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ON THE USE OF IMPLICIT AND ITERATIVE METHODS FOR THE TIME INTEGRATION
OF THE WAVE EQUATION

YOSHIO KURIHARA*

Geophysical Fluid Dynamics Laboratory, U.S. Weather Bureau, Washington, D.C.

ABSTRACT

The numerical properties of the trapezoidal implicit, the backward implicit, and partly implicit methods are
investigated. The computational stability of these methods, the selective damping of waves, and the accuracy of
the predicted wave are discussed primarily for wave equations in the simple form. Then, their applicability to the
integration of the primitive equations is considered for a system of linearized equations.

The characteristic features of four iterative methods, each of which consists of a predictor and a corrector to be

used only onee, are also described.

1. INTRODUCTION

The very short-period oscillations inevitably undergone
by any meteorological quantity predicted by a system of
primitive equations are principally noise, if an atmospherie
model is designed so as to forecast a large-scale and slowly
moving meteorological wave. The noise appears as high-
frequency gravitational waves. In this paper the words
“gravitational wave” will be used in this sense.

It is necessary to suppress the noise, Otherwise, an
important meteorological wave can be masked by it.
The problem of initialization of data has been studied to
find a way to reduce the amplitude of noise (e.g., Hinkel-
mann [4], Phillips [7]). This can be attained by an
appropriate adjustment between the fields of wind and
pressure. However, the control of noise which may arise
after the initial time has not yet been achieved. This
problem is presumably serious when a model of the moist
atmosphere is dealt with or when the influence of orography
is taken into consideration. Namely, if a rapidly change-
able process such as the release of latent heat due to
condensation of water vapor is included without care in
a prognostic equation, the maintained adjustment between
the two fields will be destroyed and noise will be excited.
Similarly, the motion which is forced by mountains is a
source of noise too. In addition, noise will be amplified
if the procedure of numerical integration of the primitive
equations does not satisfy the condition for computational
stability. In the case of the “leapfrog” method, which
is widely used and is also called the centered-difference
method, this condition places an upper limit on the time
interval of the marching process. The time interval thus
specified is very small as compared with the characteristic
time of the meteorological wave.
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On the other hand, it has been known that a stable
integration of wave equations can be made without any
restriction on the time interval by making use of implicit
methods (Richtmyer [10]). Furthermore, it is possible
to establish an implicit scheme which causes damping of
the wave. The degree of this damping effect differs with
the period of the wave, just as finite differencing in space
has some selective properties for waves with different
scales. Consequently, the difficulties associated with the
occurrence or the growth of noise may be overcome to
some degree with an implicit method. Many implicit
schemes have been discussed; however those to be con-
sidered in this paper are the relatively simple ones. The
purpose of this study is to investigate the numerical
properties of these schemes when they are used for inte-
grating the wave equation. In particular, consideration
will be given to how high-frequency waves behave when
a large time interval is taken and how selective the
damping of the wave is with period.

The discussions in section 3 relative to the applicability
of implicit methods to the integration of the primitive
equations are based on a system of linearized equations
without viscosity. The actual quadratic nature of the
equations, from which arise problems of nonlinear in-
stability (Phillips [8]) and of the interaction between
meteorological wave and noise which reduce the accuracy
of the prediction of the former wave, will not be considered
in this paper.

A few articles concerning the use of implicit methods
have been published in Russian journals (e.g., Tseng
Ch’ing-ts’un [12], Bortnikov [1], Turianskafa [11]). The
computational instability of one of these methods will be
pointed out.

The implicit methods require one to solve a non-trivial
equation for the values at a new time level. One such
method is an iterative procedure (e.g., a trapezoidal
implicit method with an iterative scheme used by Uusitalo
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[13] and Veronis [14]). Generally speaking, an iterative
method consists of obtaining a tentative value by a pre-
dictor and correcting it recursively by a corrector. In
section 4, methods in which a corrector is used only once
will be presented. These methods have a property of
selectively damping the wave solutions. One of them,
which will be referred to in this paper as the Kuler-
backward method, is being used for the time integration
of a general circulation model at the University of Cali-
fornia, l.os Angeles. Recently, the integration of the
primitive equations has been done with the so-called
improved Euler-Cauchy method (Grammeltvedt [3]).
Eliassen [2] has described the built-in selective damping of
this method. It should be remarked that this property
is not derived from the finite differencing in time, but
results from non-centered finite differencing in space. In
this respect, it is different in quality from the selective
damping to be discussed in this paper.

If more than two time levels are associated with a scheme
of integration for equations of the first order, computa-
tional modes will appear which may give rise to instabili-
ties in numerical integration. Some methods can elimi-
nate or damp this fictitious mode (e.g., Miyakoda [6],
Phillips [9], Lilly [5]). It seems that the leapfroe-
trapezoidal method discussed in section 4 is very uselul
for suppressing it.

2. PROPERTIES OF IMPLICIT SCHEMES AND THE LEAP-
FROG METHOD IN THE TIME INTEGRATION OF THE
WAVE EQUATION

The equation for a quantity, A, which propagates as a
sinusoidal wave does with wavelength, L, and phase
velocity, C, is

oh .
a— —vch (2 1)
where
v=2r/L, i=~/—1.

The advection of the quantity is accurately shown by
the right-hand side of (2.1). When we use a spectrum
method, in which a wave is represented by functions and a
space derivative is obtained analytically, an estimation of
the advection is accurate. In the following discussions,
we assume that the advection takes an accurate value,
unless we mention especially finite differencing in space.
This will make the properties of time integration schemes
clear. Accordingly, the results of the investigations can
be applied to the schemes in which a spectrum method,
e.g., a Fourier series, is adopted. If a grid method is used
to compute the space derivatives, the tendency equation
will be changed. In case of the centered space differences,
however, the change in (2.1) is only a modification of phase
velocity. Therefore, we can apply the results to be ob-
tained also to the schemes with centered space differences,
if a modification of (2.1) is taken into consideration.
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TWO TIME-LEVELS SCHEME

We consider the cases where two time-levels, r and
741, are used in integrating (2.1) numerically and the
scheme of computation takes the form

ht ! —h=—dah™ ' —iBh" (2.2)
where « and 8 are coefficients at our disposal under the
condition a-+B=wc(Af). At is the time interval between
two time-levels. The so-called amplification matrix of
(2.2) is |(1—48)/(1+4a)|. Then, provided the magnitude
of the eigenvalue of the above single element matrix is
equal to or less than one, the scheme (2.2) is computa-
tionally stable.

TLet A=R exp 48 be the eigenvalue. In the case of a
two time-levels scheme, there is only one eigenvalue:
namely, no computational mode arises out of the process
of numerical integration. In the above expression of A,
R denotes the amplifying rate, which is, of course, ficti-
tious. The phase velocity of the computed physical mode
is —d/vAt.

When ais zeroin (2.2), a forward time difference scheme
(Method 0) is obtained. Hereafter, an Arabic number will
be used to identify an explicit method in contrast to an
alphabetic letter for identification of an implicit scheme.
The values of ¢ and R for a specified value of g8 are

d=tan"!' (—RB)
R=(cos ¢)~!

using the above &, respectively.

The trace of the eigenvalue in the complex plane as a
function of 8is shown in figure 2.1. As I is always larger
than one, this explicit scheme is absolutely unstable. It is
known that an explicit scheme is conditionally stable if
we use noncentered, upstream differences in the compu-
tation of the space derivatives (e.g., Richtmyer [10]). In
this case, a computation scheme takes a different form
from (2.2).

We shall now discuss the properties of two implicit
schemes for representing (2.2).

Method A (backward implicit method).—Putting =0 in
(2.2) we have

bt —hr=—dah™t1, (2.3)
In this case, ¢ and I for a specified value of « are
d=tan"! (—a)
. R=cos ¢, using the above 4.

Figure 2.2 shows the trace of N on the complex plane.
This method is absolutely stable and causes damping of a
wave. In the limit of large |a|, a wave will be completely
damped out. It is also seen that the phase difference of a
wave at two time-levels is at most #/2, i.e., below one-
fourth of wavelength in either direction.
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Ficure 2.1.—Trace of eigenvalue for
Method O  (forward  explicit
method). Eigenvalue, A,+1in;, of

the amplification matrix (single
element) of At —hr=—{Bh7 is Method A
shown on the complex plane. For method).

a given parameter 8, R represents
the magnitude of eigenvalue, i.e.,
amplifying rate, and ¢ is the phase
angle of eigenvalue.

eter.

Method B (trapezoidal implicit method).—This scheme is
obtained by putting 8=« in (2.2),

htl—hr=—1qah ™ —4ah". (2.4)

In this case, ¢ is to be obtained as a solution of

—sin ¢/(14-cos ¥) =aq,
and R=1.

The trace of N is shown in figure 2.3. This scheme is
neutral in the sense that it neither amplifies nor damps a
wave. The eigenvalue for large |a| approaches —1.
Thus, the phase of a wave will be shifted by =, i.e., half
a wavelength, in one time step if |a] is infinitely large.

We shall now give examples of numerical integration
with the use of the above two implicit methods. A system
of equations admitting only inertia oscillations is

LS
ot

ov
P

where 4 is an eastward wind velocity, v is a northward

wind velocity, and f is the Coriolis parameter. These
equations are rewritten in the form of (2.1),

ow .

7= 2.
where

w=u-}+.

A time integration of (2.5) was done by the formulas:

Figure 2.2.—Trace of eigenvalue for
(backward
Eigenvalue of the ampli-
fication matrix of (2.3) is shown on
the complex plane.
In the limit of large ||, a
wave is completely damped out.

A
At a=-1
- —0
t ,
Q Q == — 00 a=0 A o= — 0 a=0
D B=9 a_.w\ 1 Q- 1
1 "Xy N
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Ficurg 2.3.—Trace of eigenvalue for
Method B (trapezoidal implicit
method). Eigenvalue of the ampli-
fication matrix of (2.4) is shown on
the complex plane. « is a param-
eter. An amplitude of wave does
not change for any value of «,
since R=1 always. In the limit of
large ||, a wave is shifted by half
a wavelength.

implicit

« is a param-

Wl — = — 1 fALw ! (Methed A)

and
wr+1_w7=_?jf%_t wr+1_z'f%5 w, (Method B)

starting from the given initial value w'=u’=1, and as-
suming f=n/9 (hr.”Y). The period of oscillation is then
18 hr. Figure 2.4 shows single-step predictions of u for
various values of At. To use long time steps in Method
A gives complete damping, i.e., u'=0; while with Method
B, w'=—u"=—1 and v'=—¢"=0. Although there exists
no damping effect in Method B, the error in the phase
velecity will make a prediction meaningless if the time
step chosen is larger than about one-sixth of a period of
the wave. In figure 2.5 are shown predictions of %, in
which Methods A, B, and explicit leapfrog method
(Method 1) were repeatedly used, respectively, with a
time step of one hour. The damping effect in Method A
is clearly seen.
The general case of (2.2) will be referred to as Method C.
Method C. (partly implicit method).—For convenience,
(2.2) is repeated:
Rt —hr= —iah ' —i8h" (2.2)

In this case the real and imaginary parts of the eigenvalue
are

Mear= (1‘_0‘[3)/(1—*—0‘2)
A imag= —(a+ﬁ)/(1 +a2)

respectively. Accordingly, the magnitude of N\ is
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Ficure 2.4.—Single-step prediction of inertia oscillation with
various time intervals (A¢ in hr.). w« at {=At¢is plotted.
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Ficure 2.5—Prediction of inertia oscillation with At=1 hr. « is

plotted.

=[(1+a") 1+6)]"/1+e?)

The computational stability condition for (2.2) is, there-

fore,
18] < el

We use this condition in section 3 where we investigate
the computational stability of the two time-levels inte-
gration scheme in which some terms of the primitive
equations take implicit form and others take explicit

form.
THREE TIME-LEVELS SCHEME

Now consideration will be given to the three time-

levels formula of the following form

R —h = —dahr T —iBh (2.6)
We do not discuss a general three time-levels scheme,
but consider only a combined form of the leapfrog and
an implicit method. The amplification matrix of the
above formula is

_ B 1
14ta ~ 14ia
1 0

The eigenvalues of the above matrix are obtained as
solutions (see Appendix 2) of the equation

(14-7a)N*+1280—1=0. 2.7)
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Ficure 2.6.—Trace of eigenvalue for Method 1 (leapfrog method).
Eigenvalues of the amplification matrix of (2.8) are shown on
the complex plane. (.is a parameter. The right half of the
unit circle corresponds to the computed physical mode and the
left half to the computational mode. If |8]|<2, one of the
two eigenvalues represents the former mode and the other
does the latter mode. If |8]>>2, two eigenvalues are on the
axis of A,=0 and one of them is outside the unit circle, i.e.,
the scheme is computationally unstable.

One of two solutions applies to amplification rate and
phase velocity of the physical mode, and the other de-
scribes those of the so-called computational mode. (Note
that the amplification rate and phase velocity of the true
physical mode are unity and ¢, respectively, as defined by
(2.1).) In the analysis of N, we will use either of the two
forms: A=\,+1i\; or A=R exp 3. Suffix 1 or 2 may
be attached to A\, R or 4 to denote the above-mentioned
two modes, if necessary. The computational stability
condition for (2.6) is that both R, and R, should be equal
to or less than one. In the following, a special case and
the general case of (2.6) will be examined separately.

Method 1 (leapfrog method).—This scheme is obtained
by putting =0 in (2.6):

hrtl—hr=l=—q8h". (2.8)

It is well known that, if [8]<2
\=+1—(8/2)°
N=—p3/2

and

IM]=INe|=1;
while if |8]>2

A,=0
N=—PB2+(8/2)°—1

and one of |\,,| is larger than one. As a consequence the
computational stability condition is met if |8|<(2. Figure
2.6 shows the trace of A. The right half of the unit circle
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Ficure 2.7.—Trace of eigenvalue for Method D (three time-levels,
partly implicit method). Eigenvalues of the amplification
matrix of (2.6) are shown on the complex plane separately
for the cases >0 and «<0. In each figure, the trace ap-
proaches to the dotted line when g— +w. If [8|<|al], two
eigenvalues are inside the unit circle, i.e., the scheme is compu-
tationally stable.

corresponds to the computed physical mode and the left
half to the computational mode when |8|<(2. If we define
b by b=|8|/2, amplification rates, B, and R, and the
ratio of the phase velocity of the computed value to
true one, —&,/b and —¥,/b, can be estimated as a function
of b. These are illustrated in figure 4.1. Tt is seen that
the computed physical mode will move a little faster than
the true physical mode. This tendency can be recognized
in figure 2.5.

Method D (paridly implicit method).—The general case of
(2.6) will be treated here,

hrtl—prle= —jah T —iBh7
From A=R exp i and (2.7) we have
R*(cos 20—« sin 2¢)—RB sin 8 —1=0
R*(sin 28+« cos 2¢)+ RS cos 8=0.
From these, a relation involving R, 8, and « is obtained,
R?*=1/(1—a tan &).

As R is real, ¢ is undefined within some ranges, i.e.
iy T i 1 3.
tan™! =<{#<z and tan~! =4-7<d<~%if a >0
a 2 a 2
T -1 3r 1 .
—=<#< tan™! = and——<#< tan~! ——7 if «<0.

2 a 2 a

Furthermore, it is seen that when o >0

—§<01<0

™

§<l92<7r

if [8] <l
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One of the ¢, is out of the above ranges if |8|>|qa].
When «<0

0<8:<5
ap (1 181<]].
7F<192<7

One of the ¢, is out of the above ranges if |8|>|«|.
The trace of the eigenvalues, in which the parameter is 8,
is shown separately for the cases >0 and «<{0 in figure
2.7. Summarizing the results, we can conclude that both
R, and R, are smaller than one if |8|<|«|; otherwise, one
of R; becomes larger than one. Method D is, therefore,
conditionally stable.

3. APPLICATION OF IMPLICIT SCHEMES FOR EQUA-
TIONS OF ATMOSPHERIC WAVES

In this section, the problem of the time integration of
the primitive equations with an implicit scheme will be
considered by using the results obtained in the previous
section.

Equations (3.1), a system of linearized perturbation
equations, are derived from the assumptions that o=
Hy)g+¢(x) and —(g/f)oH/oy=U, where ¢ is geopoten-
tial, H mean height of the atmosphere as a function of
1, g acceleration of gravity, ¢ perturbation of geopotential,
f the Coriolis parameter, and U is a constant zonal wind
in the z-direction in a rectangular system of coordinates:

du du ¢ h
2tV 5%,

o ov

o 0¢ ou

Here % and » are  and ¥ components of the perturbation
wind velocity. Solutions of (3.1) are given by

o 3 - VQ(U""Ci) 3
u_é ui; /u’i*¢i j‘g_(U___ci)QVQ
_4 _ ivf
v—’;} s, V= Ty ( (3.2)
3 .
¢'=§ ¢i, ¢1281 exp [7:11($—Cil:)]J

where v=2=n/L, L is the wavelength, ¢;(z=1, 2, 3) are the
three phase velocities and S; are amplitudes of three
waves. The ¢, should be obtained as roots of the equation

U—cy*—gHU—e¢) +J; ¢=0.

For the ordinary values of f, g, H, U, and », these are
written
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TaBLE 3.1.—Phase velocities (1, ¢35, and ¢) and vei. In (3.8),
U=50 m.[sec., gH=8X10* m2/sec.? and f at the 45° latitude are

assumed.

Wavelength o c2 3 ve1 ve2 lves|
(km.) (m./sec.) (m.fsec.) (m./sec.) (sec.-1) (sec.”1) (sec.1)
250 49,99 332.9 —232.9 1.256 10-3 8.366 10-3 5.853 10-3
500 49, 96 333.0 —232.9 6.278 10—+ 4.184 2.927
1000 49. 83 333.4 —233.2 3.131 2.095 1.465
2000 49.34 335.1 —234.4 1. 550 1.053 7.364 10—
4000 47,46 341.6 —239.0 7.455 10-5 5.366 10~4 3.755
8000 41.17 366.0 —257.2 3.233 2.875 2.020
16000 26. 84 446.5 —323.4 . 054 1.754 1.270
32000 11,12 663. 8 —524.9 2.184 10° 1.303 1.031
3
) e 4
e=U+24/—= cos <—~—I——7r>zU
3 3 3
. a €
62=U+2“/_§ c0s 3 ~U++gH ¢ (3.3)
a €, 2
03=U—%—2\/—§ cos (§+§ w)z U—~gH
J

where e=tan=![(—4a%/27b*)—1]"%, a=—(f*y*)—gH, b=—

F2Up?and ¢, ¢z, and ¢; are defined to denote the phase velocity

of a meteorological wave, an eastward-moving inertia-

gravitational (external) wave, and a westward-moving

one, respectively. Table 3.1 shows ¢; and ve; with U=50

m.sec.”}, f taken at 45°latitude,and gH=8X10*m.?sec.™2.
With the use of (3.2), (3.1) is rewritten as follows:

aal;"—l—iuUhi:—iu(ci—U)hi

3

h=2>7 h

i=1

(3.4)

where A; stands for any perturbation quantity (w; v, or
¢:), and the subscript 4 corresponds to those of (3.3).
It is seen that the form of (3.4) is identical with (2.1) of
the previous section. (3.1) can also be written in the
following symbolic form, which will be used hereafter for
the sake of convenience,

oh

a:Fl_{—FQ

(3.5)

where
F\=—U0h/dx

F,=the right-hand side of (3.1).

The problem is, now, to do the time integration of
(3.5) with various methods and to examine their character-
istics. 'The names of the methods in the following should
correspond to those in section 2.

Method A.—Time integration of (3.5) takes the form
Al —hr=At- FiH At F3ht (3.6)

where 7, 7+ 1, and At are two time-levels and the interval
between them respectively. F7;' means that F, , should
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Ficure 3.1.—The upper figure shows amplification rate of computed
physical mode, R;, as a function of parameter b. b=ycAt.
The lower figure shows the ratio of phase velocity of computed
physical mode to the true phase velocity (¢) as a function of b.
For example, suppose b=»cAt=1.5. Then, if we use Method
A, an amplitude of computed wave at a time level 41 is 0.55
times that at », and a wave moves with a speed 0.66Xc¢. If we
use Method B, an amplitude of wave does not change and a
moving speed of computed wave is 0.86X c.

be evaluated by using A"*!.. 1In this case (3.4) becomes

At —hi=—1dvc,(A)ATTL. 3.7
This is the same as (2.3) with a=wc;(At). The amplifica-
tion rate of Ay i.e., R;,and a measure of the fictitious change
of phase velocity' are shown in figure 3.1 against the
parameter b=uvc;(At). From this figure and table 3.1,
it is easy to see that for a specified wavelength and A¢,
damping of the wave is highly selective for gravitational
waves, for which »e¢; is several times larger than for a
low-frequency wave. This is the merit of this method.
It should be noted, however, that damping of the meteoro-
logical wave is also unavoidable, however small A7 may
be. Consequently, successive use of (3.6) will at last
cause a noticeable damping of the low-frequency wave.

1 As mentioned before, the amplification rate and phase velocity of the computed mode
are given by Ri and —d1/v(Af) respectively, where R; and 9; are the magnitude and phase
angle of the eigenvalue for an amplification matrix of (3.7). Accordingly, —d1/vci(Al) =
—d1/b is the ratio of phase velocity of the computed value to the true phase veloeity.
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As for the error in phase velocity, it is large when b is
large.

Method B.—Time integration of (3.5) takes the form

At At
=t (PP (R 69)
The form of (3.4) corresponding to (3.8) is
e e e (AL .
hitt—hi=—q —5 hitt—q —5 b (3.9)

which is equivalent to (2.4) with a=uvc;(At)/2=b/2.
In this case, too, the amplification rate and ratio of the
phase velocity of the computed h; to the true one are
estimated and are shown in figure 3.1. This method is
neutral for any value of b. Therefore, amplitudes of
both meteorological and gravitational waves are to be
conserved, although very small amplification or damping
of waves may be inevitable in practice because of round-
off error in the numerical computation and some error
in obtaining A7*! as a solution of (3.8). As for the error
in phase velocity, those of gravitational waves are much
larger than that of the meteorological wave. As a
consequence, it may be concluded that, if we are not
concerned with predicted phases of gravitational waves,
we can make a time step in (3.8) somewhat larger than
what is usually required in the explicit integration of
the primitive equations. Tt seems desirable for users
of this method to apply it after gravitational waves are
mostly filtered by other methods (such as method A or
filtering initialization). This is particularly important
when a system of nonlinear equations is treated, where
the three waves are no longer independent of each other.
Method C—Tseng Ching-ts’'un  [12] formulated a
scheme of time integration of the primitive equation in
which the linear terms of the equations were written with
average values at two time-levels and the nonlinear
term and g-term were to be evaluated explicitly by using
values only at the time-level . His method was used
with some changes by Bortnikov [1], with a grid size of
300 km. and time increment of 3 hr., which is very large
compared to the ratio of space increment to phase velocity
of gravitational waves. It should be noted that a spatial
smoothing was made of some terms at each step.
Applying Tseng’s idea to (3.5) we have

hrHi—hr=At Fi+- 55 (P04 ). (3.10)

Hence a corresponding formula for each wave is derived,
T+1 T N T y at T+l T
R —hi=—uU(AYhi—w(e,—U) - (hi**--h7)

——iv E ) (g, <U+

C‘;U) (ADR

(3.11)
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This is equivalent to Method C in section 2. From
(2.2) and (3.11) it follows that
a=v ci;U . At]
: (3.12)
B=v C,--|2-U At

For the meteorological wave and one of the two gravita-
tional waves, [8| becomes larger than |a|, and {8|<|«|
holds only for the other gravitational wave. Accordingly,
the discussion in the previous section suggests that the
former two waves will be amplified while damping is
to be expected for only one wave.

If we also use finite difference representation for space
differentiation in the beginning parts of this section,
(3.1) through (3.5) are modified to some extent. Some
considerations concerning these are given in Appendix 1.
In order to discuss fairly Tseng’s method we should use
these modified forms. As a result we will have different
forms of « and B in (3.12). However, the modifications
of « and 8 may be small except for short waves with the
wavelength of several grids. Such a scheme is not really
computationally stable. This instability cannot be
eliminated by reducing a time interval.

Method 1.—The centered time difference scheme is the
one most widely used at present. Its form and cor-
responding formula for each mode of waves are,

hrHl—hr=1=2 . AL(F{+F'1) (3.13)

it —R T = —42vc, (AR (3.14)
respectively. Some characteristics of this method are
illustrated in figure 4.1. In case of (3.14), a parameter
b in the figure is equal to |vc;(Af){. Computational
stability requires that |vc,(Af)|< 1. With the use of
typical value of ve; in table 3.1, the maximum allowable
value of Atis estimated and listed in table 3.2 as a function
of the shortest wavelength to be treated. When one
uses a functional form in representing the distribution
of quantities and deduces F; and F; in (3.13) by analytical
computations, e.g., the use of Fourier series or a spherical
harmonics expansion method, then Af should be de-
termined by the smallest scale one treats. Or, alter-
natively, if the time interval is fixed to some value, all

TABLE 3.2—The shortest wavelength to be trealed (L) and maximum
value of the time increment (At) which satisfies the computational
stability condition for Method 1. It is assumed that a wave s
treated analytically, i.e., a spectrum method is used.

L (km.) At (sec.)
250 119
500 239

1000 477
2000 950

4000
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waves shorter than a critical wavelength should be
truncated from the functional form.

The most troublesome deficiency in this method is the
occurrence of the computational mode. If the amplitude
of this mode becomes large it is meaningless to continue
the time integration.

Method D.~—This method is written as follows:
A —R =2 At F+2. AtF3*! (3.18)

Namely, the advection term is estimated explicitly and
the other terms implicitly. The corresponding formula for
each mode is

Rt =Rk =—2u(c,— U) - (AR} —20U- (AD)R]  (3.16)
This is identical with (2.6) if we put
a=2%(c;—U)-(At)

(3.17)

B=2U-(At)

If we suppose ¢;=U in (3.16), it takes the form of (3.14).
If we neglect the second term on the right hand side of
(3.16), assuming that l¢;[>> U, then we have a form similar
to (3.7). Hence this method looks favorable from the
viewpoint of effective damping of gravitational waves.
Strictly speaking, however, this method is not computa-
tionally stable. This will be explained as follows. The
conclusion from the previous section was that the condi-
tion of computational stability of (3.16) is |«|>|g]. In
the case of a meteorological wave, o takes a small and
non-zero value and this condition cannot be satisfied.
On the other hand for gravitational waves, |«| is much
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larger than |g], and those waves will be damped. Con-
sequently, this marching scheme cannot be used for a
long-range time integration.

However, since the amplification rate of the meteorolog-
ical wave is very small, this method may be used in short-
range integrations. A test computation of this kind was
attempted by using a simple linearized model. The
model adopted is the same as (3.1), U=50 m.sec.”?, fis
taken at 45° latitude, and gH=8X10* m.sec.”. The
wavelength of the sinusoidal wave we treated is 4500 km.
To give the initial values of u, », and ¢, S;=1000 gpm.,
S;=>50 gpm. and S;=>50 gpm. were taken in (3.2). Then,
computations were repeated with At=1 hr. by the scheme
(3.15), were h stands for u, », and ¢. In computing
¢!, we made a slight change in the scheme. Namely,
v™ was used instead of v7t! for evaluating the first term on
the right hand side of the third equation of (3.1). Then
substituting u t! in the third equation from the first
equation, in which ¢7*' was substituted from the second
equation, a one-dimensional Helmholtz-type equation for
¢! was obtained. In our test, a finite difference compu-
tation with a 300 km. grid was used and a Helmholtz-type
equation was solved by matrix inversion. With the
solution of ¢7t!, both 4! and v**! were easily computed.
In this way calculations were continued up to five days,
ie., 120 time steps. In figure 3.2 the values of ¢ and
Ou/dx at =0 are plotted together with the true variations.
Effective damping of gravitational waves is clearly seen.
Changes in amplitude of the meteorological wave are
negligible so far as this example is concerned. A rough
estimate for our test case shows that the amplification
rates for the meteorological wave is 140(107%) and
those for gravitational waves are 0.6 or thereabout.
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Ficure 3.2.—Prediction of ¢ and du/0z with a system of equations (3.1).

DAYS

Method D was used with At=1 hr. Time variation of ¢ and

ou/0z at =0 is shown (true value is shown by continuous line and computed value by asterisks).
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4. ITERATIVE METHOD

To adopt an implicit scheme in the time integration of
(3.1) requires solving some equations involving values at
a time-level in advance. In order to avoid this process,
we can use some guess in evaluating implicit terms in the
equation. This idea makes a computation scheme
effectively explicit and similar to the so-called predictor-
corrector method.

We shall again write (3.1) in the symbolic form:
Ohjot=F, where F'is equal to the right hand side of (3.5).
Ohi/Oot=—iveh(1=1,2,3) 1s an equation for any com-
ponent wave which moves independently of the other two
waves. This is equivalent to (3.4). Then, it is not diffi-
cult to obtain a formula in which Aj*! is written explicitly
in terms of A7 and 477", for each scheme of iteration. In
the following the computation scheme written in symbolic
form and the corresponding formula for a component
wave are given for four methods (where ~* is a value to be
estimated at the first step and A**, if necessary, is at the
second; F* and F** show values of F which are evaluated
by using ~A* and h**, respectively; by definition, b is equal
to ve,(AL)):

Method 2—(Euler-backward iteration):

h*—h"=At-Fr (Euler method)
ATl —hr=At-F* (backward correction) 4.1
Bt = (1——1b—b2h1 (4.2)
Method 3—(Modified Fuler-backward iteration):
¥ ___ r:A_t, T
hr—h 2 F (modified Euler method)

B —hr=At- F*
hrHi—hr=At-F*

h{+1»——<1—1/—1b——b2+w/———1 §> ki

(backward correction) (4.3)

(4.4)

Method 4—(leapfrog-trapezoidal iteration):

h*—h " 1=2-AtF" (leapfrog method)

bt —hr=At-3(F*+ Fr) (trapezodial correction)

(4.5)
741 2 —b — b -
hi* =<1—b —v—1 5) hi—V=15hi7  (4.6)

Method 5—(leapfrog-backward iteration):

h*¥—hr=1=2-AtF" (leapfrog method)
h™H —hT=At-F* (backward correction)
(4.7)
hitt=(1—2b)hi—+—1bh; (4.8)
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The characteristic qualities of each method are revealed by
the eigenvalues of the amplification matrices for (4.2),
(4.4), (4.6), and (4.8). In the case of methods 2 and 3,
there exists only one computed mode.for each of the
three component waves, i.e., the computed physical mode
which will be denoted by suffix 1 hereafter. While with
methods 4 and 5 we have another mode, i.e., the com-
putational mode to be identified by suffix 2. From the
eigenvalues, estimates are made of the amplification rate
of each mode and the ratio of phase velocity of the com-
puted mode to the phase velocity to be derived from a
parameter b. The latter one is equal to the analytical
solution (3.3), if computation of F is made analytically
with respect to space. If F is estimated by centered
space difference methods b is equal to ve;(At) where ¢, is a
phase velocity modified due to taking finite differences
with respect to space. The ratio of ¢; to ¢; is given
together with ve; in Appendix 1 for some cases. Hence, if
finite difference methods are used for both space and time,
(—3/b)X (¢;/e;) will yield the ratio of the phase velocity
of the computed value to the true phase velocity. Figure
4.1 shows how Ry, Ry, — /b, and —&y/b or — (Fy-+7)/b
depend on b. 1t is suggested by figure 4.1 and tables A.1
and A.2 in Appendix 1 that a fictitious acceleration of
the physical mode by Methods 1, 2, 3, and 5 might be
compensated or even overcompensated by a fictitious
retardation of the wave as a result of finite differencing
in space.

The condition for computational stability is [b]<1.0
for Method 2, |b|<{42 for Methods 3 and 4, and [b|<
about 0.8 for Method 5. Consequently, comparing with
the criterion for Method 1, we cannot get time economy
in  computation since iterations are required. If
b=vc;-(At), 1.e., when F is computed analytically, the
above criterion gives a relation between At and the
shortest wavelength we can treat, as shown already in
table 3.2. When an estimate of F is made by centered
space differences, i.e., in the case of b=uw¢, - (At), the
maximum value of »¢,/, which is usually a function of
grid size and also depends on the finite difference scheme,
determines the maximum time interval. For example,
consider the case given in Appendix 1 and assume that
lve/ - (At)[<11s a stability condition. Then, the maximum
tolerable value of At for a grid size of 250 km. is 740 sec.
or 560 sec., depending on whether the three-point method
or five-point method is used in estimating the horizontal
gradient of a scalar field quantity. It is 1470 sec. or
1110 sec. for a 500-km. grid and 2820 sec. or 2170 sec.
for a 1000-km. grid.

Figure 4.1 shows that the selective damping for gravi-
tational waves can be made the largest by Method 3.
It is characteristic of Methods 4 and 5 that they result
in a high rate of damping of the computational mode,
especially that corresponding to the meteorological wave,
Only Method 1 is neutral, provided the stability condition
is satisfied. Consequently, it seems a good design to use
Method 1 at most time steps but to utilize some kind of
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Fiaurg 4.1.—Amplification rate of computed physical mode (the upper left figure) and that of computational mode (the upper right figure)

are shown against parameter b.
used, b=wvc'At.
physical mode to ¢ (or ¢/, if the grid method is used).
right figure.

b=wcAt, if a spectrum method is used in treating a wave.
(ve and v¢’ are listed in tables 3.1, A.1, and A.2.)
Ratio of phase velocity of computational mode to ¢ (or ¢’) is shown in the lower
In three figures, vertical scale is changed at b=0.4. Suppose that b=0.5 and Method 4 is used. Then, an amplitude
of computed physical mode at a time level 7+ 1 is 0.99 times that at =.

When a centered difference grid method is
The lower left figure shows ratio of phase velocity of computed

It moves with a speed 0.99X¢, if a spectrum method is used,

or with a speed 0.99X¢’, if a centered difference grid method is used. An amplitude of computational mode at 1 is 0.25 times that

at r. Its moving speed is 2.15X ¢ or 2.15X¢’.
h oD
104 METH o
0
-1.0-

FicurE 4.2.—Prediction of inertia oscillation by iterative methods,
with Af{=1 hr. wu is plotted. wWl=wu%=1 was assumed for
Methods 1, 4, and 5.

iterative methods intermittently. In doing so, the selec-
tion and combination of appropriate iterative methods
has to be based upon their particular properties. To use
an iterative scheme at every step may not be suitable
for some purposes, since the effect of damping of the wave
will accumulate with time. For example, let us assume
a wave of length 4000 km. and phase velocity 15 m. sec.™
Then At=20 min. makes b approximately 0.028. The
amplification rate of Method 2 for this value of b is
0.99961. Therefore, with the exclusive use of Method 2,
an amplitude of the wave will be decreased by 2.8 percent
in one day (72 steps), resulting in the decrease of kinetic
energy of disturbance by 5.5 percent.

As a test of the iterative methods, the differentia]
equation governing inertia oscillation was integrated
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TasLe 5.1.—~Summary of the properties of the methods studied. In “‘difference equation’’, F, and F, represent nonlinear and linear terms,

respectively, and F=F,+F,.
b=vcAtl if a spectrum method is used in treating a wave.

“Number of time levels’’ means what is associated. with each marching step.
b=uc’Al, if a centered difference grid method is wused.

retardation or acceleration means a fictitious change of phase velocity resulted only from finite differencing in time.

In “‘computational stability”’,
In “physical mode’,

. Number Physical Mode Computational Mode
Method Difference Equation OII Tirlne Computational Stability v
evels
Amplitude Phase Amplitude

A backward hrtl—pr=Af{ Frt1 2 | Absolutely stable I1ighly selective damping | Retardation None
E B trapezoidal hv+1——hf-1=%l (Fral4-Fr) 2 | Absolutely stable No change Little retardation None
o]
3 Al Unstabtle for meteorologi- None
) C partly hhi—hr=AtFy ’+—2(F3'+1+F2") 2 cal waveand one gravity
= wave
=

D partly hrtl—hr=2At FF74-2AL Fyr+t 3 | (Very weak) unstable for | Damping of gravity wave Damping

meteorological wave and weak amplifying of
meteorological wave
&1 O forward hril—phr=AtFr 2 | Unstable None
]
“Q et
=5 | 1 learfrog (centered) | hrtl—hr-1==2ALF7 3 C%ldllt)!onally stable No change Moderate aceeleration | No change
~ <
2 Euler-backward h*—hr=AtFr 2 | Conditionally stable Moderately selective Large acceleration None
hrrl—phr=AtF* (2 )] damping
. Al ies . .
w | 3 modified Euler- h*—hf=3t Fr 2 | Conditionally stable Highly selective damping | Moderate acceleration | None
> backward B AL B (h< 2
i hrtl—hr=AtF**
2 4 leapfrog-trapezoidal | A*—hr-1=2AtFr 3 | Conditionally stahle Little damping Little error Very effective damping
A /% (in particular of me-

E hrt—hr==- (F*+F7) 62 teorological wave)

5 leapfrog-backward | A*—hr-1=2A1F" 3 | Conditionallystable Moderately selective Moderate aceeleration | Damping

Rril—pr=at F* 4<0.8) damping

The equation, for which the iterative methods were
applied, is the same as (2.5). f=n/9 (hr.”') was assumed.
Hence, the period of oscillation is 18 hr. As a starting
value, w’=u"=1 was given for Methods 2 and 3. For
Methods 1, 4, and 5, it is also necessary to give the value
of w at a time-level nearest to the initial, i.e., w' or w™,
to start the calculation. If we estimate w' from «° by a
modified Euler method which we used to start the calcula-
tion by Method 1 in figure 2.5, we cannot detect the
existence of computational mode. In order to force a
large initial amplitude of the computational mode the
integrations with Methods 1, 4, and 5 were begun with

w'=u’. TFigure 4.2 shows the predictions of % in the case
of At=1 hr. For this case we have b=2=(At)/(period)=
0.35. Omn the other hand, the ordinate values against this

value of b in figure 4.1 suggest damping of the physical
mode of oscillation by Methods 2, 3, and 5, the consider-
able damping of the computational mode by Method 4
(82 percent at each step) and by Method 5 (63 percent),
the conservation of both modes by Method 1, and the
fictitious increase of phase velocity by Method 2. Tt is
seen that the features ol the curves in figure 4.2 are the
same with these suggestions. The predictions made with
At=2 hr., for which the corresponding value of & is 0.70,
showed the fast damping of the computational mode by
Method 4 and slow damping by Method 5. In case of
At=2.7 hr., for which 6=0.94, Method 2 yielded a very
slow damping of the physical mode and a large fictitious
decrease in period of oscillation; Method 3 rapidly damped
the oscillation; Method 4 damped the computational mode;

and the computation by Method 5 became unstable. All
of these coincide quite well with what we observed in
figure 4.1.

5. SUMMARY

The main properties of the methods considered in
sections 2 to 4 are shown in table 5.1.

The properties of Method A (two time-levels, backward
implicit method), Method B (two time-levels, trapezoidal
implicit method), Method C (two time-levels, partly
implicit method), and Method 1 (three time-levels,
leapfrog method) have been discussed so far, more or less.
They are confirmed in section 2, where the characteristics
of these methods in case of wave equation in simple form
are described. In section 3, we consider these methods
especially from the viewpoint of their applicability to the
integration of the primitive equations.

Methods A and B are computationally absolutely
stable. In the use of these methods, the amount of
computation required to solve the non-trivial equations
for the quantities at a new time-level and the decrease
of accuracy of the predicted low frequency wave should
be weighed against the advantage of a long time interval
in a marching process. The amplitude of any wave will
not be changed with Method B. Method A results in a
damping which increases with the increasing value of the
parameter b. (b=ycAt if a spectrum method is used in
treating a wave. When we use a centered difference grid
method, b=ve¢’At where ¢’ is a modified phase velocity.)
The property of selective damping of wave is useful for
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reducing the noise in the solution of the primitive equa-
tions.

Method 1 has no damping effect for either physical or
computational modes.

The characteristics of Method D (three time-levels
partly implicit method) are made clear in sections 2 and 3.
It yields an effective damping of gravitational waves.
It is because of this that, despite a slight computational
instability of this method, we used it in section 3. Method

D may be used with a relatively long time interval, say

one hour, for the short-range integration of the primitive
equation,

The numerical properties of Methods 2, 3, 4, and 5
(iterative methods) are investigated in section 4. The
condition of computational stability for Methods 3 and 4
is somewhat weak as compared with Methods 1, 2, and 5.
By utilizing the characteristic features of Methods 1, 3,
and 4, we may synthesize a scheme more desirable than
any of its parts. Namely, after using Method 1, Method
4 is employed for a few steps to eliminate the computa-
tional mode, then Method 3 is applied to damp the noise
before returning to Method 1, and so on.

APPENDIX 1.—FICTITIOUS CHANGE OF THE PHASE
VELOCITY DUE TO THE USE OF CENTERED SPACE
DIFFERENCES

If computations are made accurately of an advection
term and the right hand side of (3.1), the phase velocities
of three waves, ¢, ¢z, and ¢;, are given by (3.3). We will
call these analytical phase velocities.

Let us estimate the horizontal gradient of some quanti-
ties, say z(z), by a finite difference calculation. If
z2(x)=2, exp [w(+tx)] is assumed, it follows that
dz/da=1vz. The corresponding finite difference formula
for a usual three-point method is given by

z(x—{—A)z—Az(a:—A) i sinAvA (),

where A is the space-increment. The similar one for a

five-point method is

8-z2(x+A)—8 z(z—A)—z(x+24) +2(x—24)
12-A

(sm vA) - (4—cos vA) A
3A )

The above two finite difference formulas take a common
form, namely 02z/0x~1iv'z instead of analytical value vz
Now, with the use of the above expression for a hori-
zontal gradient and an assumption of an equal wave
length for u, », and ¢, (3.1) is modified as follows:
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gTu—[—iu’Uuzfv—iu’qs ]
@Jriy'm:—fu (3.1-A)

a¢+%v’U¢ -fUv—1iv’ gHu

The solutions of (3.1-A) are given by
N
(o)
—<— )

3 w’
v=1 9, Vi=; 7 J 2 [

i=1 f2_<”7 U—d) »2

¢:=23S; exp tw{pA—cit)

(3.2-A)

where p is the integer and v=2x/(nA), where n (integer
=>2) is a number of grid points within a wavelength, i.e.,
in other words, nA means wave length. »’ may be written
in terms of 7 and A,

v’ =% sin —2n1 for the three-point metheod -
Vl—SiA sin ==~ (4— cos ——) for the five-point method.

In (3.2-A), ¢i(1=1, 2, 3) are phase velocities of three
component waves in a system of linearized equations
(3.1-A) and should be obtained as solutions of the equa-

tion
(— —c) —gH ,2<—U c>+20—0

We shall call these phase velocities modified phase veloci-
ties. It is seen, from the comparison of the above equa-
tion with the corresponding one in section 3, that ¢’
is the same with ¢ in the case where U and gH are modified

’ 1\ 2
to V; U and <iv—> gH, respectively. As»’/yis nearly equal

to one for large n, the fictitious change of phase velocities
due to space finite differencing is small for relatively long
waves. On the contrary, »'/v is smaller than about 0.9
for n<8 (in the case of the three-point method) or for
n<5 (five-point method), and an error in the phase
velocity of waves corresponding to these n becomes large.
An important formula which is derived from (3.1-A)
and (3.2-A) and is equivalent to (3.4) is

bh,

Sty Uhi=—i(ei—v'U)hs. (3.4-A)
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TaBLE A.1.—Ratio (c.'/ci) of the modified phase velocity (c.') to the
analytical phase velocity (ci) and vei’, in case of a three-point
Jfinite difference scheme with a grid size of 250, 500, and 1000 km.
n is the number of grid points within a wavelength, i.e., nX (grid
size) =wavelength. Assumed values of U, gH, f are the same as
those shown in table 3.1.

7 a’fa - c’/ca ca’fes ” v vey {ves’|
%) (%) (%) (sec:t) (see.™) (sec.™)
250-km. grid
2 0.0 2.5 35 - 1.028 10~ 1.028 104
3 41.0 41. 5 4151 1.713 10~ 1.159 10-3 8.110
4 63.4 63.8 63.8 | 1.984 1.337 9.352
5 75. 4 75.8 75.8 | 1.885 1.272 8. 898
6 82.4 82.8 82.8 | 1.713 1.159 8. 110
7 86.8 87.2 87.2 1 1.543 1. 048 7.331
8 89.8 90. 2 90.2 | 1.391 9.492 10—t 6. 640
9 91.8 92.2 92.2 | 1.260 8. 643 6. 046
10 93.3 93.7 93.7 | 1.148 7.918 5. 540
20 08.1 98.5 98.5 | 5.688 10— 4.287 3.001
40 99. 4 99.7 99.7 1 2.338 2.398 1. 698
500-km. grid
2 0.0 4.9 7.0 ... 1.028 104 1.028 10~
3 39.3 42.1 42.1 | 8295 10~% 5.890 4.121
4 62. 5 64. 3 64.3 | 9.680 6. 766 4.734
5 74.5 76.3 76.3 | 9.175 6. 445 4. 510
6 81.6 83.3 83.3 | 8.295 5. 890 4.121
7 86.0 87.6 87.7 | 7.417 5.342 3.739
8 89.0 90. 6 90.6 | 6.633 4. 859 3.400
9 91.0 92.6 92.6 | 5.952 4.445 3.112
10 92.5 94.1 94.1 § 5.365 4. 094 2. 867
20 97.5 98.8 98.8 | 2.204 2.376 1.678
40 99.1 99.8 99.9 | 6.615 10— ' 1. 556 1.153
1000-km. grid
2 0.0 9.8 14.0 | ... 1.028 10~ 1.028 10~
3 36. 2 4.1 44,3 { 3.681 105 3.122 2.191
4 50.2 65.9 66.0 | 4.416 3. 538 2. 480
5 71.6 77.8 77.9 | 4.149 3. 385 2.374
] 78.8 84.7 84.8 | 3.681 3. 122 2.191
7 83.4 89.0 89.1 | 3.213 2. 864 2.012
8 86.5 91. 8 92.0 | 2.795 2.639 1. 857
9 88.7 93.7 93.9 { 2.434 2.448 1.727
10 90. 3 95.1 95.3 | 2.124 2. 288 1. 619
20 96. 5 99. 2 99.4 | 6.439 108 1.547 1.148

The ratio of modified phase velocity to an analytical
one for some specified cases is shown in tables A.1 and
A2, yc;is a useful parameter for examining properties
of a time integration scheme of (3.1-A). These values
are listed in the same tables also.

APPENDIX 2.—SOLUTIONS OF
M- (A4 BN (C+-Di) =0
In sections 2 and 4 we had to solve the above type

equation frequently. A, B, C, and D are real values and
1=+4/—1. The two solutions are given by

4 1
—f <y~ [Pz T2y1/2
N ( Sy (BHVETD) )

B 1 I .
+( 2+2\/§ (R_*_\/Rz_*_lz)l/z)’t
- —é—%(l%—i—xm)”"’)
AL AR S
2 2\[2_(R+\/R2+12)1/2
where Pt B 40
I--24AB—4D.
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TaBLE A.2.—Ratio (¢’i/c;) of the modified phase velocity (¢’;) to the
analytical phase velocity (¢;) and wc';, in the case of a five-point
finite difference scheme with a grid size of 250, 500, and 1000 km.

Refer to table A.1 for further explanation.

n c'/el co'/ca el ver! 1724 |ves]
%) (%) (%) (sec.™) (sec.”1) (sec.™)
250-km. grid
2 0.0 2.5 35| e 1.028 104 1.028 10~¢
3 61.8 62.1 62.1 2.585 10— 1.734 10-3 1.213 10-3
4 84.4 84.9 84.9 2. 654 1779 1.245
5 93.0 93.2 93.2 2. 326 1. 563 1. 093
6 96. 4 96. 5 96.5 2.005 1.351 9. 448 10~4
7 98.0 98.1 98.1 1. 741 1.178 8. 239
8 98.8 98.8 98.8 1. 531 1. 040 7.278
9 99, 2 99.3 99.3 1. 362 9.304 10~¢ 6. 509
10 99. 5 99. 5 99. 5 1. 225 8. 411 5. 884
20 100. 0 100.0 100. 0 5.796 10-5 4.351 3. 046
40 100. 0 100. 0 100.¢ 2.352 2.406 1. 698
500-km, grid
2 0.0 4.9 70| - 1.028 10~ 1.028 104
3 61.3 62. 4 62. 4 1.274 10—¢ 8.732 6. 109
4 84.4 85.1 85.1 1. 309 8. 958 6. 267
5 92.8 93.3 93.3 1.143 7.882 5. 515
6 96. 3 96. 6 96. 6 9.787 10-5  6.833 4. 781
7 97. 9 98.1 98.1 8.439 5. 981 4.185
8 98.7 98.9 98,9 7.358 5. 306 3.713
9 99.2 99.3 99,3 6. 483 4. 767 3.337
10 99. 4 99.5 99.5 ) 5764 4.333 3.033
20 100. 0 100.0 100.0 2.351 2. 405 1. 698
40 100. 0 100. 0 100.0 | 6.674 10~ 1.559 1.155
1000-km grid
2 0.0 9.8 140 | . ____ 1.028 10-¢ 1.028 104
3 59.3 63. 4 63.5 6.023 10~ 4.488 3. 142
4 83.2 85.7 85.7 6. 205 4. 508 3.219
5 92.0 93.7 93.7 5.335 4. 076 2.855
6 95.7 96.9 96.9 | 4.472 3.571 2. 503
7 97.5 98.3 98.3 | 3.758 3.165 2.220
8 98. 4 99.0 99.0 3.182 2. 846 2. 000
9 98. 9 99. 4 99.4 2.716 2. 596 1.828
10 99. 3 99. 6 99. 6 2. 335 2.397 1. 692
20 99.9 100. 0 100. 6.669 10~ 1.559 1.155
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