accuracy. However, since the .

model results we published earlier (Durran and Klemp, 1982a) were
obtained using an absorbing layer, and since we wish to discuss the
model’s sensitivity to the upper boundary using the simpler and
more thoroughly understood absorbing layer formulation, the sim-
ulations described i in this paper do not use this new radiation boundary
condition,
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constraint on the minimum depth of an effective wave
absorbing layer. Klemp and Lilly (1978) have suggested
that, for linear hydrostatic waves, this minimum depth
is approximately one vertical wavelength.

Both viscous and Rayleigh damping have been used
in absorbing layers (Clark, 1977; Klemp and Lilly,
1978). Rayleigh damping has been chosen for this
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mation. In the absorbing layer, only the perturbations
of a variable from its upstream value are damped. The
damping terms, which are added to the right-hand
sides of the u, w and 8 equations, are

Ry = 7(z)(u — u)

v b . w= 28
model because the second derivatives required for vis- Ry, = (z)w _ (28)
cous damping have a complicated finite difference Ry = 1(2)(0 — 6)
structure in the presence of the coordinate transfor-
The damping coefficient has the structure
g 0, for z<zp
o zZ—2zp z—2zp 1
~=11-cos , for 0< <z 29
T(Z)=< 2( ° ZT‘_ZDW) © Zr — Zp 2 ( )
—5[1+(—z;22—1)1r, for lsz_zusl,
g 2 zr—2zp 2 2 zr—2zp

where zp is the height of the bottom of the absorbing
layer and (in this instance only) = is 3.1416. Klemp
and Lilly (1978) have shown that for a single, linear
hydrostatic wave, an absorbing layer with a sinusoidal
vertical viscosity profile will be most effective when o
satisfies 2 < a/ku < 5 where k is the horizontal wave-
number. In actual simulations, « is chosen so that the
dominant horizontal wavenumbers are absorbed most
efficiently.

The lateral boundary conditions are also designed
to radiate energy out of the domain. The actual bound-
ary condition is again chosen to minimize the spurious
reflection of an outward propagating wave when it
encounters the lateral boundary. Our approach is a
variant of the procedure suggested by Orlanski (1976),
in which the phase speed ¢ of a gravity wave impinging
on the boundary is estimated, and the flow variables
are advected out the boundary at the speed u + c. If
the phase speed is correctly chosen the gravity wave
will pass through the boundary with minimal reflection.

Several authors have suggested modifications to the
original Orlanski scheme (e.g., Klemp and Lilly, 1978;
Klemp and Wilhelmson, 1978; Clark, 1979; Miller
and Thorpe, 1981), which differ primarily in their
specification of ¢, and the number of variables to which
this boundary condition is applied. Several of those
modifications have been tested in this model; a scheme
similar to that described by Klemp and Lilly (1978)
appeared to produce the best overall results in a variety
of numerical tests. In this approach the speed of prop-
agation is estimated by averaging u + ¢ vertically along
the lateral boundaries. At each vertical level, u + c is
estimated according to the original prescription of Or-
lanski (1976), except that the result is bounded by
zero, and the maximum speed for which the numerical
time step is stable. Without loss of generality we con-

sider the right boundary, at which the speed of prop-
agation is estimated as

N — Al

S Ax ub-Yo — ub-1x

u c)y = min| Umax, MaX{ U, ~— ——r——— 1" ’
+ 0 1—At —Aar
k=1 At btk — up2k

(30)

where um., is the magnitude of the fastest propagation
speed for which the numerical time step is stable, and
b is the index of the right boundary point. Klemp and
Lilly (1978) have shown that it is better to overestimate
the magnitude of # + ¢ than to underestimate it; thus
we have biased the calculation toward an outward di-
rected phase speed by setting any inward directed phase
speeds to zero prior to averaging. Then the horizontal
velocity field at the boundary is updated on the small
time step as follows:

_(u+ ofAr
Ax

This boundary condition is not applied to the other
fields, which, because of the mesh staggering, require
only a boundary condition on the horizontal advection
terms. At outflow boundaries the centered differences
for the other variables are replaced by one-sided up-
stream differences. At inflow boundaries, w, m, and
the sum (g, + ¢.) are held fixed (g, is zero at inflow),
while the term ©96/9x is estimated as follows. The full
thermodynamic equation may be written:

a a6

e +u p +f=0,
where vertical advection and diabatic terms are col-
lected in £ A one-dimensional wave of uniform am-

T+AT
y

UGS = upy (WUhe — up-10).  (31)

(32)
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plitude traveling at a propagation speed estimated by
(30) will satisfy
a6 a6
—+u+c)—=0.
g TUtag=0
Equating (32) and (33) yields an estimate of d8/dx, so
that the form of (32) actually solved at the boundary

(33)

becomes
a8 u
— +-=|f=0. 4
(1) 6
Note that for a stationary disturbance, ¢ = —u and

86/9t = 0. This treatment of the inflow boundary con-
dition on § is similar to that proposed by Klemp and
Lilly (1978).

e. Model initialization and numerical smoothing

A small amount of numerical smoothing is applied
to all fields (except 7) throughout the domain, to con-
trol the growth of nonlinear instability and filter out
short wavelength modes, whose behavior cannot be
accurately represented by finite difference schemes. The
smoother is equivalent to a fourth-order damper. Its
numerical form is

Ybiw2 + iz — His1 + i) + 60:;  (35)

v has a nominal value of 0.015 in the horizontal and
~0.001 in the vertical. A second order smoother is used
at grid points adjacent to the boundaries with a coef-
ficient that matches the interior smoothing for 2Ax
scale disturbances. No smoothing is performed at

( kAXx
—2Nvy*Ax

MONTHLY WEATHER REVIEW

VOLUME 111

boundary points. The smoother is applied only to the
perturbations of the variables from their values in the
undisturbed upstream flow. In the absorbing layer, the
horizontal smoothing coefficient gradually increases
with height to 0.0625, the value at which 2Ax waves
are completely removed each time step. The horizontal
smoothing coefficient is increased in the wave absorb-
ing layer to improve the short wavelength absorption
because Rayleigh damping attenuates short wave-
lengths less efficiently than long wavelengths. The
damping of short wavelength disturbances in the wave
absorbing layer is further enhanced by applying a sec-
ond-order smoother to the pressure distribution along
the topmost grid level.

The vertical smoothing coefficient is so small that
its influence is restricted primarily to the 2Az waves.
The horizontal smoothing coefficient is large enough
to produce some damping in several of the shortest
wavelengths. In order to estimate the impact of the
horizontal smoother, we consider its impact on a steady
linear hydrostatic wave in a Boussinesq atmosphere.
The vertical structure of this wave will be proportional

to
Kk, N ( i‘y*k?) ]
exp[t ki 1 +————12ka z|,

where v* is the dimensional smoothing coefficient,
and k,, k, and k; are the numerical representations of
the horizontal wavenumbers from the advection, pres-
sure gradient and smoothing terms, respectively. With
the staggered mesh and fourth-order advection used
in this model, the damping experienced by an upward
radiating wave is

(36)

sin ——5—)(6 + 2 cos2kAx — 8 coskAx)

wPAL

Thus, at a height of one half vertical wavelength
(N=/u), a 4Ax wave decays to 47% of its value at the
surface. Over the same depth, a 10A x wave, which in
this model is the approximate visual scale of the
mountain, retains 95% of its amplitude, while a 30Ax
wave, which is the scale at which the linear mountain
forcing is strongest, retains 99.8%.

The impact of this smoother on the calculated flow
fields and momentum flux was evaluated in linear and
. weakly nonlinear cases (for which no numeérical
smoothing is needed) by performing identical simu-
lations with and without smoothing, and comparing
the solutions. The differences were negligible. Even in
the momentum flux, which is a second-order quantity,
they were confined to the third decimal place.

Leapfrog time differencing allows the solutions at

(Y5 sinkAx — Y sin2kA x)?

(37

odd and even time steps gradually to diverge. This is
prevented by the time-smoothing scheme

P = ¢ + 2ALF,

} . (38)
¢' = % + m(ey — 20% + ¢'7Y)

Terms which have not yet been time-smoothed are
denoted by an asterisk; % is 0.2. The first equation
represents a standard leapfrog step; the second, the
time-smoothing. This technique has been analyzed by
Asselin (1972), who found that it strongly damped the
computational mode without significantly affecting the
physical mode. The smoothing, applied at every time
step, has a gentler influence on the solution than
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schemes which rely on one application of a strong filter
or an Euler time step in a cycle with a large number
of unsmoothed steps.

3. Model verification

In order to verify the model’s ability to simulate
mountain wave flows we will examine its behavior in
three test cases. In the first two cases, we compare the
model results with analytic solutions; in the third, we
compare the model simulation of the 11 January 1972
wind-storm in Boulder, Colorado, with data and pre-
vious simulations by different models.

a. Linear hydrostatic waves in an isothermal atmo-
sphere

The behavior of linear mountain waves has been
studied at length by previous authors and is sum-
marized by Alaka (1960) and Smith (1979). If there
is no shear in the mean cross-mountain wind speed,
the behavior of linear hydrostatic mountain waves is
governed by the following equation

7 .,

37 + 0% =0,
where § is the displacement of a streamline from its
height in the undisturbed flow, and / is the Scorer
parameter. If the atmosphere is isothermal, / is con-
stant,

(39)

2

g g
P=—2=— — 4
o,Ti?  4R*T? (40)
We let the mountain contour be specified as
ha?
z(x) = NER 41

and impose the linearized boundary condition é&(x, 0)
= z, at the surface. The remaining boundary conditions
are specified by requiring that the disturbance vanish
as x — —oo and that all energy transport be directed
away from the mountain as z — oo (the radiation

boundary condition). The solution to (39) subject to

these boundary conditions is

—\—1/2
ox, 2) = ([—i—)) ha

(for the full derivation see Alaka, 1960, or Smith, 1979).
The perturbation horizontal and vertical velocities are
obtained from the relations

oo R0
p 0z’ ox’

a coslz — x sinlz

x% + a? (42)

(43)

Although the numerical model is neither linear nor
hydrostatic, it should produce a steady solution which
closely approximates (41) when the mountain is low
(so the wave amplitude is essentially linear) and wide
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FIG. 1. (a) Steady state perturbation horizontal velocity (m s™')
from the linear hydrostatic solution for a 1000 m high mountain.
(b) Perturbation horizontal velocity (m s™') obtained by numerical
simulation for a 1 m high mountain at #t/a = 60; the perturbations
have been amplified by 1000.

(so that the flow is nearly hydrostatic); i.e., whenever
Nh/u < 1 and Na/u > 1. These requirements are sat-
isfied in the following example, in which 7 = 250 K,
#=20ms"', a=10 km, and 2 = 1 m. The pertur-
bation horizontal and vertical velocity fields calculated
from (42) and (43) are displayed in Figs. la and 2a,
and the corresponding fields obtained with the nu-
merical model at ut/a = 60 are shown in Figs. 1b and
2b. In this simulation, the computational domain con-
tains 90 points in the horizontal and 80 levels in the
vertical; the absorbing layer occupies the top 40 levels.
The grid intervals are Ax = 2 km, Az = 200 m; the
large and small time steps are 20 and 4 s, respectively.
Only the central portion of the computational domain
is shown, in which the grid indices run from 20 to 70
in the horizontal and 1 to 40 in the vertical.

As evidenced in Figs. 1 and 2, the numerical and
analytic solutions agree reasonably well. The vertical
velocity fields match very closely, although the maxima
and minima in the horizontal velocity field are some-
what underestimated by the numerical model. (The
analytically and numerically computed streamlines,
which are not shown, also agree very well.)

Mountain waves transport horizontal momentum
vertically. The momentum flux
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FIG. 2. As in Fig. 1, except that the fields plotted -
are vertical velocity (m s™!).

a0

pu'wdx
o0

M) = |
has important physical significance and is also a sen-
sitive measure of error in the solution. Fig. 3 shows
the vertical distribution of the numerically computed
momentum flux at several nondimensional times
ut/a; the flux is normalized by the analytic linear hy-
drostatic value

My = = 7 polilh, - (45)
where po is the density at the surface. As the model
approaches steady state, the flux becomes almost con-
stant with height in the region below the absorbing
layer, but remains a few percent below its linear steady
state value. Klemp and Lilly (1980) have calculated
the time dependent momentum flux profiles for the
linear hydrostatic case in which a mean wind is in-
“troduced abruptly at ¢ = 0. They found that at a height
of one vertical wavelength (6.4 km in this case), the
flux did not reach 95% of its steady state value until
a nondimensional time of 35. As shown in Fig. 3, the
flux is developing a little more slowly in the model.
This is partly the result of the initialization procedure,
in which the wind speed is gradually increased from
zero to its mean upstream value over a nondimensional
time of 5. However, even at ut/a = 60, the flux at z
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= 6.4 km is still only 94% of its steady value. This
residual vertical gradient in the flux is not due to any
dissipation explicitly included in the model (turning
off the fourth-order smoothing has a negligible impact
on the flux).

On the whole, the behavior of the momentum flux,
which as a second-order quantity is more sensitive to
error than the velocity fields, appears satisfactory. The
errors observed in this test case may be interpreted as
a practical limit on the accuracy of the model’s flux
calculations.

" b. Nonhydrostatic Long’s solution

In order to assess further the model’s accuracy, we
will consider a second test case in which nonlinear
and nonhydrostatic effects play an important role.
Long’s equation (Long, 1953) may be applied to a
compressible Boussinesq fluid (Raymond, 1972)

6 9%  N?

az?  oax?  w?
if the flow is steady and # and N are constant, where
6 is the displacement of a streamline from its undis-
turbed height, # the mean horizontal fluid velocity,
and N? = g/6,08/9z the Brunt-Viisili frequency. The
important property of (46) is that, although derived
without making any small amplitude assumptions, it
is a linear equation. Since it is linear, (46) can be easily
solved; however, the boundary conditions remain dif-

ficult to apply.
The lower boundary condition

0=0, (46)

o(x,z) =z 47)

cannot be linearized without invoking the hypothesis
that the height of the obstacle is small. Long circum-
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FIG. 3. Vertical flux of horizontal momentum, normalized by its
linear hydrostatic value, at several nondimensional times ut/a.
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vented this by first solving (46) with a linearized
boundary condition and then determining the finite
amplitude mountain profile by solving (47) for z;.

The radiation condition is again specified at the up-
per boundary. However, since it is formally valid only
for linear waves, the application of the radiation con-
dition to Long’s equation cannot be rigorously de-
fended. Nevertheless, there is reasonable justification
for this choice, since, in the special case of Long’s
equation, the net effect of all nonlinear interactions is
zero (Smith, 1977).

In this example, we consider the solution to (46)
which is produced by the linearized lower boundary
condition 8(x, 0) = z,, where z; is given by (41) with
h =570 m and a = 2 km,

!
3(x, z) = ha Re{ f explitkx + (I* — k?)\?z) — kbldk
. ()]

+ J;w explikx — kb — (k* — 12)’/2z]dk} . (48)

The actual terrain profile, determined implicitly by
substituting (48) into (47), is similar in shape to the
original profile, but its height is reduced to 500 m and
its peak shifted slightly upstream. In addition, we
choose N = 0.01 s™' and # = 10 m s™'. Then Na*/u
~ 2 and Ni*/u =~ 0.5, where a* and h* denote the
height and width of the implicitly determined moun-
tain profile, so both nonhydrostatic and nonlinear ef-
fects should be significant in this example.

In applying Long’s equation to the atmosphere, we
assume that the flow is Boussinesq. Thus, for the pur-
pose of this comparison, we slightly alter the numerical
model to make it Boussinesq. This is accomplished by
replacing 6,, by a constant mean 6, in the coefficient
of the pressure gradient terms in the momentum equa-
tions (10) and (11) and modifying the pressure equation
(20) by replacing ¢, p, and 6,, with constant mean

HEIGHT (km}

o]
-8 o] 18 36
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F1G. 4. Streamlines obtained from Long’s solution (dashed lines),
and by numerical simulation at #t/a = 40 (solid lines).
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FI1G. §. Vertical flux of horizontal momentum, normalized by the
analytic value from Long’s solution, at several nondimensional
times ut/a.

values and setting f, to zero. The new form of the
pressure equation is identical to the Boussinesq con-
tinuity equation except for the d=/dt term which allows
sound wave propagation. However, this term has little
influence on the gravity wave modes and vanishes as
the solution approaches steady state. [The artificial
compressibility technique described by Chorin (1970)
yields a similar equation.] In the numerical simulation,
the computational domain contains 135 points in hor-
izontal (with the mountain peak at the 45th grid point)
and 72 levels in the vertical; the wave absorbing layer
occupies the top 36 levels. The grid intervals are Ax
= 400 m and Az = 250 m; the large and small time
steps are 8 and 1 s.

The streamlines, obtained by evaluation of the in-
tegrals in (48), are compared with those produced by
the numerical model at ut/a = 40 in Fig. 4. (Only that
portion of the domain for which the grid indices run
from 20 to 90 in the horizontal and 1 and 32 in the
vertical is shown in Fig. 4.) A slight divergence of the
analytic and numerical streamlines can be observed
at some levels downstream from the mountain; nev-
ertheless the agreement between the two solutions is
reasonably good. The time dependent behavior of the
vertical distribution of the momentum flux is illustrated
in Fig. 5. The fluxes have been normalized by their
analytic value Myy. Note that at a nondimensional
time ut/a = 40, the momentum flux profile computed
by the numerical model agrees rather well with the
steady-state analytic result.

c. Sensitivity tests

Sensitivity tests suggest that changes in the initial-
ization procedure have little influence on the numerical
solution which develops at longer times, since the waves
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FIG. 6. Surface pressure drag, normalized by its linear hydrostatic
value, as a function of time obtained from numerical simulations
in which the bottom of a 1.5}, thick wave-absorbing layer is located
at 1.25X; (solid line) or 1.5X; (dashed line), and Nh/i is (a) 0.5, or
(b) 0.8. )

are continuously forced by the terrain. The location
of the lateral boundaries and the specific formulation
of the lateral boundary conditions have a somewhat
greater impact. The solutions are most sensitive to the
inflow boundary conditions in highly nonlinear situ-
ations which produce significant upstream influence.
This sensitivity can be minimized by locating the inflow
boundary far upwind of the mountain (a distance of
nine mountain half-widths proved to be acceptable in
most situations). The influence of the outflow boundary
on the numerical simulation depends on the types of
waves present in the solution. Vertically propagating
waves are not very sensitive to the downstream bound-
ary, since they decay rapidly downwind of the moun-
tain. In contrast, trapped waves may have considerable
amplitude far downstream from the mountain, and
consequently, they may be significantly affected by the
downstream boundary. Errors are eventually produced
at that boundary which propagate back upstream and
degrade all large amplitude trapped wave solutions. In
practice the onset of this problem can be delayed by
moving the outflow boundary farther downstream.
The numerical solution is not strongly sensitive to
the strength of the damping in the wave-absorbing
layer, but it can be very sensitive to changes in the
height at which the absorbing layer begins, i.e., the
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effective height of the upper boundary. This sensitivity
increases as the amplitude of the waves entering the
bottom of the absorbing layer increases. Numerical
simulations of linear, weakly nonlinear, and trapped
waves, which have little amplitude at the effective upper
boundary, are not sensitive to changes in the height
of that boundary.

Figure 6 illustrates the difference in the behavior of
the surface pressure drag in two simulations with ef-
fective upper boundaries at 1.25 and 1.5 vertical wave-
lengths (A, = 27u/N), when the wave amplitude is
moderately nonlinear (Fig. 6a) and strongly nonlinear
(Fig. 6b). These simulations were conducted with the
Boussinesq form of the model using 90 horizontal grid
points and either 66 or 72 vertical grid levels; the ab-
sorbing layer occupied the top 36 levels (having a depth
of 1.5),). The grid resolution was Ax = 2 km and Az
= X,/24 = 250 m); the large and small time steps were
25 and 5 s. The wind speed and stability were constant,
with z = 10 m s™' and N = 0.01047 s~'. The mountain
contour was specified according to (41) with ¢ = 10
km; /# was chosen so that Ni/u is 0.5 in Fig. 6a and
0.8 in Fig. 6b. 4

The steady state hydrostatic solution was also cal-
culated from Long’s equation (Lilly and Klemp, 1979);
the surface pressure drag associated with that solution
is plotted in Fig. 6a,b for reference. Note that for this
mountain shape, the steady Lorig’s solution contains
overturned streamlines (breaking waves) for Nh/u
> (.85, so the situation simulated in Fig. 6b is indeed
strongly nonlinear. As shown in both Figs. 6a and 6b,
the solutions with differing domain depths are almost
identical until a nondimensional time ut/a = 20 (the
model is initialized over the first five nondimensional
time units). After ut/a = 20, the shallow-domain so-
lutions amplify, while the deep solutions decay. At it/
a = 60, the solutions are still relatively similar in the
moderately nonlinear case (Nh/i = 0.5, Fig. 6a), but
in the highly nonlinear case (Nh/# = 0.8, Fig. 6b) they
are very different. The shallow simulation contains a
breaking wave and a feature resembling a hydraulic
jump which propagates downstream from the moun-
tain, whereas the deep simulation is qualitatively sim-
ilar to Long’s solution.

This sensitivity to the locdtion of the upper boundary
seems to be produced by an inadequate numerical
approximation to the radiation boundary condition.
However, it may be noted that the radiation boundary
condition itself will not be correct if nonsteady, non-
linear mountain waves are generating downward-
propagating waves through wave interactions. In such
a case, the truncation of the numerical domain at any
finite height with the application of the radiation con-
dition would eliminate internally generated reflections
from above that level and might produce the sensitiv-
ities observed in Fig. 6a,b.

The simulations of Nh/u = 0.8 were repeated using
a very deep wave-absorbing layer in which the thickness
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was tripled to 4.5),, and the vertical gradient in the
damping coeflicient was correspondingly reduced by
a factor of 3. The simulations are otherwise identical
to those shown in Fig. 6b, except that the vertical grid
resolution was halved to save computer time. As shown
in Fig. 7, the sensitivity of the surface pressure drag
to the location of the upper boundary has been dras-
tically reduced (note that these simulations are run
out longer than those in the shallow domain). Similar
experiments, in which the depth of the domain is in-
creased (to 4.5)\,) but the thickness of the wave ab-
sorbing layer is held constant (at 1.5);), also show
some decrease in sensitivity. However, in the latter
case, this is primarily due to an increase in the time
required for errors at the upper boundary to propagate
back down and degrade the solution. Although the
sensitivity of the deep damping layer solutions is weak,
as shown in Fig. 7, the surface pressure drag differs
from that determined from Long’s solution by 10~
15%. The exact source of this error has not been de-
termined but the lateral boundaries are the most likely
candidates. Lilly and Klemp (1979) have obtained nu-
merical solutions with an 8 coordinate model which
agree more closely with Long’s solution for the case
Nh/u = 0.74. However, in those simulations the lateral
boundaries were located at £72a (where g is the moun-
tain half-width) to remove all lateral boundary influ-
ences; by contrast, the boundaries in the current sim-
ulations are ‘located much closer to the mountain
at 39a.

These sensitivity tests suggest that the accurate sim-
ulation of vertically propagating, highly nonlinear
mountain waves requires a very thick wave absorbing
layer. The sensitivity to changes in the height of “shal-
low” absorbing layers does not seem to be peculiar to
this model; similar behaviors have been observed in
the numerical models of Klemp and Lilly (1978) and
Clark and Peltier (1977) although they use somewhat
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FIG. 7. As in Fig. 6 but in which the bottom of a 4.5X, thick
wave-absorbing layer is located at 1.25), (solid line) or 1.5), (dashed
line), and Nh/i = 0.8.
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FIG. 8. As in Fig. 6b but in which the bottom of a 1.5\, wave
absorbing layer is located at 1.25), (solid line) or 1.5, (dashed line),
and a decrease in the mean wind speed produces a region of wave
breaking in the computational domain.

different formulations for the wave absorber. In ad-
dition, when an entirely different numerical radiation
boundary condition (Klemp and Durran, 1983) was
used to replace the wave absorbing layer in this model,
a similar sensitivity remained.

In most practical applications, it is simply not fea-
sible to devote 80% of the numerical domain to the
wave-absorbing layer. This difficuity can be avoided
when simulating a real atmospheric flow by ensuring
that the computational domain explicitly includes those
regions which are primarily responsible for wave ab-
sorption or trapping. The effectiveness of this approach
is illustrated in Fig. 8, which describes a situation iden-
tical to that in Fig. 6b except that the mean wind speed
decreases linearly from 10 to 6 m s™' between the
heights of 3 and 5 km, so that the local inverse Froude
number (NA/1) increases with height from 0.8 to 1.3.
In this case, the wave breaks as it enters the region of
decreasing wind speed, and its energy is largely dis-
sipated by mixing so that the disturbance which reaches
the top of the domain has relatively low amplitude
and can be properly radiated by a “shallow” (1.5,
thick) absorbing layer. Note, however, that the low
level structure of the insensitive solution is at least as
nonlinear as that in the sensitive case (compare the
surface wave drags in Figs. 6b and 8).

Boundary condition sensitivities aside, it is also im-
portant to explicitly include the region in which the
waves are absorbed because it can have an important
impact on the wave structure. As an example, note
that the linear solutions to the cases shown in Figs.
6b and 8 should be identical in the layer between the
ground and 3 km, since the mean Richardson number
is large throughout the domain (Klemp and Lilly,
1975). However, as shown by the streamline fields in
Fig. 9, the nonlinear solution is strongly influenced by
the changes in the upper-level wind speed. Thus, it
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FIG. 9. Streamlines for two flows, which have identical linear
solutions between the heights of 0 and 3 km, obtained from numerical
simulations at #z/a = 40. (a) @ = 10 m s~', constant with height;
(b) # decreases gradually from 10 m s™' to 6 m s~ above a height
of 3 km.

seems important to include the region of stratospheric
wave breakdown in most simulations of actual moun-
tain waves. In the Rocky Mountain region of the
United States, this will generally require that the mod-
eling region extend to a height of 15 to 20 km.

d. The 11 January 1972 windstorm in Boulder, Col-
orado

We will conclude our discussion of the model ver-
ification with a simulation of the famous windstorm
which occurred in Boulder, Colorado on 11 January
1972 (Lilly and Zipser, 1972; Lilly, 1978). Our primary
intention is not to study the storm itself but to attempt
to reproduce the large amplitude waves observed during
that event and to compare results with the numerical
simulation of Peltier and Clark (1979, denoted by PC).
Although several investigators have simulated this
storm, PC have performed the only nonhydrostatic
simulation, so their results are most suitable for com-
parison with the current model.

'
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We have chosen to simulate the 11 January 1972
case using a numerical grid and upstream atmospheric
profile which match those used by PC as closely as
possible. In our simulation, the computational domain-
contains 128 grid points in the horizontal and 83 grid
levels in the vertical; the damping layer occupies the
top 39 levels. The horizontal grid intervals are Ax
= 1000 m and Az = 341 m; the large and small time
steps are 5 and 2.5 s. The mountain contour is specified
by (41) with a = 10 km, 2 = 2 km, and the upstream
wind speed and temperature profiles are specified as
shown in Fig. 10. Except for the horizontal resolution
which has been halved, and the time steps, the pre-
ceding parameters are identical to those used by PC.

The isentrope fields predicted by our model are dis-
played in Figs. 11a,b; at times ¢ = 4000 and 8000 s,
respectively. These may be compared with the results
in PC which are reproduced in Figs. 11c,d for the times
t = 4160 and 8000 s. The time dependent behavior
of the surface wave drag computed by both models is
compared in Fig. 12. Considering the many differences
in numerical structure between the two models (they
use different finite differencing, boundary condition
schemes, and start-up procedures, and their equations
are anelastic, ours contain sound waves), we observe
that the agreement between the two simulations is re-
markably good, and both models compare well with
aircraft observations of the storm structure.

This simulation is not sensitive to changes in the
height of the wave absorber, since the computational
domain includes a region of wave breakdown and ab-
sorption in the lower stratosphere. We believe that
these simulations are good representations of the actual
windstorm event; however, they are not without some
shortcomings. As evident in Fig. 12, the numerical

; 1
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FI1G. 10. Upstream sounding used by Peltier and Clark for the 11
January 1972 windstorm simulations. Moisture profile is from the
11 January 1200 GMT Grand Junction sounding.
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FI1G. 11. Isentropes obtained by numerical simulation of the 11 January 1972 Boulder
windstorm using this model at (a) ¢ = 4000 and (b) ¢ = 8000 s. Isentropes determined
from the simulation of Peltier and Clark (1979) at (c) ¢ = 4180 and (d) 8000 s. Different
isentropes are contoured by the different models.

solution is not steady, but is gradually amplifying. The
actual windstorm was not completely steady, and some
of the drift in the numerical solution may reflect that
nonsteadiness. However, the tendency toward indef-
inite amplification shown in Fig. 12 is clearly non-
physical; it may reflect the absence of surface friction
in the models.

4. Two examples which illustrate the effects of mois-
ture on propagating mountain waves

In this section, we will discuss the influence of mois-
ture on propagating mountain waves in two examples
which demonstrate the utility of the model and illus-
trate the impact which moisture can have on nearly
hydrostatic mountain waves.

a. The influence of moisture on a linear propagating
wave

The simplest situations in which to study the influ-
ence of moisture on mountain waves occur when the
waves are hydrostatic and have small amplitude. If the
Scorer parameter is constant with height and the terrain
profile is specified by (41), the solution is again given

by (42). In the first case discussed in Section 4a, the
atmosphere was isothermal so that / was exactly con-
stant with height. This unrealistic assumption can be
relaxed if the effects of compressibility on / are negiected

0.8 e J

-D (x10€ kg s7?)
N\,

06k . o 4
0.4} B

o2 E

H 1
4000 €000

TIME (s)

1
o 2000 8000

F1G. 12. Magnitude of the surface wave drag as a function of time,
from this model (solid line) and from the simulation of Peltier and
Clark (1979) (dashed line).
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FI1G. 13. (a) Streamlines and (b) horizontal velocities produced by
a 1 m high mountain when RH = 0% upstream. The perturbations
have been multiplied by 1000 for display; as such they constitute a
linear numerical solution for a 1 km high mountain.

(usually a good approximation). Then the approximate
Scorer parameter

(49)

is constant with height in any atmosphere with uniform
wind and stability.

Figure 13 shows the streamline and horizontal ve-
locity fields computed by the model for a dry flow in
which N =0.0132 s and # = 20 m 5. The mountain

- contour is specified by (41) with A= 1 mand a = 10
km. In this simulation the domain contains 90 points
in the horizontal and 66 levels in the vertical; the wave
absorbing layer occupies the top 33 levels. The grid
intervals are Ax = 2 km, Az = 333 m; the large and
small time steps are 20 and 5 s. The model is run until
the solution reaches a nearly steady state (20 000 to
30 000 s after start-up). Fig. 13 includes only the central
portion of the domain, in which the grid indices run
from 15 to 75 in the horizontal and 1 to 33 in the
vertical. As in the first example in Section 4a, Na/u
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> 1, Nh/u < 1, so the model results are essentially
linear and hydrostatic. The perturbation ficlds have
been multiplied by 1000 for display; as such they rep-
resent the approximate linear solution for a 1 km high
mountain.

Figures 14 and 15 show the waves produced in the
same flow for cases where RH = 100% with 0.0 and
0.2 g kg™! of cloud upstream. No rain is allowed in
these runs so condensation and evaporation are re-
versible. A comparison of Figs. 13, 14, and 15 shows
that the moist waves are appreciably weaker than the
dry wave. The differences in the horizontal wind speed
maxima and minima are particularly pronounced. In
an atmosphere with constant N and #, the horizontal
wind speed perturbations are proportional to N, so it
is reasonable to expect the reductions in effective sta-
bility which occur in saturated regions to have a strong
impact on the horizontal wind speed.

The change in stability also has a large effect on the
vertical wavelength, which in the case of constant N
and u is 2#u/N. In the dry case, the first vertical half-
wavelength (the height at which the streamline contour
is a mirror image of the mountain) is approximately

HEIGHT {(km)

HEIGHT (km)

F1G. 14. (b) As in Fig. 13, except that RH = 100% in the
upstream flow. Cloudy regions are shaded.
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5 km; it increases to 6.5 and 7.5 km in the partially
cloudy and everywhere cloudy cases. Klemp and Lilly
(1975) have shown that linear hydrostatic waves ex-
perience strong amplification in multilayer atmo-
spheres in which the total phase shift across the tro-
pospheric layers is one-half vertical wavelength. The
ability of moisture to alter the vertical wavelength
should allow changes in humidity to tune or detune
the tropospheric phase shift and thereby significantly
modulate the wave response.

The vertical profile of the momentum flux associated
with each of these waves is shown in Fig. 16. The
momentum flux in the moist waves is less than half
that in the dry wave; the weakest flux is produced by
the partially saturated wave. Since there is no net heat-
ing in any of these examples, the fluxes are all ap-
proximately constant with height, in agreement with
the results of Eliassen and Palm (1960).

The fluxes have been normalized by the exact
expression for the momentum flux in a linear hydro-
static wave (45). Although (45) was derived for an
atmosphere with constant Scorer parameter, it can also
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FIG. 15. As in Fig. 13, except that RH = 100% with
0.2 g kg™! of cloud in the upstream flow.
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F1G. 16. Vertical flux of horizontal moméntum, normalized by
the dry linear hydrostatic value, produced by linear waves in three
cases with different upstream humidity.

be applied in situations like the everywhere cloudy
case, in which / increases gradually with height so that
upward propagating waves are neither trapped nor
partially reflected by regions where the atmospheric
structure changes rapidly. In this approach, the equiv-
alent moist stability at the surface N,, [see Durran and
Klemp, 1982b and Eq. (A19)] is substituted for the
dry stability in (45). In our example, the moist stability
at the surface is 0.0062 s™!, which yields an estimate
for the momentum flux of 0.47M}. As shown in Fig.
16, the momentum flux determined from the model
is in good agreement with that obtained analytically
in both the dry (1.0Mj) and everywhere cloudy
(0.47 M) cases.

In the preceding small amplitude examples the
clouds do not precipitate, so the microphysics are re-
versible and the practical effect of moisture is to de-
crease the stability in the saturated regions. In principle
the moist flow could be calculated by replacing the
clouds with regions of suitably reduced stability. Bar-
cilon et al. (1979) have taken such an approach and
found, in their linear calculations, that low level mois-
ture could reduce the wave drag by up to 50%. Their
estimate is consistent with the small amplitude results

- given here. We are not able to present a more complete,

quantitative comparison with the calculations of Bar-
cilon et al. (1979), because their assumption that both
N and N,, are constant with height is not consistent
with the actual stability structure in the atmosphere.
That assumption may be reasonable in shallow clouds,
but it is never strictly correct and is generally not ap-
propriate in deep clouds.

b. The influence of moisture on the 11 January 1972
Boulder windstorm

The simulation of the 11 January 1972 mountain
wave event in Boulder, Colorado described in Section
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FIG. 17. Streamlines obtained by numerical simulation of the 11
January 1972 windstorm in which the upstream humidity (a) is
determined from the Grand Junction sounding and (b) includes a
cloud layer with 0.2 g kg™' of liquid water between 700 and 500
mb. Cloudy regions are shaded; dark shading represents liquid water
concentrations exceeding 0.2 g kg™'.

4d has been repeated with the moisture distribution
reported in the 11 January 1200 GMT Grand Junction
sounding included in the flow. The resulting stream-
lines and horizontal velocity field are shown in Figs.
17a and 18a; the time dependent behavior of the surface
pressure drag is shown in Fig. 19. The moist solution
resembles the completely dry solution discussed earlier
(since they are so similar, the streamlines and hori-
zontal velocity field from the dry simulation are not
shown). The cloud distribution is also shown in Fig.
17a. The model clouds are similar, though somewhat
larger than those actually observed during the wind-
storm (Lilly and Zipser, 1972).

The upstream humidity profile measured at Grand
Junction is rather dry. Suppose that the Grand Junction
sounding had included a saturated layer, containing
0.2 g kg™! of liquid water between 700 and 500 mb
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F1G. 18. As in Fig. 16, except that the fields plotted
are the horizontal wind speed (m s™).
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FiG. 19. Magnitude of the surface pressure drag as a function of
time from the 11 January 1972 simulations when the upstream
conditions were dry (solid line), contained the humidity observed
in the Grand Junction sounding (short dashed line), and contained
a cloud between 700 and 500 mb (long dashed line).
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in the upstream flow. The influence of this very moist,
but not unrealistic, humidity profile on the streamlines,
horizontal velocity fields and surface pressure drag is
illustrated in Figs. 17b, 18b and 19. As is evident, the
additional moisture weakens the mountain wave con-
siderably. The maximum downslope windspeed is re-
duced from almost 45 m s™! to less than 25 m s™!
(Fig. 18); and the surface pressure drag, which shows
no tendency toward amplification, is reduced by a fac-
tor of 6 at £ = 9000 s (Fig. 19). Although the tropo-
spheric wave response is much weaker in the very
moist case, the wave amplitude above 12 km in the
stratosphere is rather similar to that in the dry case.
Note in particular that both solutions contain a break-
ing wave in the lower stratosphere, yet a strong tro-
pospheric response is only produced in the low mois-
ture case.

The lee side warming associated with the Alpine
foehn is often attributed to the latent heat irreversibly
released in the low level air which ascends the windward
slope moist adiabatically and then descends dry adi-
abatically. However, in this instance, the effect of ir-
reversible heating on the lee side temperature is dom-
inated by dynamical processes. Precipitation occurs
only in the very moist case (from the cap cloud at a
maximum rate of 0.2 cm h™"), yet the lee side tem-
peratures are several degrees lower than those obtained
in the drier, nonprecipitating flow. The most important
factor which influences the lee temperatures is the wave
amplitude which is larger in the drier case. A second
simulation, in which rainwater was not allowed to
form, produced results very similar to those obtained
with rain, suggesting that (in this case) the irreversible
heating associated with precipitation does not have a
major impact on the wave structure. As noted by Smith
and Lin (1982) the influence of precipitation on the
flow dynamics can be much greater in tropical situ-
ations where the air holds more water vapor.

Perhaps it is not surprising that the addition of
moisture reduces the wave amplitude in a situation
where the dry atmosphere is already favorable for the
generation of strong mountain waves. However, the
results presented here, together with the previous stud-
ies of Barcilon et al. (1979) and Durran (1981), suggest
that the presence of low level moisture does tend to
decrease the wave response in a variety of situations.
It may also be possible that the presence of moisture
can amplify the wave response in cases which are oth-
erwise unfavorable for the development of strong
waves. According the linear theory of hydrostatic
mountain waves presented by Klemp and Lilly (1975),
such amplification may occur if the longer vertical
wavelengths associated with saturated waves produce
a phase shift across the troposphere which is closer to
one-half vertical wavelength than the phase shift for
the corresponding dry flow. We are continuing our
research with this model in order to gain a more thor-
ough understanding of the impact of precipitating and
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nonprecipitating clouds on the dynamics of vertically
propagating mountain waves.

5. Summary

We have presented a detailed description of a two-
dimensional, nonhydrostatic, compressible model de-
signed to numerically simulate moist orographic flows.
The model was found to reproduce known analytic
solutions with reasonable fidelity. The numerical so-
lutions did exhibit a strong sensitivity to the location
of the upper boundary whenever highly nonlinear
waves propagated into the absorbing layer. This sen-
sitivity was eliminated by the use of a very deep wave
absorbing layer (4.5 vertical wavelengths). The sensi-
tivity was also removed if a wave breakdown (or trap-
ping) region was explicitly included in the computa-
tional domain, so that the disturbance which actually
reached the wave absorber was significantly weaker
than that generated at low levels.

Most mountain waves which have large amplitudes
in the troposphere may be expected to overturn some-
where in the lowest 10 km of the stratosphere. Thus,
in most cases it is possible to explicitly include at least
one region of wave breakdown and absorption in the
numerical domain. Since the vertically propagating
wave is not entirely dissipated at the first breakdown
level, a radiation boundary condition must still be ap-
plied at the top of the model, but under these circum-
stances satisfactory performance can be achieved from
a relatively thin absorbing layer.® In any event, the
inclusion of the lowest wave breakdown level in the
numerical domain is advisable since overturning can
have a strong effect on the wave structure below.

The utility of the model has been demonstrated in
two examples that illustrate how the presence of mois-
ture can impact propagating mountain waves. In the
first example, the strength of a linear dry mountain
wave was reduced by approximately 50% when the
upstream relative humidity was increased from 0 to
100%. The presence of additional moisture in the form
of upstream clouds had little additional impact. In the
second example, a dry simulation of the 11 January
1972 Boulder windstorm was insensitive to an increase
in humidity equal to that actually observed in the
Grand Junction sounding. However, a very wet but
nevertheless realistic moisture distribution containing
a cloud between 700 and 500 mb upstream, produced
a dramatic reduction in the tropospheric wave am-
plitude. The lee slope warming was a strong function
of the wave amplitude, so that even though precipi-
tation and irreversible heating occurred only in the
very moist case, the lee slope temperatures were warmer
in the drier, nonprecipitating cases. A more compre-
hensive investigation of the effects of moisture on ver-

* The numerical radiation boundary condition proposed by Klemp
and Durran (1983) is also effective and is considerably more efficient.
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tically propagating mountain waves is currently in
progress.
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APPENDIX
o Details of the Numerical Model
1. Grid structure

The model uses the standard staggered mesh shown
in Fig. 20. Thermodynamic and moisture variables are
all represented at a common grid point; velocity vari-
ables are displaced half a grid interval from that point.
This arrangement improves the resolution in the pres-
sure gradient and divergence terms without requiring
a reduction in the large time step.

2. Microphysics

- The cloud microphysics are included through a
Kessler parameterization in which moisture is divided
into three categories: water vapor, cloud water (liquid
water droplets with negligible fall speeds), and rain
water (liquid water droplets with finite fall speeds). The
microphysical terms in (4)—(7) are

M, = —%(Aus,), (A1)
M, =A+E,, (A2)
M,=-A—-4,—-C, (A3)
My =32 GVa)— E,+ 4,4 C  (Ad)
where g
0, Gy < qus
A=< dg,
&’ Gy = Gys-

Here L is the latent heat of vaporization, E, the evap-
oration of rain, 4, and C, are the contributions of
autoconversion and collection to raindrop develop-
ment and growth, and V the raindrop fall speed. The
saturation mixing ratio, used to determine A, is cal-
culated from Teten’s formula

— 36

The autoconversion and collection rates are given by
the Kessler parameterization which assumes that the
spectrum of raindrop radius follows a Marshall-Palmer
distribution

8
Gos = 38 exp(l7 27
P

Ar = kl(qc - a)’ (A6)
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® Thermodynamic Point: r, 8,q,,4,,q,
O u Point

< w Point

O Vorticity Point * used in the turbulent
mixing differences.

FIG. 20. Structure of the numerical grid.

C = kageq?®". (A7)

The autoconversion threshold and rate constants have
nominal values of a = 0.5 g kg™!, k; = 0.001 s7%, k,
= 2.2 s7'. The evaporation of raindrops is given by

1 (1= q/q,)Upg)>>®

Er =z — s
p 5.4 X 10° + 2.55 X 106/(pq.,s) (A8)
where C is the ventilation factor . )
C = 1.6 + 124.9(pq,)°2%% [s7']. (A9)

The raindrop fallspeed is approximated as
-1/2
V = 36.34(54," '346(” ) [ms™). (A10)
Po

In (A5)—(A10), p is expressed in millibars, p in grams
per cubic centimeter and g,, g, and ¢, in grams per
gram. Ice processes are not included in the model,
since they are not critical to the investigation; they
would significantly complicate the microphysical pa-
rameterization. '

The microphysical forcing is calculated using a two-
step procedure suggested by Soong and Ogura (1973).
In the first step, the temperature and moisture variables
are advected and diffused according to (4)—(7), except
that the M terms are ignored. Then, in the second
step, (A1)-(A4) are evaluated using the results of
step one. _

Autoconversion, collection and the evaporation of
rainwater are calculated as per (A6)-(A10). The evap-
oration of rain is limited by the amount of additional

" water vapor required to saturate the air. The ram water

flux convergence is calculated from

(p Vg) = H3, +(oVa,).

5 (A1)
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At the lowest grid level, a one-sided difference is used;
in order to maintain linear stability, it is lagged in time
at t — At. Let the values of 8, g, and ¢, at this point
in the calculation be denoted by an asterisk.

In order to complete the evaluation of (A1)-(A3),
the condensation rate, —A, must be determined so that
8 and g, are in equilibrium with g4t = q,,s““ of
course any evaporation will be limited by g*. We re-
quire the adjustment to proceed moist adiabatically;
thus

6t+Al + L
c,,II
Teten’s formula for the saturation mixing ratio (AS)
may be linearized about #* to obtain

409311 VP

(I16* — 36)* (® |

Then (A12) and (A13) are combined to obtain the
desired expression for A,

L
g = 0%+ ——=gq¥.  (Al12)
ol

gist = q.,s[l + (A13)

gt — a% i
4093L

|+ gt —2L

Tos . (T10* — 36)°

A = —max gt |. (Al49)

3. Subgrid scale mixing

When modeling phenomena on the scale of moun-
tain lee waves, the effects of subgrid scale turbulence
must be parameterized as a function of the larger scale
flow. We employ a conventional first order closure
formulation which depends on the relative strengths
of stratification and shear (Lilly, 1962). Subgrid scale
effects are introduced to the velocity field calculations
through the terms D, and D,,

_9 9
Dy = o~ (Kued) + o (KuB),

¢] 7]
D, = o (KuB) = o (Kid),  (AL5)
where
du dw ow
A = — —
(8x az) (62 + ) (A16)
Def? =A%+ B}, Def3 = A3+ B}, (A23)

. L
agH&z;(O + - ,,II q‘,)
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\_6(Def)*’

+ gHoy(q, + q0),

2359

= k?AxAz(4 + BY)'?
KH 1/2
X [max(l - R, 0)] , (A17)
-M

NZ
m , for g, <gqu
Ri = N2 (A18)
ﬁp , for g, = qy.
Here Ri is the Richardson number, and
Lg eL q,,s)_'(d Ind L dq,,s)
2 - vs + —_—
N g(l * )(1 oR1?) \dz T T dz
b + 4.
_ g(éu), (A19)
dz

and e = 0.622. The expression for the moist Brunt-
Viisild frequency N,, is derived by Durran and Klemp
(1982b) and is shown to be a satisfactory approximation
to the exact expression. The subgrid scale mixing terms
in the scalar equations are of the form

3 (. 0 3
D, = (KH ax) ™ (K,, o ) (A20)

where ¢ = 6, g, ¢., and g,,. In the model k£ = 0.21
(Deardorff, 1971) and Ky/K, = 3 (Deardorft, 1972).
This ratio of Ky/K, allows turbulent mixing to begin
when Ri drops below Y5, which is just slightly larger
than the commonly accepted critical value for the sta-
bility of a shear flow, Ri = Y%.

The presence of the terrain transformation makes
the evaluation of horizontal second derivatives in the
subgrid scale mixing terms rather cumbersome. The
finite differences are computed as follows:

Ay =du+ G@x — How,

A= + Gdu— Hozw,  (A21)
B, = Hozu + 5w + Goyw,
By = Houu + 8w + Gogw . (A22)

The terms with subscript 1 are evaluated at thermo-
dynamic points; those with subscript 2 at vorticity
points. Continuing, we calculate

saturated
(A24)

unsaturated,



2360

MONTHLY WEATHER REVIEW ~ VOLUME 111
~————'—'—L X
Hé 0+ —= q,
ag sh( c Il a ) -
s — + gHoé(q, + q;) , saturated
L
Ri, = | (0 o ) (Def2y (A25)
Ho,0
%;;- , unsaturated,
¢ (Defa)?
ofz) = (1 + Lé"‘)(l + L G )_1 (A26) TS
RN\ " o r@6Y) - fo="ubm — @ G+ Hwdgr
The saturated form is used whenever g, > 0 at all _R w(d.u + G@" + How)
points involved in the calculation. Then, Cp
Ky, = k*AxA¢Defi(max(0, 1 — 3 Riy)"2, & [Mo +D,  0.61(M,, + qu)] (A35)
Cobwo 6 1+061g, J°

KM2 = szfoDefz(max(O, [ - 3 Ri2))'/21
and finally,
Du = 6X(KM|A1) + G&;(KMzAz) - Har(KMzB2), (A28)

(A27)

D,, = 8{Kp,B2) + G8:(Kp,B1) — H3(Kpp, A1) (A29)

The mixing terms for the scalar variables are derived
from Ky,

Let
—_—X —X
R =Ky (0x9 + Goy 9 ),
S = Kn (oo + G;9), (A31)
T= K_Hra;dJ.
Then
D; = 8,R + G6,S + H?,T. (A32)

4. Large time step differencing

The right-hand sides of the momentum and con-
tinuity equations, with the coordinate transformation
included, are

f= ——3‘f A8yt — Sat) — G + HW Yo

— B3 — 0o YO + Goyr ) + D,
e =t '
fo= 3 (485w — Sg,w) — (#* G + Hw)dyew
N T
+ (B — 0M0)(7 - cpHﬁﬂr) +D,, (A34)
oMo

(A33)

In the above, 8, is the undisturbed value of ,, along
a constant z surface (denoted 6, in earlier equations).

Since the operator (_)x averages along a constant ¢

—_—X

surface, 0y, % 6r,. In practice, the terms in (A33)
and (A34) involving the pressure gradient, and the
entire f, expression may be omitted with only minor
effect on the solution; in fact, they are omitted in the
three-dimensional cloud model of Klemp and Wil-
helmson (1978). They are included in this model since
the computational cost is not prohibitive, and their
inclusion makes the finite difference equations formally
equivalent to the full Navier-Stokes equations.

The scalar advection equations are all differenced
identically

L
3

0y = (40250 — 04x0)
—_—F ¢
— @G+ Hwp¢ + M, +D,. (A36)

The small and large time steps are meshed as follows.
The scalar equations for 0, g,, g. and g, are stepped
from t — Af to t + At by a single leapfrog step. The
functions f,, f,, and f, are evaluated at the central time
level ¢. Finally, the «, w, and = fields are stepped forward
from t — At to ¢ + At with forward time differencing
on the small time step. The total number of small time
steps is 2At/Ar.
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