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ABSTRACT

A new three-dimensional cloud model has been developed for investigating the dynamic character of con-
vective storms. This model solves the compressible equations of motion using a splitting procedure which
provides numerical efficiency by treating the sound wave modes separately. For the subgrid turbulence
processes, a time-dependent turbulence energy equation is solved which depends on local buoyancy, shear
and dissipation. First-order closure is applied to nearly conservative variables with eddy coefficients based
on the computed turbulence energy. Open lateral boundaries are incorporated in the model that respond to
internal forcing and permit gravity waves to propagate out of the integration domain with little apparent
reflection. Microphysical processes are included in the model using a Kessler-type parameterization. Simula-
tions conducted for an unsheared environment reveal that the updraft temperatures follow a moist adiabatic
lapse rate and that the convection is dissipated by water loading of the updraft. The influence of a one-
directional shear on the storm development is also investigated. A simulation with a veering and backing
wind profile exhibits interesting features which include a double vortex circulation, cell splitting and second-
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ary cell formation.

1. Introduction

In recent years, the detailed three-dimensional
structure of convective storms has been observationally
well documented. Schematic models based on these
observations have been proposed (e.g., Fankhauser,
1971; Browning and Foote, 1976), and analyses of
multiple-Doppler observations are now revealing the
internal velocity structure within precipitating clouds
(Ray, ef al., 1975; Ray, 1976; Brandes, 1977; Miller,
1975; Kropfli and Miller, 1976; Lhermitte and Gilet,
1975). To further increase our understanding of cloud
structures and their relationship to environmental
conditions and microphysical processes many numerical
models have also been developed. However, only
recently have three-dimensional simulations been
sgriously attempted, primarily because of computational
constramts. -

Three-dimensional simulations are necessary for
studying the relationship between shearing and veering
eqviromnental winds and such features as rotation
within and orientation of updrafts and downdrafts,
cloud movement relative to the mean wind direction
and flow of environmental wind around a cloud. For
example, Orville and Kopp (1977) found it necessary
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to reduce environmental winds to 209, of the observed
values in their two-dimensional model in order to
simulate the Fleming supercell storm which occurred
on 21 June 1972 in the NHRE project area and which
has been documented by Browning and Foote (1976).
Frequently in two-dimensional (and often in three-
dimensional) models rain falls within the updraft
and the downdraft that eventually develops due to
water loading and subcloud evaporation cuts off the
primary low-level supply of moisture (e.g., Wilhelmson,
1974). Despite some success by Orville and Kopp
(1977), Takeda (1971), Hane (1973) and Schlesinger
(1973a,b) in modeling storm features with two-dimen-
sional models there still remain many features such as
those mentioned above which these models cannot
faithfully represent. Further, it is not clear under what
conditions the ability to represent subgrid-scale mo-
tions in three dimensions will be important to cloud
development and structure. For example, Kraichnan
(1976) has discussed the different implications of eddy
viscosity assumptions in two and three dimensions
including the tendency for transfer of kinetic energy
to larger scales in two dimensions and to smaller scales
in three dimensions.

Three-dimensional modeling currently requires sacri-
fices in the representation of physical processes and in
the scales of resolution which must be made through
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careful consideration of one’s modeling goals. It is not
feasible, for example, to model storm evolution with a
grid that lies well within the inertial subrange, with a
domain three or four times the storm size, and with a
detailed representation of microphysical interactions.
Resolution within the inertial subrange is desirable
because the statistical nature  of transport processes
within this subrange is basically understood (e.g.,
Lilly, 1967). These statistics justify the use of turbu-
lence parameterizations which are much simpler than
those using the full second-moment turbulence equa-
tions (Deardorff, 1973) which are presently too complex
for use in a three-dimensional cloud model. At the same
time, having a large domain relative to the storm is
desirable in order to capture storm interaction with its
environment. For example, Hoxit ef al. (1976) suggest
that a midlatitude storm can interact with the environ-
ment to form a mesolow 25-100 km downwind of the
existing storm, inducing low-level moisture convergence
which is favorable for continued storm development.
Finally, a detailed representation of the microphysics
would be desirable because the timing and location of
precipitation can have a significant effect on the
dynamics. |
The three-dimensional cloud and storm modelers
that have reported in the literature have made sacrifices
in each of these areas. The main emphasis of their
research has been on the basic development of three-
dimensional models and on their use to simulate cloud
structure, intensity and movement. Steiner (1973)
utilized a shallow convection mode! for both dry and
nonprecipitating simulations. Schlesinger (1975) re-
ported some preliminary results from a deep and non-
precipitating convection mode. Wilhelmson (1974),
Pastushkov (1975), Miller and Pearce (1974) and
Moncrieff and Miller (1976) have simulated deep
precipitating convection in which the microphysics has
been highly parameterized. A unique feature of the
Miller model is that the vertical coordinate is pressure
while in the other models it is height. For computa-
tional reasons Steiner, Pastushkov and Wilhelmson
implemented their models assuming symmetry across
a vertical plane and thus were not able to vary the
direction of the environmental wind with height.
Schlesinger (1975) and Wilhelmson (1974) have
pointed out the presence of vortex couplets within the
updraft for cases involving one-directional shear. How-
ever, it is difficult to determine what path an air parcel
takes as it rises within this couplet, what the origin of
the couplet is and, in Wilhelmson’s precipitating case,
what relationship the couplet has to Doppler observa-
tions. Answers are complicated by the nonsteady
nature of the simulated clouds and the corresponding
difficulty in choosing an appropriate propagation speed.
Wilhelmson notes that at mid-cloud levels wind features
reminiscent of flow about an obstacle are present, i.e.,
deceleration of approaching air and acceleration of the
air as it passes around the updraft. Wilhelmson also
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documents the depletion of low-level moisture that
occurs when moisture is not replenished through the
boundaries. o

Moncrieff and Miller (1976) used theory and numeri-
cal simulations to discuss the maintenance of tropical
cumulonimbi that tend to propagate faster than the
wind at any level in which they are embedded. They
argue that under certain conditions a density current
due to a diverging downdraft near the ground propa-
gates at the same speed as the cloud and the net result
is a convergent region beneath the updraft. This
occurs despite the fact that rain falls out downshear of
the updraft. They also argue that simplified cloud
microphysical and subgrid parameterizations appear
to be adequate for representing the dynamic character
of tropical cumulonimbus.

The main purpose of this paper is to present the
development of a new three-dimensional model for
continuing the study of the dynamic character of
convective clouds and storms. The previously men-
tioned investigations only begin to answer the many
questions which arise with regard to cloud structure
and dynamics. For example, what environmental
factors have most effect on cloud and storm longevity,
propagation and intensity; how do clouds evolve into
severe storms; and what are typical net transports of
momentum and heat by storms? Answers to these
questions probably vary depending on the kind of storm
being investigated, e.g., supercells, multicells, squall
lines, etc. We have taken considerable care to formulate
and implement a new model that can be used to help
answer questions of this nature.

In Section 2a we present the dynamical model based

on the compressible equations of motion, while in

Section 2b we describe the microphysical parameteriza-
tion. The subgrid turbulence parameterization, dis-
cussed in Section 2c, utilizes mixing coeflicients obtained
through the solution of a subgrid kinetic energy equa-
tion with closure applied to nearly conservative vari-
ables. Boundary conditions are presented in Section
2d. They appear to be well posed and are designed to
allow the dominant gravity wave modes to propagate
out through the lateral boundaries without significant
reflection.

Sections 3a-3d deal with the finite-difference represen-
tation of equations in the corresponding parts of Section
2. Here a computationally efficient technique for
integration of the compressible equations is described.
Efficiency is achieved by solving for the sound wave
terms separately using a smaller time step. Sections 3e
and 3f include information on numerical smoothing
used and on code implementation, respectively. Tests
performed using the model are presented in Section 4.
These include testing the ability of the model to
represent parcel ascent, determining the effects of the
subgrid parameterization, documenting the significance
of the open lateral boundary conditions in both two
and three dimensions, and studying two-dimensional
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model sensitivity to the specification of boundary
conditions and to variations within the microphysical
representation. Finally, in Section 5 the results of a
three-dimensional simulation initiated with a veering
and backing wind are discussed in some detail.

2. Model equations

In developing the three-dimensional cloud model,
strong emphasis has been placed on providing a sound
dynamical framework for the system with initially
rather simple microphysics. This approach seems
justified in that accurate dynamics are a necessary
prerequisite for studying storm circulations. Detailed
microphysics can then be accommodated as procedures
are developed for simplifying the more sophisticated
parameterizations.

The equations of motion which govern cloud-scale
motion are compressible and thus permit the propaga-
tion of both gravity and sound wave modes. Although
sound waves are not important in thermal convection,
their presence can place severe restrictions on the time
step in numerical integrations because of their high
propagation speed. For this reason most cloud modelers

use an anelastic system of equations in which sound.

waves have been removed by eliminating certain terms
in the compressible equations. The anelastic system
was proposed and analyzed by Ogura and Charney
(1962) and Ogura and Phillips (1962). To our knowledge
only Hill (1974) and Cotton (personal communications)
have used the compressible equations in cloud modeling.
The time step required for their numerical integrations
is considerably smaller than that required for corre-
sponding anelastic integrations because numerical
stability depends on the speed of sound. Miller (1974)
and Miller and Pearce (1974) also eliminated sound
waves from their model, but fast moving external
gravity waves remained to limit the time step. Mon-
crieff and Miller (1976) removed the surface gravity
waves from the model, allowing larger time steps.

The compressible equations, however, have certain
advantages over the anelastic equations, particularly
in three dimensions. These will be discussed in Section
2a. Consequently, our model utilizes the compressible
equations along with procedures to significantly im-
prove the computational efficiency.

The current version of the model contains nine
prognostic equations. They include the three momentum
equations, the pressure and thermodynamic equations,
three moisture and water equations, and a subgrid
kinetic energy equation. The equations are specified
in the Cartesian coordinate system and will be described
in Sections 2a—2c.

a. The dynamic framework

Derivatives of the momentum and pressure equations
require use of the moist equation of state which is
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commonly written in the form
p=pR.T(140.61g,), (2.1)

where p is the pressure, p the density of moist air, Ry
the gas constant for dry air, T the temperature and g,
the mixing ratio of water vapor. Eq. (2.1) can be re-
written in terms of nondimensional pressure II in the

form
-p Radlcp R 2 Rdlcy
() ()
Do Do

Here po is the base state pressure at the ground and
6, the virtual potential temperature defined by

6.=6(1+0.61q,). (2.3)

The potential temperature 8 is then simply related to
I1 by 6=T/1I.

The momentum equations are derived frorn the

Navier-Stokes equations with the aid of (2.1). The
results can be expressed in tensor form as

(2.2)

du; _ onr
by
dt ad

0
=t 2~ 14+0.61 @0 =0,

Xi

—e,-jafu.-+Du,-. (24:)
The u; (i=1, 2, 3) are the velocities %, v, », respectively,
7 is the deviation of pressure from the initial un-
perturbed state I, and g, and ¢, are the mixing ratios
of cloud drops and rainwater, respectively. These
equations include the Coriolis force, with f being the
Coriolis parameter. Bars over individual variables refer
to the initial undisturbed state which is a function of z
only. The operator d/dt denotes the substant_lal deriva-
tive given by _
’ d 9 2
+u—.
6x,~

dt ot

Terms denoted by D., represent the subgrid turbulent
mixing and are defined in Section 2c. The buoyancy
term in (2.4) arises through linearization of the pressure
term and use of (2.1), (2.2), (2.3) and the hydrostatic
equation II,=— g/ (c,0,)-

The prognostlc equations for 6, ¢,, ¢. and q, can all
be written in the form

d¢
—_=M¢+D¢r
dt -

(2.5)

where M, refers to microphysical terms described in
2b and D, to turbulence terms defined in 2c.

The pressure equation is derived by taking the sub-
stantial derivative of (2.2) and using the compressible
continuity equation

Bp
—‘+_‘(Pu1) 0
ot Oxj

(2.6)



JunE 1978

to eliminate dp/dtf and the thermodynamic equation to
remove df/dt. The resulting equation is

om ¢ 9 _
—+———(36su;) = fx, (2.72)
0t cppb.? 0x;
or R,ﬂl" au,- c? dev
Sr=—u—+ + +D., (2.7b)
0x; ¢y Ox; 0% di

where ¢ is the speed of sound given by ¢2=c,RII0,/c,.
This equation is similar to the one used by Tapp and
White (1976) in their nonhydrostatic mesoscale model.

The anelastic continuity equation 0pwu./dx;=0 can
be derived using (2.7) and scale analysis similar to
that carried out by Ogura and Phillips (1962). This
analysis suggests that only the second term in (2.7a) is
physically important in describing convection. Since
the anelastic approximation eliminates the prognostic
nature of the equation, one must then solve an elliptic
equation derived from the momentum and continuity

equations which has the form (e.g., see Wilhelmson,
1974)

aZ
b‘;(ﬁﬂm) =source terms.
%

(2.8)

Our decision to utilize the compressible equation
(2.7a) rather than the anelastic equation (2.8) is based
primarily on the computational simplicity and flexi-
bility of using a fully prognostic system of equations.
The numerical code then remains a set of explicit
prognostic equations and alterations involving such
things as stretched or nested grids, higher order finite-
difference schemes and surface terrain, and boundary
conditions can be incorporated into the numerical model
without complicating the solution procedure. By
special handling of the sound wave terms as described
in the next section, the compressible equations can be
solved nearly as efficiently as the anelastic system in
which the Poisson equation has constant coefficients.
With nonconstant coefficients (produced by such
features as a stretched mesh or coordinate transforma-
tion) more general algorithms or iterative techniques
are required which can make solution of the anelastic
system more time consuming.

The terms contained in f, in (2.7b) appear to have
little influence on processes which are of physical
interest in the cloud model. Derivation of the linear
dispersion relation reveals that these terms have a
very small influence on both sound and gravity wave
modes. [Details will be discussed by Klemp (1978).]
Since in the model the continuity equation is only used
in deriving the pressure equation, simplification of
(2.7a) is comparable to including a small source term
in (2.6). Thus eliminating f, in (2.7a) can allow small
amounts of mass to be added to or removed from the
domain which in turn affects the mean level of the
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pressure. This effect is similar to that occurring in the
anelastic system where nonuniqueness of the Poisson
solution requires an arbitrary specification of the mean
pressure. Thus f, is only important for uniqueness by
allowing the mean pressure in the domain to be cor-
rectly represented. However, in' the present model
formulation a unique pressure is not required since only
derivatives of = are needed. Even including f», com-
puting a unique pressure field may not be feasible since
with open lateral boundaries the mean pressure is
sensitive to the net fluxes of mass and heat through the
boundaries. Whether these fluxes are specified or com-
puted, there is no unique way to determine what they
would be if the artificial lateral boundaries were not
present.

The cloud model is currently designed so that f» can
be either included or omitted in the computations.
Including f» requires one more storage array and causes
only a small increase in the computation time. Simula-
tions presented in this paper have been computed both
ways and the differences are negligible except that the
pressure fields differ by a constant which ranges up to a
maximum of about 0.5 mb.

b. Microphysical parameterization

The microphysical processes of condensation and
coalescence are represented by M, in (2.5) and are

given by
dqvs
My= ——y< +E,>, (2.9a)
dt
dgve
M,=—+E,, (2.9b)
dQva
ch= —_—_-Ar—cr, (29(:)
dt
19
M, =-—(@Vq¢)—E~+A4,+C,. (2.9d)
P 0z

Here y=L/(c,IT), L is the latent heat of vaporiza-
tion, ¢,, represents the saturation mixing ratio, and
dg.s/dt refers to the rate of condensation or evaporation
of cloud water ¢.. The terms A4,, C, and E, represent
the rates of autoconversion, collection and evaporation
of rain, respectively, and V is the terminal velocity of
the rainwater.

Condensation and evaporation represented by the
dq../dt term are governed by the thermodynamic
equation

dg

& dg,
—+y—=Ds+7D,, (2.10)
dt  dt

which is obtained by summing the 6 equation with v
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times the ¢, equation. Das (1969) argued that the
left-hand side of (2.10) provides a good approximation
to the standard expression for the water saturation
adiabat given by Saunders (1957). Wilhelmson (1977)
has also demonstrated that, for deep convection, Eq.
(2.10) is a better approximation than conservation of
equivalent potential temperature 6,=6++vq,. (The
only difference between the two arises from the z
dependence of v.) To determine the saturation vapor
pressure we use Tetens’ formula

3.8 me—273\
Gre="— exp(17.27—__——).
D

(2.11)
me—36

The use of mean state pressure is justified by Wilhelm-
son and Ogura (1972) and by comparison tests with the
present model. Egs. (2.10) and (2.11) are sufficient to
uniquely determine. 6 and ¢, in a saturated region in
which supersaturation is not permitted. By summing
the g, and ¢. equations, we obtain

dq 1

E=Dq.,+ch+ (E,—A4,—Cy), (2.12)

and thus ¢i=¢,+¢. is a conservative variable in the
absence of rain processes and turbulent mixing.

The procedure used to compute the conversion
between water vapor and cloud water has been given
by Soong and Ogura (1973). In this procedure the
prognostic equations for 8, ¢, and g. are first stepped
forward in time, holding dg,,/d!=0. Adjustment is then
made such that Egs. (2.10)-(2.12) are satisfied for
that time step. Further details of this procedure are
included in Section 3b.

Autoconversion (4,) and accretion (C,) rates are
determined using the Kessler parameterization, where
C, is based on a Marshall-Palmer distribution for g.
These rates are defined by

Arzkl(Qc— a‘)) (2'133')
Cr= szch°'375, (2' 13b)

and we are presently setting £,=0.001 s, ¢=0.001 ¢
g! and k;=2.2 s, following Soong and Ogura (1973).
Some testing of the sensitivity of results to the value of a
is presented in Section 4d. The evaporation of rain is
calculated using a rate equation similar to that de-
scribed by Ogura and Takshashi (1971), i.e.,

1 (1-44/g.,)C(pg:)"

B 5.4X10542.55X 10 (Fgus)

(2.14a)

where C is the ventilation factor given by
C=1.64124.9(pq,)0- 2. (2.14b)

The first term on the right-hand side of (2.9d)
represents the vertical flux of rain. The expression for
the terminal fall velocity V is similar to that given by
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Soong and Ogura (1973) but is adjusted for mean
density variations as suggested by Kessler (1969)

and commented on by Beard (1977):

‘ -3

P

14 =3634(75q,)°"34“<—> [em s, (2.13)
Po

where po is the base state density at the ground. In
expressions (2.13), (2.14) and (2.15), p is specified in
millibars, § in grams per cubic centimeter, and g¢,, ¢.
and ¢, in grams per gram.

c. Subgrid turbulence parameterization

Computational constraints in three-dimensional cloud
modeling presently require that the numerical grid be
rather coarse. In order to include some of the effects of
subgrid-scale motion on the resolvable scales we have
taken an approach suggested by Deardorff (private
communication). In this approach a prognostic equa-
tion is solved for subgrid kinetic energy which is used
to specify the eddy mixing coefficients. Where appro-
priate, mixing length theory using these coefficients is
then applied to conservative variables.

The subgrid transport and variance terms that
require parameterization are derived by performing
Reynolds averaging on each of the prognostic variables.
The results after averaging are denoted by D, in (2.4),
(2.5) and (2.7) where ¢ is the appropriate prognostic

" variable. Prognostic equations for the subgrid trans-

ports and variances can then also be derived. For
example, Deardorff (1973, 1974) and Mellor and
Yamada (1974) have used these subgrid prognostic
equations for investigation of the near neutrally stable
planetary boundary layer capped by a stable layer.
This approach, however, triples the number of required
prognostic equations and thus is not feasible for three-
dimensional cloud modeling at the present tirae.
Fortunately, significant simplifications can be made
to the subgrid equations, while retaining basic features
of the subgrid or turbulence statistics (Deardorff,
1975; Mellor and Yamada, 1974: Yamada and Mellor,
1975; Schemm and Lipps, 1976: Sommeria, 1976). In
the approach adopted here, the subgrid turbulence
equations are simplified and only the prognostic
equation for subgrid turbulence energy is retained. As
a result, considerable savings in computer time and
storage are realized. Such simplifications are, however,
used in deep cloud models with some uncertainty for
several reasons. One is that measurements of turbulent
processes within clouds and storms for verification
purposes are minimal. Another is that closure tech-
niques for the subgrid equations are based on the
existence of a grid scale within the inertial subrange
and with present resolution this requirement is not
satisfied. However, we can still evaluate the distribution
of subgrid-scale energy based on our understanding
of turbulence within growing thermals and with the
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aid of some observations of in-cloud variances from
Doppler radar. The latter can be used to provide
estimates of the magnitude and distribution of energy
dissipation on the 0.5-1 km scale (Frisch and Strauch,
1976). Therefore, we feel that a subgrid parameteriza-
zation based on turbulence energy estimates is justified
for a cloud model, especially if it does not require a
major increase in computation. In any event, it provides
a significant improvement over procedures which
define simple nonlinear mixing coefficients based only
on shear.

The general approach taken in the following param-
eterization is to close the subgrid transports using
mixing length theory on conservative variables. In
unsaturated motion § and ¢, are conserved. In saturated
motion ¢; is conserved (ignoring rain processes), while
(2.10) governs conservation in the thermodynamic
processes. Based on these considerations, the expressions
for Dy=Ds, D,,, D,, and D, can be approximated for
both unsaturated and saturated motion as

9 — 90 d¢
D¢=-——<u,¢')~—(1<h3~), (2.16)

x5 6x, X

where K is an eddy mixing coefficient to be defined
later. Here, primed variables refer to deviations from
the grid volume average and overbars denote an
average taken throughout the grid volume. At this
point we assume that unprimed variables represent
grid volume averages and thus their overbars are
omitted to avoid confusion with those used for the
undisturbed initial state variables.

At first glance, it may not be evident that these ex-
pressions provide closure on conservative quantities
when the air is saturated. However, as discussed above,
the moist processes are governed by Egs. (2.10)-(2.12)
and consequently, the closures denoted in (2.16) imply
a closure for (2.10) given by

ad af.
Do+‘Y‘DGv = '_'(Kb—-—)

ax,- axj
dy 9 dy
—Kngi— —[]n(K hqv2—~):| (2.17a)
dz 93 dsz
and for (2.12) by
d aq;
un+ch=~—<Kh——). (2.17b)
ax,- 8x,-

Ignoring the z-dependence of v, Egs. (2.17) reveal that
the condensation adjustment provides closure using
the nearly conservative variables 6, and ¢;. [The last
term in (2.17a) arises because in the thermodynamic
equation (2.10), 6, is not exactly conserved.] The
advantage of this approach is that in solving the 8,
¢» and ¢, equations, the subgrid mixing terms have the
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same form regardless of whether or not the air is
saturated.
The subgrid momentum terms are given by

d
D= —‘_(u:u;); (2.18)
ax,- '
where
— du; Ou;
UH;= — Km< +_>+%511E (219)
dx; Ox;

Here K,, is the momentum eddy mixing coeflicient and
E is the subgrid-scale kinetic energy given by

E=1(u;) (2.20)
In deriving these expressions, motion on the subgrid
scale is assumed incompressible which is a good approxi-
mation for motion at scales smaller than the grid
interval. The remaining mixing term D, is set to zero
since it has virtually no influence on the solutions.

It now remains to determine E, K, and K The
turbulence energy is represented by a prognostic
equation of the form

dE o N
— gw'(—_+0.6lq,, —q¢> — U
di ] 6x,-

d a
+—(Km—ﬁ>—(ce/l)E§, (2.21)
dx;\  0x;

where I=(AxAyAz)} is the appropriate length scale
(Lilly, 1967) and E>0 is enforced. This equation is
similar to that used by Deardorff (1975), Mellor and
Yamada (1974), Schemm and Lipps (1976) and others.
The terms on the right-hand side of (2.21) represent
the effects of buoyancy, shear, diffusion and dissipation.
All the subgrid terms have been defined except for the
vertical buoyancy flux in saturated motion. This term
can be expressed as a function of the nearly conservative
variables 6, and ¢, and then closed using mixing length
theory. This is accomplished by relating the saturation
mixing ratio and 6 through the Clausius-Clapeyron
equation which yields

L
UGy =——ul’,
R T8

(2.22)

where €=0.622. Employing the definition of 6., Eq.
(2.22) becomes

- = eLl?q, \™
ub’ =ui09(1+ ) .
3 de

Coupling these expressions with (2.3) and closing on

(2.23)
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6, and ¢; yields
0! l .
<—+0 61q., gc> = —AK;.————}—K;.—, (2.24)
0z
1.61eLq,
1 R;T
A = (?.25)
6 el?q,
1
CdeT2

Once E is known, K,, can be determined on dimen-
sional grounds using

(2.26)

Following Deardorff (1975), the coefficients are defined
by Cn=C=0.2. K} is then related to K, by a propor-
tionality constant, i.e., Kx=3K,,. The factor of 3 was
used in Deardorff’s (1972) study for unstable and
neutral environments in order that the transfer of
scalar variance of potential temperature on the grid
scale be matched to that calculated on the subgrid
scale. Although the subgrid ‘variance has not been
retained in the present formulation, we have used the
same ratio for Ki/Kn.

The turbulence energy equation (2.21) provides a
Richardson number cutoff for turbulence energy. This
can be demonstrated by assuming that the buoyancy,
shear and dissipation terms are the dominant terms in
the equations and by equating these three terms.
Considering only vertical gradients of the horizontal
velocity, the resulting equation allows for E>0 only
if Ri<K,,/K}, where

Kn=CnEM.

g 930,
6 9z
du\? /ov\?
G)+G)
9z 9z
For K../K»=% the cutoff Richardson number is just
slightly greater than the accepted value of one quarter.
The dependence of E (and thus K)) on buoyancy
helps alleviate excessive mixing of 4 at the top of the
mixed layer. Wilhelmson (1974) avoided excessive
mixing in an ad hoc way by diffusing only the deviation
of 8 from its initial value. In the current parameteriza-
tion K}, is zero just above the mixed layer in the cloud
environment because the stability term dominates the
shear term in (2.21). Therefore, in the vertical mixing
term for the 8 equation in Eq. (2.16), (86/92)(3K/d2)
is negative at the top of the layer and counters the
positive K;3%/93? term. This has been verified in a

boundary layer formulation reported by Deardorff
(1975).

Ri=
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d. Boundary conditions

Since the numerical computations take place within
a finite domain, appropriate boundary conditions must
be specified along all sides of the integraticn region.
The difficulty in choosing these boundary conditions
depends, to a large extent, on whether or not flow
through the boundary is allowed to take place.

Along the top and bottom of the model domain we
require the normal velocity w to vanish. This constraint

. is correct for the lower boundary and should be reason-

able for the upper boundary if that boundary remains
a sufficient distance above cloud-top level and if
vertical transport of horizontal momentum by gravity
waves is not considered important. At these boundaries
the appropriate set of well-posed boundary conditions
is clearly defined by Oliger and Sundstrom (1976). For
inviscid flow the only condition required at z=0 and
z=z¢ is w=0. With the eddy mixing (viscous) terms
present we need to specify conditions on the normal
derivatives of the remaining variables at the boundary
to accommodate these terms. Along thé boundaries
we presently set the normal mixing term equal to zero
which is nearly equivalent to assuming that the normal
second derivatives vanish at the boundaries. With this
approach vertical gradients in the mean state profiles
are not distorted due to eddy mixing near the bound-
aries. This undesirable smoothing does occur with the
so called “free slip” condition which requires the normal
first derivatives to become zero at the boundaries. It
is important to emphasize that boundary conditions
required by the presence of small viscous terms should
be applied only to these terms. If they are applied to
the inviscid portions of the equations, momentum and
thermal boundary layers will form which are totally
artificial except possibly along the ground.

At the lateral boundaries the situation is more com-
plicated since the locations of the boundaries must be
arbitrarily specified. Both mean flow and a variety of
wave modes can propagate in and out through these
boundaries. For the current cloud model our primary
concern is to let disturbances pass out through the
lateral boundaries with minimal reflection. Given a
set of initial conditions, it is hoped that as a cloud"
develops within the domain conditions near the bound-
aries will change in response to that development in
about the same way they would if no boundaries were
present.

Here again, a set of well-posed boundary conditions
has been derived by Oliger and Sundstrora (1976).
Their analysis indicates that for inviscid flow all
prognostic variables (or certain combinations of them)
but one should be specified where the normal velocity
is directed into the domain, i.e., for inflow regions.
For outflow regions only one boundary condition should
be specified. Although these conditions insure stability
and continuity of the solution, they do not provide
information which enables one to eliminate the reflec-
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tion of gravity waves. Conceptually, there are an
infinite number of mathematically proper solutions,
each corresponding to a different level of wave reflection
at the boundary. For this reason we have specified a
set of open boundary conditions which makes some
attempt to reduce gravity wave reflections at the
boundary. The guidelines set down by Oliger and
Sundstrom are followed in terms of specifying the
correct number of conditions at each boundary.
However, it is not clear that these formulations are of
the proper form to insure that the system is well-posed.

We consider first an outflow region where one
boundary condition is required for inviscid flow. The
condition we use is the advection of the normal velocity
component out through the boundary at a speed given
by the sum of the normal velocity component and an
approximated intrinsic phase velocity ¢, of the domi-
nant gravity wave modes moving out through the
boundary. For example, at an ¥ boundary the expression

du ou
—+ (utce)—=0 (2.27)
at dx

replaces the »-momentum equation and the remaining
variables are determined from the model equations
(using one-sided differences for required normal deriva-
tives). For boundaries normal to the y direction, an
expression similar to (2.27) is used which advects »
through the y boundaries with the advection velocity
¢y If the Coriolis force is included, a term is added
to the right-hand side of (2.27) for x boundaries given
by f(u—1) and a similar one for y boundaries. This term
has little effect on the gravity wave modes but allows
rotational effects along the boundaries to be consistent
with the interior. The numerical treatment of the
boundary equations is discussed in Section 3d.

When inflow occurs eight boundary conditions are
needed for the nine prognostic equations. For all
variables but the normal velocity and pressure we set
the normal derivative equal to zero and thus eliminate
the normal advection term in the prognostic equations.
The eighth boundary condition replaces the normal
momentum equation and has the same form as the
outflow condition, which for an & boundary is given
by (2.27). However, in this situation # and ¢x have
opposite signs; ¢4 is still the outward propagating
intrinsic phase velocity but # is directed into the
domain. When |%| > |c,| we set u+-c, =0.

The intrinsic gravity wave phase velocity ¢y is
selected to correspond to the faster propagating
internal waves in the system. These waves are long
wavelength in the horizontal and have a vertical wave-
length of nearly twice the height zr of the domain.
The phase speed resulting from this wave structure is

NZT .
Cy =—, (2.28)
T
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where N is the average Brunt-Viisild frequency. For
typical values of 2r=10 km and N=0.01 s, the
magnitude of ¢, is about 30 m s~ Tests using this and
other values of ¢, in a two-dimensional model are
discussed in Section 4c.

The eddy mixing terms are handled along the lateral
boundaries in the same manner as at the top and bottom

.boundaries by setting the normal mixing term equal to

zero. These conditions are in fact of little consequence
since the turbulence parameterization is such that the
mixing coefficients near the lateral boundaries will
usually be zero unless the cloud intersects the boundary.

This lateral boundary formulation is similar in
many respects to that proposed by Klemp and Lilly
(1978) in a model for simulating hydrostatic mountain
waves. Analysis of wave reflection at a boundary was
also presented in this paper based on the similarities
between the hydrostatic equations and the shallow
water equations. Although wave propagation in the
nonhydrostatic equations is considerably more compli-
cated, portions of the boundary behavior can be
analyzed to provide some justification for our choice
of boundary conditions. For this purpose, we shall
illustrate the reflection produced at an outflow boundary
in the two-dimensional linear equations when a periodic
gravity wave of the form

ur="70, expD (k;x-!—lz —w;t)],

kN
wr=kli+——————

(kP

impinges upon the boundary. This expression for w; is
obtained from the dispersion relation for the down-
stream propagating gravity wave mode with #>0
being the mean wind. If a boundary condition is speci-
fied which is not compatible with this mode, reflection
can in general take place into an upstream propagating
gravity wave mode which has the form

U =’d2 exp[z(k2x+ Iz —wgt)],
kN
(k)Y

A reflection coefficient can then be defined as 7 = |#y/41].
The intrinsic phase speed of the two gravity wave modes
are identified as

(2.29)

(2.30)

wr=Roll

N
a= y C2= .
k24 (R

Along the outflow boundary the frequency of the
incident and reflected modes must match if the sum
of the two modes is to satisfy the specified boundary
condition. Setting w;=w, yields

(2.31)

wt+cy
k2= k1
U—Cy

(2.32)
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and consequently reflection from the outflow boundary
occurs into a higher horizontal wavenumber than that
of the incident mode. The reflectivity caused by the
boundary condition can then be estimated by substi-
tuting u=wu;-uz into the condition and solving for 7.
This procedure is essentially the same as that used
by Nitta (1964) and Matsuno (1966) in analyzing
outflow boundary conditions. Inserting (2.29) and
(2.30) into (2.27) yields

U—Cy C1—Cx

?Z+61 62+C*

r=

(2.33)

Notice that as ¢4 approaches ¢; the reflection is elimi-
nated, but even if ¢, is poorly chosen r will be less than
unity. This expression also indicates that less reflection

is caused by overestimating ¢, than by underestimating .

it by the same amount. For this reason ¢4 is chosen to
correspond to the faster propagating modes as men-
tioned above.

If ¢, <4, both gravity wave modes w1!l be swept down-
stream. For the hydrostatic equations specifying an
outflow boundary condition for this situation would
lead to an ill-posed problem (Oliger and Sunderstrom,
1976). However, with the compressible, nonhydrostatic
equations the system remains well posed. Reflection
still occurs into mode 2, but now %2 becomes complex.
Analysis indicates that the reflected mode can then
propagate upstream and that it is progressively damped
out as it moves away from the boundary. This result
can be inferred from (2.31) and (2.32) which have real
solutions for &, only if ¢o> 4.

At inflow a similar analysis can be conducted. In
this case #s would be the incident mode and u; the
reflected one. Since (2.32) must again be satisfied,
reflections from the inflow boundary will take place into
longer horizontal wavelengths.

This type of analysis greatly oversimplifies the
results which would be expected in the actual model.
Further, we must realize that as the numerical resolu-
tion of propagating modes decreases, reflection at the
boundary can be expected to increase. However, from
a practical point of view, these boundary conditions
appear to be stable in the absence of any computational
damping and to reduce wave reﬂectlon to tolerable
levels.

In addition to allowing disturbances to pass out of
the domain, time-dependent conditions (based on a
larger scale flow) can be imposed at the lateral bound-

aries. This is accomplished by including terms represent-

ing the time rate of change of the boundary forcing in
the prognostic equations at the boundary. For example,
at an x boundary the prognostic equation for # is
changed from (2.27) to

ou du ou
—+ (“+C*)”“=<‘—> (2.34)
at ox 9t/ B
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and other boundary equations are similarly altered.
In the linear system modes forced at the boundary do
not interact with disturbances propagating out from
the interior and thus the boundary reflection is not
affected by this forcing.

3. Representation of the finite-difference equations

In constructing the numerical framework for a three-
dimensional cloud model we must balance the relative
advantages of procedures which reduce the number of
computations against alternatives which may reduce
the amount of data stored at each grid point. In this
regard the choice of a grid structure and the selection
of a time-differencing scheme are particularly signifi-
cant. For our grid system we have chosen the standard
spatially staggered mesh (e.g., Wilhelmson, 1974) in
which all thermodynamic and moisture variables are
defined at a common point and the velocity components
u; are displaced by one-half grid interval $Ax;. With
this staggering, the resolution of the pressure terms in
(2.4) and of the divergence term in (2.6) is greater than
that achieved in the unstaggered case. Since the time
step limitations for linear stability in our simulations
are primarily determined by the advection and mixing
terms which do not involve mesh staggering, the

‘staggered mesh does not require a reduced time step.

The time-differencing scheme for portions of the
calculations which do not involve sound waves is
second-order leapfrog. The advantages of this scheme
are that it requires only a single step computation for
each time step and that no computational damping
is present. The main disadvantage is that two time
levels must be stored for each prognostic variable.
However, other second-order time-differencing schemes
commonly considered require two step procedures
(c.f. Crowley, 1968; Matusno, 1966) and have varying
degrees of computational damping. In comparison with
leapfrog, such techniques require approximately twice
as many computations with approximately the same
amount of data transfer per time step with careful
programming. Although the actual large core space
requirements for leapfrog are nearly double those of
other methods, we feel this drawback is outweighed
by the computational efficiency and the lack of compu-
tational damping in the leapfrog scheme. Using leap-
frog differencing, time splitting has not caused any
significant problems.

For convenience in describing the finite difference
representations, we follow Lilly (1965) in defining the
finite-difference operators

S (8) = (1/nA)[b(6+nAL/2) —p(E—nAE/2)],

3.1)
¢($ =‘§‘[¢(E+MAE/2)+¢(E—”AE/Z)]
Here ¢ denotes the dependent variable, ¢ the inde-
pendent variable, and nA¢ is mterval over which the
operation takes place.
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a. Numerical framework for the dynamic equations

In solving the compressible equations of motion,
the presence of sound waves severely limits the magni-
tude of the time step in explicit differencing schemes.
For this reason, we achieve numerical efficiency in
the model by treating the sound wave modes separately
on a small time step as proposed by Klemp (1978).
With this procedure all other processes can then be
computed using a larger time step which is appropriate
for the time scales of physical interest.

To use this technique, we begin by identifying the
terms responsible for sound wave generation in the
model equations. Collecting these terms on the left-
hand side, Egs. (2.4) and (2.7) become

ou; _ or
+Cpy
at dx;

= fus
3.2)

61r+ ¢ 9 (1)
—t———(p0.%4;) = f»
ot C,,ﬁﬁf 6.’”,‘ ?

Here f., and f, represent all the remaining terms in
(2.4) and (2.7) and as discussed in the previous section,
ignoring f. causes little alteration to the results. The
remaining equations have no fundamental influence on
sound waves and can thus be solved using time steps
which would be appropriate if sound waves were not
present.

The splitting procedures for solving (3.2) will be
presented by Klemp (1978) and are summarized here.
Let At correspond to the relatively large time step
which is appropriate for the processes of physical
interest. We seek to step Egs. (3.2) from time level
1— At forward to {4 At, evaluating the right-hand sides
Ju; at the middle level ¢. To maintain stability for the

. sound wave modes this overall step is accomplished by
dividing it into a series of smaller steps, each with a
time step Ar. Since our vertical grid interval is typically
smaller than the horizontal mesh size, improved effi-
ciency is achieved by having each of these smaller steps
be semi-implicit in the vertical, with a finite-difference
representation given by

SuteoBdar =1l SutoBdat=fL  (3.3)
8,5+, 8w =plfl
62 62 " (3.4)
5r7r+ — (8zu+6yv)ﬁAf+‘—_‘6zw =0
cpov Cpﬁevz

The variable 7 indicates the time level for these small
time steps and increases from 0 to 24t during the
n=2At/Ar steps associated with each large step and
the time differences in (3.3) and (3.4) are between r
and 74 A7. For convenience and to save a few compu-
tations in the integrations we have defined @=pf,w
(only for the small time step calculations). These
equations are linear in form with coefficients which
vary only in z. For each small time step Egs. (3.3)
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are stepped forward and then Eqs. (3.4) are solved by
inverting a tri-diagonal matrix in the vertical to obtain
m. For stability Ar must satisfy the restriction

1(1 13-
AT<—[-—+——} , (3.5)
clax? Ay?
while Af is limited by the linear stability criteria for
the non-sound wave processes. A more detailed descrip-
tion of the stability of this numerical procedurc will be

presented separately (Klemp, 1978).

As an example, for Ax=Ay=1 km, A7 can be as
large as 2 s regardless of the magnitude of Az. Using
At=10 s for the large time step calculations then would
require #=10 small time steps to integrate (3.3) and
(3.4) forward from {— At to ¢+ At. Since the number of
computations for each small time step is only a small
fraction of that required for the large time step, the
operational efficiency is not drastically impaired by the
existence of sound waves.

Turning to the numerical procedures for the large
time step processes, we recognize that the advection
terms play an important role in translating disturbances
throughout the domain. Insufficient numerical resolu-
tion of these terms leads to phase errors which can
significantly distort the smaller scale features of a
simulation. For this reason, we seek to reduce these
errors by approximating the horizontal advection terms
with fourth-order finite differences. These differences,
in fact, require very few additional computations.
Second-order accuracy is maintained for the vertical
advection terms since the typically smaller vertical
grid interval compensates for the lower order finite-
difference approximation. Although the horizontal
fourth-order differences do not insure numerical conser-
vation of certain second-order quantities [as is possible
with second-order differencing (e.g., Lilly, 1965)] we
feel they are desirable because of the increase in
numerical accuracy which they provide.

The right-hand sides of the momentum equations,
Ju;, are computed on the large time intervals and held
fixed during the # small time steps required to step u;
and 7 forward from {— Af to i+ AL Including fourth-.
order representation of the horizontal advection terms
leads to the following difference expressions:

Fu=~ 34800 54) — 3% (4820 —Beqs)

— &84 + 55 + D,
fom= =307 (482,0—54,9) — 30(462,9—430)

— @0 — fi +D, L (3.6)
Jfo=—30" (4825w —84w)

— %—E’z (482w —84,10) —wda,w

=z

+g —9_——1+0.61@2—q,,)——zz——q_:}+Dw J
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The remaining equations for 6, ¢,, ¢, and ¢, from
(2.8) all have a similar finite-difference representation
given by

829 = — 3017 (4039 — b1.0) — 30¥ (402, — Buy0h)

—wsi$ +My+Ds, 3.7

where ¢ denotes any one of these four prognostic
variables. Numerical treatment of the microphysical
terms My and the subgrid mixing terms Dy is discussed
in the next two subsections.

b. Numerical representation of the microphysics

Under saturated conditions, the condensation-
evaporation processes are numerically evaluated by
solving the thermodynamic and moisture equations
using a two-step procedure proposed by Soong and
Ogura (1973). In the first step the 8, g, and ¢, equations
are stepped forward to time level i+ At with the
dq./dt terms set equal to zero. Values computed from
this step are denoted with an asterisk. Since (2.10) is
valid independent of the amount of condensation or
evaporation taking place, in the adjustment step we
require -

fr+At -y g A =% yg,. (3.8)

In addition, Tetens’ formula (2.11) is linearized about
0=6* to yield

4093¢11
(T16*—36)*

where ¢, is the solution of (2.11)for §=6*. Egs. (3.8)
and (3.9) can then readily be solved for ¢+2¢ and g4+
Having determined ¢¢*%, the conservation equation
(2.12) provides the following relation for ¢4+4;

z+Az+ qz+At _Qo+Qc’ (3.10)

together with the requirement that ¢t¥4¢20. Although
the individual equations for 8, ¢, and ¢, were solved in
the first step, the adjustment makes the entire pro-
cedure equivalent to having solved the nearly conserva-
_ tive equations (2.10) and (2.12). For this reason, in a
saturated environment the subgrid closures given by
(2.16) effectively close the system on the conservative
variables described by (2.17).

The derivative of the rain flux is computed at all
but the lowest level using a centered approximation, i.e.,

githi= qz+Azng[1+ (gr+at— 6*)] 3.9

0
—(BVg)=8.5Vq,). (3.11)
9z

At the lowest level an upstream approximation is
used and the fluxes lagged at {— Af to maintain linear

stability. Presently any negative rainwater arising’

because of the centered difference in (3.11) is adjusted
back to zero.
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¢. Numerical representation of the subgrid-scale cquations

To increase coding efﬁc1ency the subg,nd—scale
kinetic energy equation (2.21) is actually written in
terms of K, (using (2.26) and assuming that [ is
constant). This equation then has a finite difference
form given by

02¢K = —3U% (482K m— 84K

e C2P
_wasz"'_ 2

m) e %171] (46211Km _’64me)

(B+S)

m
o

CK
+%(6zsz2+6nym2+6zsz2) -
2C 1

mS

(3.12)

The last two terms in (3.12) are evaluated at t— A¢ in
order to maintain numerical stability. The B term is
the buoyancy term and its evaluation depends on
whether or not the air is saturated (¢.>0). When
qa=0,

Ky

B= —g76220 (3.133)

and when ¢.>0
B=—gAKb:.9.+ gKnb2.qu,

where A represents the term defined in (2.25).
In (3.12), S represents the shear term and is approxi-
mated by

(3.13b)

= —“z”"j‘i K {2[(52“)2"‘ (842" + (5.w)7]

Xy

+ (020+06,w) 2+ (Baw+0.u)2+ B w+6.0)2 . (3.14)

The subgrid terms in the momentum equations are
represented using (2.19) as

Dy=28,(K nds1)+8,[Km (a,,u+a,v)]

2
8 [ Ko (0 ,u+0,w)]— 3.Km?, (3.15a)
+0.LK m(0.u+8w)] P
Dy =8, Ko (0,04-8,2) 1426, (K ndy2)
2
e
+62[Km(6zv+8ﬂw)]_3Cm2l28uKm2) (3’15b)
Dy =8, Km(6048.0)]+5,[ Km(8,204+6.0)]

2
426, (K b)) ————8,K 2. (3.15¢)
3C 202

Finally, the subgrid calculations for ¢ =8, ¢, and q. are

represented represented by

Dy =8,(R35.9)+3,(Rid,0)+8.(K8.9). (3.16)
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The expressions (3.15) and (3.16) for the mixing terms
are computed at time {— Af to maintain stability.

d. Numerical treatment of boundary conditions

Using a spatially staggered grid network, the finite-
difference equations can be solved near the boundary
with less difficulty than in an unstaggered framework.
With the w grid points placed at the top and bottom
boundaries, all other variables are located within the
domain. Thus, by specifying w=0 at 2=0 and z=2zy,
no alteration is required for the remaining equations
near the boundary except to eliminate the normal
component of the damping terms.

At lateral boundaries only the grid points corre-
sponding to the normal component of velocity are
located along the boundary. However, at an outflow
boundary, normal derivatives must be calculated for
each of the prognostic variables located at or adjacent
to the boundary. These are computed with a first-order,
accurate, one-sided difference lagged at time t— At to
provide stability. At inflow only the normal velocity
gradient is required and it is computed in a similar
manner. One grid point in from a lateral boundary
the normal horizontal advection terms are approxi-
mated using a second-order difference instead of the
fourth-order one used elsewhere.

e. Numerical smoothing

As mentioned earlier, time splitting due to the
leapfrog scheme is not a significant problem in the
model. However, to remove any tendencies which might
tend to decouple the odd and even time steps, a time
smoother proposed by Robert (1966) is incorporated
in the model. This smoother is described by the
algorithm

PHHAE = pi—AtL D AR

}. (2.13)
¢t=¢*t+a(¢*l+At_2¢*t+¢t—At)

The first equation denotes the leapfrog step for
d¢/dt=F with the asterisk representing terms which
have not yet been smoothed by the second step. The
damping characteristics of this technique have been
analyzed by Asselin (1972) and found to produce
strong damping on the computational mode with little
impact on the physical modes. At present, « is set at
0.1. Although this filter is applied every time step it
requires few extra computations, no additional storage,
and has a smoother impact on the solution than filters
vs_rhich are applied only once in a rather large number of
time steps.

In applying this filter several minor points deserve
mention. The variable ¢*#+2¢ should represent the final
value calculated for this variable at 4 Af with the
exception of time smoothing. Because our condensation
procedure adjusts 6, ¢, and ¢. after they have been
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stepped forward in time, smoothing the middle time
level for these variables should follow this adjustment.
Also, if the filter is applied to the velocity variables it
must also be used on pressure to maintain stability.

The subgrid mixing terms provide smoothing related
to turbulent processes in the region where K,.>0.
However, because the buoyancy term prohibits the
growth of turbulence energy in most stable regions
outside the cloud, K,=0 over large portions of the
domain. A small amount of background damping is
probably desirable throughout the domain to discourage
the growth of nonlinear instabilities and to filter out
very short wavelength modes which are likely of
spurious origin. For these reasons we have included
small fourth-order horizontal damping terms in each
of the prognostic equations except pressure which has
the finite-difference form

— K p{8s0z29t Ouius} -

Kp is then adjusted to be small enough so that the
resolvable scales of the simulations are not affected.
For the model runs presented here, we found K pAt/Ax!
=0.0025 to be a satisfactory value. By using fourth-
order derivatives instead of second-order, the damping
is much more specific to the removal of the high
wavenumber modes.

(3.13)

f. The model code

Since the model code requires a large amount of
computing time and frequent transfers of data between
main memory and auxiliary storage, careful planning
is required in order to efficiently use the available
computer system. For example, the current model,
although quite small, requires about 30 min of computer
time for each hour of simulation time on NCAR’s CDC
7600. Further, it requires two data transfers of all
three-dimensional fields between main memory and
auxiliary storage every large time step and one transfer
of a portion of the variables each small time step. Since
the model is continually undergoing changes, emphasis
is also placed on maintaining flexibility within the code
to allow ease in making modifications. This includes
changes in the number of grid points, in the physical
processes, in the numerical approximations and in the
boundary conditions. In order to use the computer
system efficiently such changes should require minimal
adjustments to the part of the code that handles data
transfers.

To accomplish this we have chosen to help in the
development and testing of a collection of routines
known as FLOW. These routines were designed by
Dan Anderson (personal communication) at NCAR.
A considerable effort has been required in the develop-
ment stage; however, the flexibility it has allowed in
code modification has already been of value.

The FLOW routines allow the user to access large
out-of-core data bases in an efficient manner with
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very little effort. Considerable flexibility exists in that
changing such features as the number of variables,
the grid structure, or the stencil required for calculations
at each grid point can be accomplished simply by
altering several constants at the beginning of the
program. In addition these routines expand the vari-
ables into one-dimensional arrays with standard sub-
scripts throughout the model code which improves the
computational efficiency.

The FLOW routines are used to transfer data by
lines. In this regard, we transfer data by wvertical
columns since the implicit part of the small time step
discussed in Section 3a requires all the data in one
column at the same time. Neighboring lines required
in a liné computation are available as specified by the
user. For example, a fourth-order advection scheme
requires five lines in both the x and y directions in our
code. Thesé data are simply requested in the standard
. FORTRAN loop structure. Linked lists are used to
keep track of the data at a reasonable cost. They
require a minimal amount of storage in handling the
potential problem of writing results over data that are
still required. Output routines are also readily available
for displaying data.

4. Model results for idealized cases

Before attempting simulations of observed convective
storms, it is instructive to evaluate the model results
for simplified atmospheric conditions which can be
more easily analyzed. Within such a framework the
important physical and numerical formulations in the
model can be isolated to a certain extent and tested
for accuracy and sensitivity. Although the physical
results will be greatly oversimplified, this approach
allows one to gain some confidence in the overall model
performance before turning to more complex situations.

a. Model initialization and integration

For all of the three-dimensional simulations to be
described, the integration domain is 24 km in both
horizontal directions and 10 km in the vertical, with
horizontal grid intervals of Ax=Ay=1000 m and
Az=3500 m. Although this resolution is admittedly
rather coarse, it is operationally convenient since the
entire model can be contained within the large core
memory of the CDC 7600 and computer time require-
ments for individual runs are not excessive.

To initiate convection, a low-level temperature
perturbation is inserted in the central portion of the
domain which has the form '

A=Ay cos?3wB  for B<1, (4.1)

where

[T e

Here, the subscript ¢ refers to the location of the center
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of the perturbation, while  denotes its radial dimension
in each direction. Defining the origin of the coordinate
system to be at the ground and in the center of the
domain, we specify x.=y,=0, z,=1500 m, 2, =y,=10.8
km, z,=2000 m and Af6,=1.5°C. Although this pertur-
bation is rather large, it is advantageous for testing
purposes since it promotes the development of strong
convection in a relatively short period of time.

For the initial moisture field, one can either specify
the mixing ratio directly or define the water content
in terms of a relative humidity profile H(z). Choosing
the latter approach requires several iterations of the
hydrostatic equation

g

8, =~ 4.3)

coby
and B
¢o=H (2)q.,(IL,0) (4.4)

since 8, is related to g, by (2.3). Within the initial
potential temperature perturbation described by (4.1)
and (4.2), ¢, will be increased in the region of the
perturbation when computed from (4.4).

With the Coriolis terms present, we adjust the initial
undisturbed potential temperature and pressure fields
to provide a geostrophic balance with the initial wind
field while maintaining the hydrostatic balance. Thus,
by combining the expressions :

Coboma=[0, CoBumy=—fi, cohom.=g0,/,

we obtain the geostrophic adjustment 8, given by

ot -0 (5~ L) ]

Including the low-level perturbation A8 the initial
potential temperature field becomes 6=:6+0,1A46,
while the hydrostatically balanced perturbation pres-
sure field is obtained from the vertical integration of

g o8 _
_[—‘_—'+061(Qv—¢b) ?
cob 0

4.5)

6;7" =
with the boundary condition

Tr=

(17Tx —'lZTy) .

cpbor

along the top of the domain. An alternative procedure
is to balance the perturbation pressure field through
solution of an elliptic equation as used for the anelastic
system. This approach was also tested in the model
and was found to produce almost no alteration of the
results.
The initial temperature and moisture profiles chosen

for these idealized cases are depicted in Fig. 1 by the °
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solid lines. The initial temperature and moisture pertur-
. bations at the center of the domain are also included
in the figure, indicated by the corresponding dashed
lines. For this sounding the surface pressure is 965 mb.
For these simulations the Coriolis force is not included
since it is unlikely to have any significant influence
during the relatively short integration times presented
here. This effect will be included in future simulations
which will be of longer duration.

Integrating the model forward in time, the splitting
procedure described in Section 2a is employed to im-
prove the computational efficiency in solving the

compressible equations. For the large time step we set -

At=10 s while for the small time step we use Ar=2s.
As described in Section 3a the large time step is now 10
times larger than would be required if the equations
were integrated using conventional explicit techniques.
For the domain size described above, the required CDC
7600 computer time is about half the physical simulation
time for a given run. Relative to the total run time,
about 309, of the computer time is spent on the small
time step which is roughly comparable to the proportion
required for solving the Poisson equation in reported
anelastic models.

From a conceptual viewpoint, the simplest case to
consider is the one in which there is initially no shear
present in the atmosphere. Since the initial tempera-
ture perturbation (4.1) is axisymmetric in each hori-
zontal plane about the point x,=y,=0, the resulting
cloud development will also be axisymmetric. Fig. 2
illustrates this solution at =24 min which is when the
updraft has achieved its maximum intensity. Here the
u, w, ¢, and ¢, fields are displayed using vertical cross
sections taken along the y=0 axis. Owing to the axisym-
metry, this plane reveals the solution throughout the
three-dimensional domain. Although the maximum
updraft velocity has reached 24 m s, the compensating
downdrafts are quite weak. Most of the subsidence
occurs very gradually over an area which is large
compared to that of the updraft. In two-dimensional
slab simulations, subsidence tends to be much stronger
because of the reduction in area of the surrounding
environment. As the integration continues the negative
buoyancy associated with water loading subsequently
causes the cell to decay fairly rapidly.

In Fig. 1, the heavy solid line represents the maximum
potential temperature attained at each level along the
centerline of the cloud. This curve appears to be
produced by the warmest parcel of air rising through
the center of the cloud, and very nearly follows the
path of a moist adiabat through the lower and middle
levels of the cloud. This adiabat corresponds closely to
that which results in lifting a parcel dry adiabatically
from the ground to its condensation level at about
870 mb. The moist adiabatic lapse rate within the cloud
indicates that the central portion of the updraft is
essentially unmixed for this case of an unsheared
environment. In observational cases studied in

KLEMP AND ROBERT B.
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Fic. 1. Skew T diagram depicting initial temperature and
moisture profiles. Coordinate lines denote pressure (mb), potential
temperature (°C) and mixing ratio (g kg™). The dot-dashed line
represents the 21°C moist adiabat.

Oklahoma, Davies-Jones (1974) measured temperature
profiles within clouds which closely followed moist
adiabatic lapse rates to mid-levels. Fig. 1 indicates
that the cloud develops up to 6°C of buoyancy which
provides sufficient forcing to produce the strong
convection apparent in Fig. 2.

The presence of vertical wind shear in the atmosphere
provides the potential for more interesting cloud
development. Under the proper conditions a cloud can
sustain itself by forcing rain to fall outside the updraft
and by orienting adjacent downdrafts such that they
do not cut off the low-level moisture supply. Even small
amounts of shear begin to significantly alter cloud
structure. This is illustrated by reconsidering the cloud
development in the atmosphere described by Fig. 1
when 10 m s of shear is present across the lower third
of the domain. The initial « field has a vertical profile
as depicted in Fig. 3. With the symmetrical initial
perturbation (4.1), the ensuing solution is symmetrical
about the y=0 plane.

The u, w, ¢. and ¢, fields in the y=0 plane are shown
in Fig. 4 at 24 min. At this time the updraft is somewhat
weaker than in the no shear case (Fig. 2) caused in part
by the increased subgrid mixing along the upshear
(left) side of the cloud. This increased mixing is due to
the strong horizontal gradients produced by the inter-
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action of mid-level environmental air moving toward
the right with updraft air moving toward the left.

At 36 min the cloud structure has responded to the
development of a downdraft as shown in Figs. 5 and 6.
Fig. 5 is similar to Fig. 4 except that §— 8 is shown in
place of g.. The strong variations in 6— 8 near the top
of the domain are ‘caused by gravity waves forming

ulms™"

F1G. 3. Initial profile for # component of horizontal velocity
for one-directional shear simulation.

in the stable air above the cloud. Fig. 6 displays hori-
zontal planes of w, 6—6, g. and ¢, at 2=2.75 km (2.5
km for w). The downdraft has formed due to water
loading along the right side of the cloud and has split
the initial updraft (Figs. 5b and 6a). The vertical
velocity and cloud water fields have local maxima on
either side of the line of symmetry (Figs. 6a and 6c¢).
However, only one maximum exists in the temperature
and rainwater fields (Figs. 6b and 6d). The significance
of the structure at 36 min is that it appears to have the
potential for being self-sustaining. Moisture is being
suppliéd to the updrafts primarily through low-level
inflow through the boundaries at y=-4-12 km. At this
time the maximum low-level inflow through these
boundaries has increased to 5 m s’ The original
primary inflow from the right (x=12 km) has been
blocked by the downdraft (Figs. 5a and 5b). The rain
is falling out in between the updrafts (Fig. 6d) and
thus does not block the low level inflow in the y direc-
tion. The associated downdraft may instead encourage
updraft development as it spreads out near the ground
and helps lift the inflowing air. This splitting process
is currently being investigated in detail through longer
simulations and by varying the low-level environmental
shear.

b. Evaluation of the turbulence parameterizalion

In the simulations described above the eddy mixing
coefficient was obtained from the turbulence energy
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equation in the manner described in Section 2¢.” For
the simulation with the one-directional shear profile
given in Fig. 3, the eddy mixing coefficient K, along
the plane of symmetry at =24 min is given in Fig. 7a.
Values are largest in the region of strong shear along
the upwind side of the cloud and near the top of the
cloud where the moist stability is most negative.
Converting K. to turbulence energy via (2.26), the
maximum values of E are around 40 m? s which if
divided equally among the three grid velocity pertur-
bations would correspond to #’, v/, w'~5 m s1. Outside
the cloud the ambient stability is sufficient (except near
the ground) to maintain Richardson numbers above
0.25 and thus turbulent mixing is suppressed.

Through the analysis of Doppler radar data, Frisch
and Strauch (1976) calculated dissipation rates which
ranged up to a maximum of about 3600 cm? s~% in the
region of large horizontal shear of vertical velocity
between the updraft and downdraft. For the distribu-
tion of K, shown in Fig. 7a, the maximum dissipation
rate [from the last term in (2.21)7 corresponds to about
610 cm? s~ Although less than Frisch and Strauch’s
maximum, this value is reasonable given the intensity
of this storm. Undue significance should perhaps not be
attached to the exact values of computed turbulence

energy until resolution within the model can be
improved.

For comparison, the case described above was re-
computed using a more conventional mixing coefficient,
based only on the deformation of the velocity field
(Smagorinsky, 1963). With this approach the mixing
coefficient has the form

4

V2

Deardorff (1972) proposed that for neutral stability
one should choose ¢=0.14, while for unstable environ-
ments, ¢=0.21 was more appropriate. Using ¢=0.21,
the cloud development is similar to that using our
formulation at {=24 min, although the distribution of
K, as illustrated in Fig. 7b is altered. Since buoyancy
effects are not included in the K,. field in Fig. 7b, the
overall level of K,, within the cloud is less than that
computed from the turbulence energy equation (Fig.
7a). This is particularly noticeable near the ground
and the top of the cloud. Steiner (1973) in dry con-
vection simulations found that ¢=0.21 produced in-
sufficient dissipation and that a value of ¢=0.42 led
to results which compared more favorably with labora-

6u,- a’uj

axi

K., (4.6)

ax,-
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energy equation, (b) K,, computed from (4.6) where the contour
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tory experiments. He suggested that this larger value
of ¢ may be required since feasible grid lengths lie
considerably outside the inertial subrange. In our
simulation resolution is also rather coarse and a larger
value of ¢ appears to be necessary to achieve comparable
levels of turbulence energy. Despite the similarity in
cloud development we feel that the distribution of
turbulent mixing resulting from solving the turbulence
energy equation is more consistent with what we would
expect from a physical point of view. Further, the effect
of including buoyancy in the turbulent energy equation
may have a more significant effect for simulations of
longer duration.

¢. Evaluation of lateral boundary formulation

In order to test the performance of our open lateral
boundary conditions we utilize a two-dimensional
version of the model. With this simplification, we can
run a number of variations in the boundary formulation
using nominal computer resources and can increase the
domain size to provide reference standards for com-
parison. In many respects two-dimensional simulations
provide a more stringent test of boundary conditions
than three-dimensional ones since in the former dis-
turbances cannot disperse radially as they propagate
outward from the convective region. As a result,
perturbations near the boundary tend to be larger in
the two-dimensional framework.

KLEMP AND ROBERT B. WILHELMSON
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For the two-dimensional comparison runs, we speci-
fied the grid structure and initialization in the same
manner as in the three-dimensional simulations de-
scribed earlier in this section. Thus the integration
domain is 24 km wide and 10 km in the vertical with
Ax=1000 m and Az=500 m. The lateral boundary
conditions are specified as described in Section 2d
with ¢,=30 m s.. Temperature and moisture profiles
are those depicted in Fig. 1 and the initial perturbation
is the two-dimensional form of (4.1) and (4.2). We first
consider the case in which there is initially no wind
shear present. To illustrate the convection which
develops, Fig. 8a displays the contours of horizontal
velocity as well as rainwater concentrations in the right
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Fic. 8. x-z cross sections of horizontal velocity and rain-
water for two-dimensional simulations at 40 min. Light solid
lines represent # (m s7?) and heavy solid lines denote ¢- (g kg™).
(a) Solution with lateral boundary at xz=12 km, (b) central
portion of solution with lateral boundary at xr=48 km, (c)
solution with periodic lateral boundary conditions at xz, = =+12 km.
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half of the symmetrical domain at {=40 min. At this
time the updraft is beginning to decay due to the water
loading and outflow beneath the cloud has reached
7 m s7! near the ground. Notice also that low-level
inflow through the lateral boundary has a maximum
intensity of about 9 m s

To provide a reference solution this case was re-
computed using the same conditions except that the
domain width was increased by a factor of 4. The
solution corresponding to Fig. 8a is presented in Fig. 8b
and can be viewed as the solution which would result
if no lateral boundary were imposed. In Fig. 8b the
actual boundary is 36 km to the right of the edge of the
figure at x =12 km, while in 8a the lateral computational
boundary is at x=12 km. The two solutions are quite
similar and in particular note that the boundary
formulation allows strong low-level inflow through the
boundary.

For comparison, this solution was also computed
using periodic boundary conditions at =412 km
and the results are shown in Fig. 8c. Since no inflow
can occur through the periodic boundary, dry descend-
ing air outside the cloud cuts off the low-level moisture
supply and the convection decays much more rapidly
than in the open boundary simulation.

As the integration continues, the low-level outflow
-progresses outward and reaches =12 km at about 1 h.
To demonstrate the ability of the boundary flow to
switch from inflow to outflow, we have plotted the
horizontal velocity profiles at x=12 km at 40 and 80
min for both the small and large domain integrations.
The profiles at 40 min correspond to the horizontal
velocity at x=12 km in Fig. 9a and 9b. By 80 min
low-level outflow in the reference case has reached 11
m s at x=12 km and this structure appears well

—x
| S N S T e ;-

L L)
-10 -5 0 5 10
u (m/sec)

Fic. 9. Horizontal velocity profiles at =12 km for two-

" dimensional simulations at 40 and 80 min. The solid line is the

solution obtained with xr=12 km, the dashed line the reference
solution obtained with xz =48 km.
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Fic. 10. Net moisture flux through the lateral boundaries for two-
dimensional simulations as a function of ¢4.

represented in the solution obtained with the boundary
located at =12 km.

In Section 2d we mentioned that ¢, should correspond
to the faster moving internal gravity waves present
in the system and that typically ¢,=30 m s is an
appropriate value. The solution, however, is somewhat
sensitive to the value of ¢, chosen in the boundary
formulation as illustrated in Fig. 10. Here the net flux
of water vapor into the domain through the lateral
boundaries is plotted as a function of time for ¢, =10,
30 and 50 m s7! as well as the flux at x=12 km for the
réference run generated with a four times larger
domain. This moisture flux occurs primarily through
low-level inflow and plays an important role in supply-
ing moisture to the cloud. The maximum influx of

"moisture occurs shortly after the updraft reaches its

maximum intensity and eventually becomes negative
(shortly after #=60 min) when the low-level outflow
passes through the boundary. The curves in Fig. 10
demonstrate the sensitivity to the value of ¢y and
indicate that ¢, =30 provides good agreement with the
reference run. Of course, with periodic boundaries, no
net moisture flux can occur through the lateral
boundaries.

Some other features of these comparative simulations
are presented in Table 1. Here the total rainfall at 1 h
represents the mass of rainwater on the ground at one
hour per meter in the cross-sectional direction. Al-
though the magnitude of these numbers may not be
meaningful, comparing these values among the various
runs is informative. The net condensation at one hour
consists of the sum of the mass of cloud water, rainwater
and rain on the ground. This figure can thus be related
to the net latent heat release during that time period.
The moisture increase within the domain is obtained
by integrating the moisture flux through the boundary
over the 1 h time interval (corresponding to the area
under the curves in Fig. 10) and relating this result to
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TasbLE 1. Sensitivity of cloud features to variations in the lateral boundary formulation and in microphysical parameterization.

Maximum Total Net Moisture
updraft rainfall condensation increase Time for rain to
velocity at1h at1lh in domain reach ground
(ms™) (kg m™) (kg m™) (%) (min)
No Shear
Reference (cx=30, xz=48) 18.5 106 177 46.2 30
ce=10 16.8 71 100 26.7 30
cx=30 18.5 111 178 47.7 30
6x=50 19.1 139 226 58.8 30
Periodic 16.0 38 40 0 30
Periodic (xr=24 km) 174 86 110 25.6 30
Microphysical variations
a=0 17.5 119 187 48.3 25
a=3 g kg™ 194 105 174 48.5 25
Berry autoconversion 194 105 174 48.5 34
V+30% 18.6 128 185 48.3 26
1073 s71 Shear
Reference (ca=30, x1,=48) 13.7 61 105 31.6 31
ce=10 12.7 37 52 19.3 31
¢x=30 14.0 65 112 36.3 31
=50 14.5 84 149 4.2 - 31
Periodic 124 22 23 0 31

the total amount of moisture initially present in the
domain. The time for rain to reach the ground is
arbitrarily defined to be the time at which the maximum
accumulation at the ground reaches 0.5 mm.

Comparing these characteristics for the no-shear
cases reveals that the solution is significantly influenced
by the lateral boundary conditions (see Table 1). This
result is not surprising when we observe in the reference
run that the moisture contained within the small
domain (|x|<12 km) increases by 469, after 1 h of
integration. The solution with ¢, =30 m s~ produces a
similar increase in moisture and compares well with the
reference solution in the other characteristics listed in
the table. Choosing ¢, =10 m s~ produces less moisture
influx and less condensation, while ¢, =50 m s! yields
values which are too large. The periodic case would
correspond very nearly to ¢,=0 and differs greatly
from the reference case. Although the updraft intensity
with ¢, =0 is not much less than the reference (16 vs
18.5 m s71), the convection decays much more rapidly;
the net condensation at 1 h is only one-quarter as much
and almost all of the condensed water has rained out
of the atmosphere. Doubling the domain size with
periodic boundary conditions yields a solution which
is similar to the small domain case with ¢, =10 m s
By further increasing the domain to x,=48 km the
influence of the boundary conditions on the solution for
|| <12 km is greatly reduced and the periodic run
corresponds to the reference case.

To further evaluate the lateral boundary formulations
we consider a case in which wind shear is present in the
initial environment. The temperature and moisture
profiles are the same as in the no-shear case described
above and a constant shear of 10~% s~ is imposed across

the domain as shown in the heavy solid line in Fig. 11.
Low-level flow is initially directed from right to left
at about 3 m's™%, while near the top of the domain flow
moves in the opposite direction at about 7 m s™.. With
this velocity profile the cloud remains nearly stationary
in the central portion of the domain. As the cell de-
velops, relative inflow occurs at low levels and the
outflow at the left boundary actually switches to inflow.
This is illustrated in Fig. 11 in the horizontal velocity
profiles at the left and right boundaries (x==12 km)
at t=40 min. The velocity profiles at x=212 km are
also included from the reference run obtained with

-~
LA v 1
-0 -5 o}
u {m/sec)

Fic. 11. Horizontal velocity profiles at x==:12 km for two-
dimensional simulation with linear shear at 40 min. Otherwise
as in Fig. 9.
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#r=48 km, and exhibit a similar structure to the
boundary profiles in the small domain simulation.

Some additional comparisons of the lateral boundary
conditions for the shear case are provided in Table 1.
These results display a sensitivity to the value of ¢4
which is similar to that observed in the simulations
with no shear. With increasing ¢, more moisture enters
the domain and greater amounts of condensation occur.
The results for ¢4=30 m s™ compare favorably with
the reference simulation although a slightly smaller
value of ¢, would apparently improve the comparison.
Again, with periodic boundaries much less condensation
occurs and the fallout of precipitation is almost com-
pleted by 1 h.

d. Some microphysical experiments

Having provided some indications of the influence
of lateral boundary conditions on the accuracy and
sensitivity of simulations, it is of interest to consider
briefly the corresponding impact caused by certain
variations in the microphysical parameterization.
Again the two-dimensional framework allows a number
of experiments to be economically performed with the
_ results being directly relevant to the three-dimensional
situation. For these simulations the model conditions
are exactly the same as those used in obtaining the
results in Table 1 for the no-shear case with x;=12
km and ¢, =30 m s~

In the expression (2.13a) for autoconversion of cloud
, water to rainwater, the coefficient a represents a lower
bound on the cloud water concentration for the con-
version process. For the three-dimensional simulations
aisset at 1 g kg~ To estimate the sensitivity of results
to the value of g, characteristics of the simulation are
included in Table 1 for a=0 and ¢=3 g kg™.. The
tabulated figures reflect that increasing e delays the
conversion to rain (1 h rainfall is about 129, less for
a=3 g kg™ than for ¢=0) as well as the time for rain
to reach the ground.

Other parameterizations for autoconversion have also
been proposed. As an example, we tested Berry’s
(1968) approach, which has also been analyzed by Liu
and Orville (1969) and Murray and Koenig (1972) in
two-dimensional models. Liu and Orville found that
the Berry formulation inhibited rain formation in the
initial stages, but that none of the cases tested produced
significantly different dynamical effects. Murray and
Koenig also observed that with the Berry parameteriza-
tion the total rainfall was reduced by about 26%, and
that the corresponding cloud top height was somewhat
less. Although these results are dependent on the actual
case being investigated, they illustrate the qualitative
influence of this approach.

Using the Berry formulation in our model, the auto-
conversion with all variables expressed in cgs units has
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the form
1.67X10%(pg.)?
dy=— (4.7)
0.0366N
Spt
lOﬁqcDb

where N, is the particle concentration at cloud base
and Dp reflects the relative dispersion of the cloud
droplet distribution. Following Simpson and Wiggert
(1969) we set N»=2000 cm™ and D;=0.146, which
they find to be typical values for continental clouds.
Cloud features in this simulation were very similar to
those obtained previously by setting a=3 g kg™! in
the Kessler formulation as indicated in Table 1. Cloud
top height, however, was somewhat lower, being about
500 m less than the 8.3 km observed in the other
simulations.

As a final experiment, we arbitrarily increased the
fall velocity V by 309, over that computed from (2.15).
In this case the results in Table 1 show that, as expected,
rain reaches the ground sooner and the 1 h rainfall
increases by about 15%,.

From all of these microphysical variations we find
that although quantitative differences arise in the
simulations, the results are basically quite similar. In
contrast, sensitivity of the solution to changes in the
lateral boundary conditions is much more significant,
at least for this particular case. Although the influence
of the lateral boundaries for equivalent domain dimen-
sions may be reduced in three dimensions, these experi-
ments suggest that special attention should be directed
toward the handling of these boundaries.

5. A simulation with a veering and backing wind

The results in the previous section are for simulations
initialized with wind shear specified in one direction
or with no shear at all. Observations indicate, however,
that most storms are embedded in an environmental
wind that changes direction with height. For example,
in the Great Plains a low-level moisture supply from
the Gulf of Mexico capped by dry and sheared air
from the west is a favorable sign for storm formation
(Palmén and Newton, 1969). Severe continental storms
typically occur in environments in which there are
significant changes in the direction of low-level winds
(e.g., Marwitz, 1972a,b,c). By including a two-direc-
tional wind shear in the model, our main purpose here
is to demonstrate that the cloud develops a number of
interesting characteristics which bear resemblance to
observed storm features. More comprehensive analyses
of the influence of wind shear will be investigated in a
later presentation.

The wind hodograph chosen for the simulation
described in this section is shown in Fig. 12. Southerly
flow of 10 m s~! veers to westerly flow at 3 km with
respect to an assumed origin relative to the ground
(®). The wind above this level backs rapidly with a
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F1c. 12. The environmental hodograph used to initialize the
simulation in Section 5. Dots along the curve denote the height
(km), velocity labels are in m s™.. ® denotes the absolute origin.
The arrows represent the wind vectors at 0.75, 2.25 and 3.75 km.

shear of 8X1073 s~! up to 6.25 km and is then held
constant in speed and direction up to 10 km. This
hodograph is an idealization of some that exist in the
observational literature. For example, it has some
similarity to the Grover storm hodograph given by
Marwitz (1972a) and to several hodographs for 29-30
April 1970 in Oklahoma documented by Nelson and
Barnes (1974) and by Henderson (1974).

The hodograph in Fig. 12 is an extension of one used
in a preliminary simulation in which we were investi-
gating how a cloud might respond to veering of low-
level winds. In that case the wind veered up to 3.25
km as in Fig. 12, but then was held constant above this
level. The results of the simulation were reminiscent
of the one-directional shear cases discussed in the last
section and the case discussed by Wilhelmson (1974).
The similarity occurred because the environmental
wind relative to cloud movement was nearly one-
directional along a southwest to northeast line. Strong
backing and shearing of the wind was added in an
attempt to displace the precipitation to the north and
east of the updraft and thereby increase the longevity
of the storm.

In order to keep the cloud within the central portion
of the domain a constant wind component was added
to the profile in Fig. 12 such that the wind vectors are
taken relative to the origin of the coordinates. The
ensuing simulation was then characterized by an
updraft which grew to a maximum of 18 m s™* by 24
min. At 28 min a downdraft formed in the lower 2.5 km.
As in previous simulations it divided the lower updraft
into two parts. The division can be seen at 40 min in
Figs. 13a, 13b and 13c which depict horizontal cross
sections of the vertical velocity field at 0.5, 2.0 and 3.5
km, respectively. Each relative maximum in the w field
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is marked in the figures with a C, and the X denotes
the locations of maxima in g,. At 0.5 km the downdraft
and the main precipitation region (enclosed by a heavy
solid line) occupy the same area while at 2 km the
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downdraft exists only in the northern part of the
precipitation region. On the north and south flanks of
the downdraft at 0.5 km there are two updrafts with
maximum velocities of 5 m s, Two updraft maxima
also occur at 2 and 3.5 km. The horizontal plane at 3.5
km passes through the maximum w of 15 m s™! which
occurs in the northern updraft. Within this updraft
the location of maximum w tilts slightly toward the
south in going from 0.5 to 3.5 km. The maximum w in
the southern updraft at 3.5 km is 13 m s! and this
updraft tilts slightly toward the north with height.
With this structure precipitation falls out between the
updrafts as in the one-directional shear simulation (see
Fig. 6).

There are several apparent differences between this
simulation and this one-directional shear simulation.
At 3.5 kin a downdraft does occur to the northeast of
the northern updraft. However, to the southeast of the
southern updraft a secondary updraft has developed
which tilts to the northwest with height. This is con-
firmed in the cloud water field. The secondary updraft
continues to increase in intensity until 44 min, the end,
of the test simulation. Another difference from the
one-directional shear case is that two relative maxima
in rainwater exist at 3.5 km. One exists in between
the updrafts; the other occurs to the east of the northern
updraft and the associated water loading apparently
enhances the earlier compensating subsidence in this
region. The backing of the environmental wind with
height thus shifted precipitation to the north and east
of the updraft as initially intended. Although splitting

of the initial updraft still occurs, the simulation displays
interesting features not present in the one-directional
shear case as described above.

These features arising in the two-directional shear
case do not appear to be related to any spurious in-
fluences from the lateral boundaries. An earlier simu-
lation was conducted with the initial # and ¢ com-
ponents increased by 0.5 and 2.7 m s, respectively.
Although the cloud moved over to the northern
boundary of the domain, the same cloud structure
developed as described above. This result provides
further verification of the proper behavior of conditions
at the lateral boundaries.

Fig. 14 contain y-z cross sections of several fields
taken through the location of maximum vertical
velocity as indicated by the vertical lines in Fig. 13.
Fig. 14 reveals that the two updrafts eventually blend
together near the top of the cloud. Cooling occurring
near the ground is associated with the downdraft,
while that at the top of the cloud is caused by dry
adiabatic lifting. Two maxima in cloud water are
associated with the two updrafts. The southern one
appears weaker because the y-z plane passes to the east
of the southern updraft center. A single maximum in
the precipitation water field is located above the
downdraft. Notice that the lower portion of the northern
updraft contains little rainwater, suggesting the forma-
tion of an echo-free region or vault on this side of the
storm. If the splitting process continues this northern
cell would become a left-moving storm. The K,, field
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is strongest at the top of the cloud and vanishes in the
downdraft region where stability dominates the shear.

The horizontal wind fields at 0.75, 2.25 and 3.75 km
are given in Figs. 15a, 15b and 15c, respectively.
The relative initial wind vectors at these three levels
are indicated in Fig. 12. The lengths of the vectors
reflect the wind speed with the distance between
adjacent dots corresponding to 5 m s~1. Resolution of
the wind fields in Fig. 15 is somewhat coarse since wind
vectors are plotted only at every other grid point.
Although the cloud does move slowly toward the
northwest as determined from the movement of the
maximum rainwater near the ground, the vectors shown
in Fig. 15 can be taken for practical purposes to be
relative to cloud movement. The flow at the boundary
is changed from its initial values as the cloud grows and
interacts with its environment. After about 25 min
patterns of mass and moisture transport into and out
of the integration domain are established which persist
to the end of the integration at 44 min..

At 0.75 km the flow is inward along all boundaries.
Moisture for maintaining the northern and southern
updrafts appears to be primarily supplied through the
southern and eastern boundaries, respectively. These
updrafts are slowly increasing in strength at 40 min
and 0.75 km despite the existence of a small negative
potential temperature deviation within them. They are
rotating as a vortex pair with northern updraft rotating
clockwise about its center which is denoted by C and
the southern one counterclockwise about its center
which is also denoted by C. The downdraft air is nearly
coincident with the precipitation region and forms a
gust front which is moving primarily toward the west.

At 2.25 km the wind at the boundaries is similar
in direction and magnitude to the initial wind at this

level except in a small region along the western bound-

ary. Air from the northwest slows down as it approaches
the cloud and then some of the air passes around the
cloud. The increased velocity along the side of the cloud
is typical of flow passing around a cylinder. A double
vortex is again observed in the two main updrafts.
Southeasterly flow occurs in the new updraft to the
southeast and is indicative of air at 3=0.75 rising to
this level. At 3.75 km the boundary winds are again
similar in direction and magmtude to the initial wind
at this level and environmental air is flowing around
the cloud as in obstacle flow.

The highs and lows in the pressure deviation = in
Figs. 13-15 are indicated by H and L. The differences
between the extreme 7 values in any cross section are
below 1.5 mb. Interpretation of the pressure fields has
not been attempted except to note that the western
highs at 2.25 and 3.75 km appear to be associated with
blocking of the environmental wind.

6. Summary and discussion

In this investigation we have sought to develop a
three-dimensional cloud model which has the ability
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F1c. 15. The horizontal flow field at 40 min with x-y cross
sections at (a) 0.75, (b) 2.25 and (c) 3.75 km. The distance
between adjacent dots corresponds to 5 m 571 and the undisturbed
wind at each level is represented by the arrows in Fig. 12,

to simulate the significant features of convective
storms. Because of present computational constraints
the model is rather crude in its representation of physi-
cal processes. However, in spite of this, the model
simulations display an encouraging degree of realism
and provide a strong justification for continued efforts
to document the capabilities and limitations of the
model.
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Since the numerical procedures and physical param-
eterizations can have a considerable influence upon the
results, care has been taken to use procedures which
are appropriate for the present level of sophistication in
the model. For the numerical framework we have
chosen to solve the compressible equations using
a splitting technique which provides computational
efficiency by handling the sound wave terms separately
with a smaller time step. Since the time-differencing
scheme has an explicit form (except for the treatment
of vertically propagating sound waves), modifications
to the code can be readily incorporated with little
impact on the numerical efficiency. For example,
although the model does not presently contain a
variable surface terrain, this feature could be included
using a vertical coordinate transformation and this
would only require the addition of scaling factors which
would not significantly complicate the computation
procedure. For the spatial derivatives, phase errors are
reduced through fourth-order differencing of the hori-
zontal advection terms. In practice we find that these
fourth-order terms provide significant improvements
only when the environmental winds in a simulation
are quite strong. Second-order differences are used for
all other derivatives.

In representing the microphysics using a Kessler
parameterization the impact of rain processes on the
model simulations appears to be at least qualitatively
correct. Presently the dynamics are strongly influenced
by the negative buoyancy produced by water loading
as well as by the release of latent heat. Thus it is clear
that improving the physics to more accurately represent
the distribution of water would be highly beneficial.
Unfortunately, such improvements are mnot easily
obtained. In considering the use of individual size
categories for drops, a study by Silverman and Glass
(1973) indicates that a rather large number of cate-
gories must be used in order to achieve better results
than provided by the Xessler parameterization. This
approach would require large increases in computer
time and storage. Furthermore, Clark (1974) empha-
sizes that in maintaining a parity in the numerical
accuracy of dynamical and microphysical processes,
a large number of size categories may not be justified
if the spatial resolution is too coarse. However, we
intend to further investigate the possibility of using a
limited number of drop categories because the results
of Silverman and Glass were probably influenced by
the numerical spreading known to be associated with
the use of the Kovetz~Olund technique for coalescence
(Soong, 1974) and because Soong (private communica-
tion) has had some success in reducing the number of
drop categories from 36 to 9 categories for continental
clouds. Another approach is being investigated by
Clark (1976) who has been developing a microphysical
parameterization for warm rain processes using log-
normal distributions to represent the drop spectrum.
Indications are that this approach will provide im-

THE ATMOSPHERIC SCIENCES

VoLUME 35

proved microphysics at a reasonable computational
expense. Besides improving the representation of warm
rain processes, we will also seek to investigate the
impact of ice and hail development on the dynamics.
The turbulence parameterization developed for the
model has a number of attractive features, which
include the computation of turbulence energy based
on the local buoyancy, shear and dissipation rates, and
first-order closure using nearly conservative variables.
Although these procedures cannot be rigorously justified
for convective storm simulations with coarse resolution,
they appear to be appropriate since turbulent mixing
is determined by the various physical processes which
are considered to be important. In practice, our initial

simulations of strong convective storms have not been

very sensitive to the detailed distribution of the mixing
coefficients because the turbulence energy remains a
small fraction of total energy of the storm. Nevertheless,
we prefer this approach since the turbulence processes
may have a significant influence in longer simulations
and also since the required numerical computations arg
only slightly greater than other simpler techniques.
The fluxes of moisture and momentum through the
lateral boundaries exert an important influence on the
evolution of simulated storms. As a result, no formula-
tions for these boundaries can be entirely satisfactory.
As the cloud dynamics become increasingly dependent
on the detailed motion outside the integration domain
errors will arise in the simulations. The lateral boundary
conditions implemented in the present model help
control these errors provided that the cloud does not
grow or translate too close to the boundary. Although
these boundary conditions are based on very simple
theoretical considerations, the two-dimensional simu-
lations in Section 4c document a high degree of realism
in representing flow at the boundary.
- The model simulations described in Sections 4 and
5 display a number of interesting features which merit
further investigation. In the cases with environmental
shear the original low-level updraft was split. This
splitting appears to be initiated by strong water
loading which develops in the central portion of the
developing updraft. As the center of the updrait is
decelerated, maxima in the vertical velocity develop
on either side. Air within these updrafts rotates in the
fashion of two counter-rotating vortices. This rotation
apparently results from the vertical tilting of horizontal
vortex tubes in the inflow region. The updrafts are
maintained with low-level moist air flowing normal to
the primary direction of the environmental wind, while
the rain falls in between the two updrafts. This appears
to be a self-sustaining situation. Total splitting of the
original cloud may eventually occur with the new
clouds propagating away from each other in a manner
reminiscent of right- and left-moving storms. In the
simulation in Section 5 the low-level southerly environ-
mental flow enhances the moisture supply to the



Jung 1978

southern (right-moving) updraft which may result in
greater size or longevity of the southern updraft.

Further investigation of the effects of shear on storm
maintenance, structure and splitting is currently
underway. Observations are being used to help initiate
and verify the model to document the value of the
model in contributing to the understanding of convec-
tive storm dynamics.
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