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ON THE USE OF IMPLICIT AND  ITERATIVE  METHODS  FOR  THE TIME INTEGRATION 
OF THE  WAVE  EQUATION 

used only once, nrc also described. 

1. INTRODUCTION 

The very  short-period  oscillations  inevit,ably  undergone 
by  any meteorological quantity  predicted  by  a  system of 
primit’ive  equations are principally  noise, if an  atmospheric 
model is designed so as to  forecast  a  large-scale and slowly 
moving  meteorological  wave. The noise  appears  as  high- 
frequency  gravitational waves. In  this  paper  the  words 
“gravitational wave” will be used in  this sense. 

It is  necessary to  suppress  the noise. Otherwise, an 
important meteorological  wave  can  be  masked by  it. 
The problem of initia.lization of data  has been  st,udied to 
find  a  way to reduce the  amplitude of noise (e.g., Hinkel- 
mann [4], Phillips [7]). This can be  att,ained by an 
appropriat,e  adjustment  between  the fields of wind and 
pressure.  However, the  control of noise which may arise 
after t.he  initial  time  has  not  yet  been  achieved.  This 
problem  is  presumably  serious  when  a  model of the moist 
atmosphere  is  dealt with or when the influence of orography 
is  taken  into consideration.  Namely, if a  rapidly  change- 
able process such  as the release of latent  heat  due to  
condensation of water  vapor is included  without  care in 
a prognostic  equation, the  maintained  adjust,ment between 
the two  fields will be  destroyed  and  noise will be  excited. 
Similarly, the  motion which is forced by  mountains is a 
source of noise too. In  addition, noise will be  amplified 
if the proceduye of numerical  integration of the  primitive 
equations does not  satisfy  the  condition  for  computational 
stability. In the case cf tlhe  “leapfrog”  method,  which 
is  widely  used and  is also  called the cent,ered-difference 
method,  this  condition  places  an  upper  limit on the t,ime 
interval of the marching process. The  time  interval  thus 
specified is very small  as  compared with  the  characteristic 
time of the meteorological  wave. 
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On the  other  hand,  it  has been Icn01vn that a  stable 
integration of wave  equat,ions  can  be made  without  any 
restriction  on  the  time  interval by making use of implicit 
methods  (Richtmyer [lo]). Furthermore, it is possible 
to establish an implicit  scheme  which  causes  damping of 
the wave. The degree of this damping effect differs with 
the period of the wave, just as  finite  differencing in  space 
has some selective  properties for waves  with  different 
scales. Consequently, the difficulties associated with  the 
occurrence or the growth of noise may be  overcome to  
some degree with  an implicit  method. Many implicit 
schemes have been  discussed;  however  those to  be  con- 
sidered  in this  paper  are  the  relatively simple  ones. The 
purpose of this  study is to  investigate the numerical 
properties of these schemes  when they  are used for  inte- 
grating the wave  equation. In  particular, consideration 
will be given t o  how high-frequency  waves  behave  when 
a  large  time  interval is taken and how selective the 
damping of the wave  is  with  period. 

The discussions in section 3 relat.ive to t,he  applicability 
of implicit  methods to  the  integration of the  primitive 
equations  are  based on a  system of linearized  equations 
wit,hout  viscosity. The  actual  quadratic  nature of t,he 
equa.tions,  from which arise  problems of nonlinear  in-. 
stability  (Phillips [SI) and of the interac.tion  between 
meteorological  wave and noise which reduce  the  accuracy 
of the  prediction of the former  wave, will not  be considered 
in this  paper. 

A few articles  concerning the use of implicit  methods 
have  been  published in  Russian  journals  (e.g.,  Tseng 
Ch’ing-ts’un [ 121, Bortnikov [ 11, TurianskaB [ 111). The 
computational  instability of one of these  methods will be 
pointed  out. 

The implicit  methods  require one to  solve a non-trivial 
equation for the values a t  a new time  level. One such 
method is an  iterative procedure  (e.g.,  a  trapezoidal 
implicit  method  with an iterative scheme  used by Uusitalo 



34 MONTHLY  WEATHER  REVIEW Vol. 9 3 ,  No. 1 

[13] and Veronis [14]) .  Generally  speaking, an iterative 
method  consists of obtaining  a  tentative  vnlue by a  pre- 
dictor  and  correcting it recursively by a correct,or. In 
section 4 ,  methods  in which a  corrector is used only once 
will  be presented.  These  methods  have a property ol' 
selectively  damping the wave  solutions.  One of thenl, 
which will be referred to  in this  paper  as  the  Euler- 
backward  method,  is  being used for t8he  time  integration 
of a  general  circulation  model at  the University of Cali- 
fornia, ];os Angeles. Recently,  the  integration of the 
primitive  equations  has been done  with the so-called 
improved  Euler-Cauchy  method  (Grammeltvedt [3] ) .  
Eliwssen [2] has described the  built-in selective  damping of 
this  method. It should be remarked that this  property 
is  not derived  from the finite  differencing  in  time, but 
results l'rom non-centered  finite  differencing in  space. In 
this  respect, it is  different in  quality  from  the selective 
damping  to be discussed  in this  paper. 

If more than two time  levels  are wssocitked with  a scheme 
of integration for equations of the first  order,  comput,a- 
tional  modes will appear which may give  rise to  instabili- 
ties in  numerical  integration. Some methods  can elimi- 
nate or damp  this fictitious  mode  (e.g.,  Miyakoda [a], 
Phillips [9], Lilly [ 5 ] ) .  It seems that  the leapfrog- 
trapezoidal  method  discussed  in  section 4 is  very useful 
for suppressing it. 

2. PROPERTIES  OF IMPLICIT SCHEMES AND THE  LEAP- 
FROG  METHOD IN THE TIME INTEGRATION  OF  THE 

WAVE  EQUATION 

The  equation for  a quantity, h, which  propagates ns R 

sinusoidal  wave does with  wavelength, %, and plmse 
velocity, C, is 

"_ bh ivch bt - 
where 

The advection of 
t,he  right-hand side 

the  quantity  is  accurately shown  by 
of (2.1). When we use :I spectrum 

method,  in which a wave  is  represented by functions  and  a 
spnce derivative is obtained  analytically, a,n estimation of 
t,he  advection is accurate. In the following  discussions, 
we assume that  the advection  takes an accurate  value, 
unless we mention  especially  finite  differencing in space. 
This will make  the  properties of time  integration schemes 
clew. Accordingly, the  results of the investigations  can 
be  applied to  the schemes in which  a spectrum  method, 
e.g.,  a  Fourier series,  is adopted. If a  grid method  is used 
to  compute the space  derivatives, the  tendency  equation 
will be  changed. In case of the centered  space  differences, 
however, the change  in (2.1) is only  a  modification of phase 
oelocity.  Therefore, we can  apply  the  results t o  be ob- 
tained  also to  the schemes  with  centered  space  differences, 
if a modification of (2.1) is  taken  into  consideration. 

TWO TIME-LEVELS SCHEME 

We consider the cases  where two time-levels, T and 
T+ 1, are used in  integrating (2.1) numericw.lly and. the 
scheme o f  computation  takes  the form 

hr+ l -hr=- i cyhr -k1- i  OhT (2.2) 

where cy nt1d p are coefficients at  our  disposal under  the 
condition a+p=vc(At). At is the  time  interval between 
two  time-levels. The so-called  amplification matrix of 
(2.2) is 1(1-i~)/(1+icy)l. Then,  provided  the  magnitude 
of the eigenvalue of the above  single  element matris is 
equal to  or less than one, the scheme (2.2) is  computn- 
tiondly  stable. 

Let h=R exp i6 be  the eigenvalue. In   the case of a 
two  time-levels  scheme, there  is  only  one  eigenvalue: 
namely, no computationa.1  mode  mises out of the process 
of numerical  integration. In the above  expression of X, 
R denotes the amplifying rate, which is, of course,  ficti- 
tious. The phase  velocity o f  the computed  physical  mode 
is -6lvAt. 

When cy is zero in (2 .2) ,  a forward  time difference  scheme 
(Method 0) is obtained.  Hereafter,  an  Arabic  number will 
be used to  identify >in esplicit  luethod  in  contrast t o  an 
alpllabetic  letter for  identification of an implicit  scheme. 
The d u e s  of 6 and 12 for  a  specified \Tidue  of are 

6= tan-' (-0) 
R= (cos 6) - 1  

using the above 6, respectively. 
The  trace of the eigenvalue in  the complex  plane iLs a 

function of p is  shown in figure 2.1. As Ii! is  always 1:Lrger 
than one, this  esplicit  scheme is absolutely  unstable. It is 
known that  an explicit  scheme  is  conditionnlly stable if 
we use  noncentered,  upstream  differences  in the compu- 
tation of the space  derivatives (e.g., Richtmyer [lo]). : I n  
this case, a, conlputation scheme  hikes 2% different  form 
from (2.2). 

We  shall now discuss the properties ol' two  implicit 
schemes  for  representing (2 .2) .  

Method A (backwaul implicit method)  .-l'utting p= 0 it1 

(2.2) we have 

hr+l-k=--.i cyk+l. (2.3)  

In  this case, 6 and It for n specified value of cy ii,re 

6 = tan-' (-cy) 

R=cos 6, using the  abovc 6. 

Figure 2.2 sllows the  trace o f  h on the complex  plime. 
This  method  is absolut'ely stable  and ciiuses damping of a 
wave. In the limit of large Icy\, :I wave will be  completely 
damped  out. It is  also  seen that  the phase  difference of A 

wave at  two  time-levels  is tLt most ~ / 2 ,  i.e., below one- 
fourth of wavelength  in  either  direction. 
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I 

FIGURE 2.1.-Tracc of eigenvalue  for 
Method 0 (forward  explicit 
method).  Eigcnvaluc, h,+ihi ,  of 
the amplification matrix (single 
element) of hr+' - h r  = - iphr is 
shown on the complex plane.  For 
a given parameter p, R represents 
the  magnitude of cigcnvnlue, i,e., 
amplifying rate, and 8 is the  phase 
angle of eigenvalue. 

METHOD A 

FIGURE 2.2.-Trace of eigenvalue  for 
Method A (backward  implicit 
method).  Eigenvalue of the  ampli- 
fication  matrix of (2.3) is shown on 
the complex plane. CY is a param- 
eter.  In  the  limit of large IaI, a 
mare is  completely damped  out. 

Method B (trapezoidal implicit method) .-This scheme is 
obtained  by  putting p=a in (2.2), 

h r + l - h r = -  iahr+ - iahr. (2.4) 

In  this case, d is to  be  obtained as a  solution of 

-sin 9/( 1 +cos 3) = a, 
and R= 1. 

The  trace of X is shown in figure 2.3. This scheme is 
neutral  in  the sense that  it  neither amplifies nor damps  a 
wave. The eigenvalue for large la1 approaches -1. 
Thus,  the  phase of a  wave will be  shifted  by T, i.e., half 
a  wavelength, in one time  step if la1 is infinitely large. 

We  shall now give examples of numerical  integration 
with  the  use of the  above two  implicit  methods. A system 
of equations  admitting  only  inertia oscillations is 

bU - =j. { 
where u is an eastward mind velocity, 8 is a  northward 
wind  velocity,  and j is the Coriolis parameter.  These 
equations  are  rewritten in the form of (2.1), 

(2.5) 

where 
w=u-kiu. 

A time  integration of (2.5) was done  by  the  formulas: 

a =  - 1 

a=O 

METHOD B 

FIGURE 2.3.-Trace of eigenvalue for 
Mcthod B (trapezoidal  implicit 
mcthod).  Eigenvalue of the ampli- 
fication matrix of (2.4) is shown on 
the complex plane. CY is a param- 
eter. An amplitude of wave docs 
not  change  for  any  valuc of CY, 
since R = l  always. In the  limit of 
large IcYI, a wave is shifted by half 
a wavelength. 

and 
. At At 
. 2  2 wr+l-w+=--af wT+' -g -  wT, (Method B) 

starting  from  the given initial  value wo=uo=l, and  as- 
suming f= r /9  (hr.-l).  The period of oscillation is then 
18 hr.  Figure 2.4 shows single-step predictions of u for 
various  values of At. To use  long  time steps  in  Method 
A gives complete  damping,  i.e., ul=O; while with  Method 
B, u1=--u0="1 and d= --vo=O. Although  there exists 
no damping effect in Method B, the  error in the  phase 
velccity will make  a  prediction  meaningless if the  time 
step chosen is larger  than  about one-sixth of a period of 
the  wave. In  figure 2.5 are shown  predictions of u, in 
which Methods  A, B, and explicit leapfrog method 
(Method 1) were repeatedly used, respectively,  with a 
time  step of one hour. The  damping effect in Method A 
is clearly seen. 

The general case of (2.2) will be referred to as MethodC. 
Method C. (partly  implicit  method) .-For convenience, 

(2.2) is repeated: 

hr+l-hr=--iahr+l-iphr (2.2) 

In this case the real  and  imaginary  parts of the eigenvalue 
are 

Areat= (1-&>l(1+a2) 

A*nza,=-(a+P)l(1+aZ) 

respectively.  Accordingly,  the  magnitude of X is 
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FIGURE 2.4.-Singlc-stcp prediction of inertia  oscillation  with 

various  time  intervals (At  in hr.). ZL a t  t=At  is plotted. 
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10" 

FIGURE 2.5.--Prediction of inertia  oscillation  with A t = 1  hr. u is 
plotted. 

IXl=[(l+a') (1+PZ)I1'"~I 

The  computational  stability  condition 
fore, 

IP I  I: 1 4  

t a? 

for (2.2) is,  there- 

We use this  condition  in  section 3 where we investigate 
the  computational  stability of the two  time-levels inte- 
gration scheme in which  some terms of the primitive 
equations take implicit  form and  others  take explicit 
form. 

THREE  TIME-LEVELS  SCHEME 

Now  consideration will be  given to  the t'hree  time- 
levels  formula of the following form 

h,~+'-h-1=-i~k+1-Qk (2.6) 

We  do  not discuss  a  general three time-levels  scheme, 
but  consider  only  a  combined  form of the leapfrog  and 
an implicit  method. The amplification matrix of the 
above  formula is 

The eigenvalues of the  above  matrix  are  obtained as 
solutions (see Appendix 2) of the  equation 

(l+ia)X~+ipX-l=o. (2.7) 

METHOD 1 

FIGURE 2.6.-Tracc of eigenvalue  for  Method 1 (leapfrog  method). 
Eigenvalues of the amplification  matrix of (2.8) are  shown  on 
the complex plane. p.is a parameter.  The  right half of the 
unit circle corresponds  to  the  computed  physical  mode  and  thc 
left half to  the  computational  mode. If Ipl<2, one of the 
t,wo eigenvalues  represents the  former  mode  and  the  other 
does the  latter  mode. If lp1>2, two  eigenvalues  are  on  the 
axis of X,=O and one of them is outside  the  unit circle, Le., 
the  scheme is computationally  unstable. 

One of two  solutions  applies to a.mplification rate and 
phase  velocity of the physical  mode, and  the  other de- 
scribes  those of the so-called computational  mode.  (Note 
that  the amplification rate  and  phase velocity of the  true 
physical  mode are  unity  and c, respectively,  as  defined by 
(2.1).)  In  the analysis of X, we will use  either of the  two 
forms: X = X , + i X i  or A=R exT it?. Suffix 1 or 2 may 
be  attached  to X, R or 6 to  denote  the above-mentioned 
two  modes, if necessary. The  computational  stability 
condition  for  (2.6)  is that  both R, and Rz should  be  equal 
to  or less than one. In  the following,  a  special  case and 
the general  case of (2.6) will be examined separately. 

Method 1 (leapfrog  meth.od).-This scheme is obtained 
by  putting a=O in  (2.6): 

It is well known that, if I @ l < ! 2  

A,="P/2 

and 

and  one of I X 1 , 2 1  is larger than one. As a  consequence the 
computational  stability condition  is met if IPl<2. Figure 
2.6 shows the  trace of X. The  right half of the  unit circle 
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One of the 61,2 is out of the  above  ranges if IP l> la l .  
Vrhen a<O 

0<iY,<; 

T<&<$ 

if IPI<I.I. 

One of the 6 1 , z  is out of the above  ranges if Ipl>lal. 

METHOD  D, a > O  
I i I 

METHOD D, a < O  

FIGURE 2.7.-Trace of eigenvalue for Method D (three time-levels, 
partly  implicit  method).  Eigenvalues of the amplification 
matrix of (2.6) are  shown on the complex plane  separately 
for the cases a>O and a<O. In  each figure, the  trace  ap- 
proaches to  the  dotted  line when p-'f m.  If [p [< Ia I ,  two 
eigcnvducs are inside  the  unit circle, i.e., the  scheme is eompu- 
tationally  stable. 

corresponds  to the  computed physical  mode  and the  left 
half to the  computational  mode  when Ip(<2. If we define 
b by b=lpl/2, amplification rates, R1 and R2, and  the 
ratio of the  phase velocity of the  computed  value  to 
true one, - 8 J b  and -&/b, can  be  estimated  as a function 
of b.  These  are  illustrated  in figure 4.1. It is seen that 
the computed  physical  mode will move a little  faster  than 
the  true physical  mode. This tendency  can be recognizcd 
in figure 2 . 5 .  

Method D (par:ly implicit ,method).-The general  case of 
(2.6) will be treated  here, 

hT!"t-hY",-iCyh,7+1-i P h .  
From A=R exp ifi and (2.7) we have 

R'(COS 26-CX sin 25)"RP sin 6-1=0 

R2(sin 26+a cos 26)+RP cos 6=0. 

From these, a relation  involving R, 8, and CY is obtained, 

R2=l / ( l -a  tan 6) .  

As R is real, 6 is  undefined  within  some  ranges,  i.e. 

tan" -<6<; and  tan" -+s<6<- if a> 0 1 1 3s 
a a 2 

--<6< tan" - and--<d< tan" --"T if a<O. s 1 3s 1 
2 a 2 a 

Furthermore, it is seen that when a>O 

The  trace of the eigenvalues, in which the  parameter  is p ,  
is shown  separately  for  the  cases a>O and a<O in  figure 
2.7. Summarizing the  results, we can  conclude that  both 
R, and R2 are  smaller than one if IP I< Ia I ;  otherwise,  one 
of R, becomes larger than one. Method D is, therefore, 
conditionally  stable. 

3. APPLICATION OF IMPLICIT SCHEMES FOR EQUA- 
TIONS OF ATMOSPHERIC  WAVES 

In  this section, the problem of the  time  integration of 
the  primitive  equations  with an implicit  scheme will be 
considered by using the  results  obtained in the previous 
section. 

Equations (3.1), a  system of linearized perturbation 
equations, are derived  from the assumptions that p= 
H(y)g++(x)  and - (g/f)bH/by= U, where cp is geopoten- 
tial, H mean  height of the  atmosphere as a function of 
y, g acceleration of gravity, + perturbation of geopotential, 
f the Coriolis parameter,  and U is a  constant  zonal wind 
in the x-direction  in a rectangular  system of coordinates: 

2 + U  -=jUv-gH a+ bt bx 

Here u and v are x and y components of the  perturbation 
wind velocity.  Solutions of (3.1) are given by 

3 
u = x  ui, ut=+{ v2(U-c1) 

i= l  y- (U-c,)2v2 1 t (3.2) 

1 
J 

where v=2s/L, L is  the  wavelength, c t ( i= l ,  2 ,  3) are  the 
three  phase  velocities  and Si are  amplitudes of three 
waves. The cz should be  obtained as roots of the  equation 

(u-c)3--gu(u--c) +$ c=o. 

For  the  ordinary values of f, g, H, U ,  and v, Bhese are 
written 
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TABLE 3.1.-Phase  velocities (c,,  c2, and CQ) and vei. I n  (3 .3) ,  
U=50 m./sec., yH=8XlO4 m.2/sec.2 and f at  the 45' latitude  are 
asslcmed. 

I 

"CZ 

250 

3.131  2.095  1.465 49.83  333.4  -233.2 1000 

1.256 10-3 8.366 10-3 5.853 10-3 49.99  332.9  -232.9 
500 49.96  333.0  -232.9 6.278 lo" 4.184  2.927 

2000 

3.233 2.875  2.020 41.17  366.0  -257.2 8000 

1.550  1.053  7.364 10" 49.34  335.1  -234.4 
4000 47.46 341.6  -239.0 7.455 10-5 5.366 10-4 3.755 

16000 26.84  446.5  -323.4 1.054  1.751  1.270 
32000 11.12  663.8  -524.9 2.184 10" 1.303  1.031 

- 

c,=u+2J-; cos (:-+- 3 3  4 .)- u 1 
I I 

where €=tan" [(-4a3/27b2)-1]1/2, a=-(f2/v2)-gH, b=- 
j2U/v2 and cl,  c2, and c3 are defined to denote  the phase velocity 
of a meteorological  wave,  an  eastward-moving inertia- 
gravitational  (external)  wave,  and  a westward-moving 
one,  respectively. Table 3.1 shows e, and vci with U=50 
m. sec.", .f taken at  45Olatitude, and gH=8X 104m.' set.-'. 

TVith the use of (3.2),  (3.1) is  rewritten  as follows: 

"hi+ivuh,=-iv(c,-U)h, d t  

3 (3.4) 
h = C  hi 

i = l  

where stands for any  perturbation  quantity (ui, vi, or 
c$~) ,  a,nd the  subscript i corresponds to  those of (3.3). 
It is seen that  the form of (3.4) is  identical  with (2.1) of 
the previous  section. (3.1) can  also be  written in the 
following symbolic form, which n7ill be  used 11eren.fter for 
t,he sake of convenience, 

@=F1+F2 at (3 .5)  

where 
3'1 = - Udh/dx 

F2=the right-hand  side of (3.1). 

The problem  is, now, to do the  time  integration of 
(3.5) with  various  methods  and  to  emmine  their  character- 
istics. The names of the methocls in the following shoulcl 
correspond to  those in  section 2. 

fllethod A.-Time integration of (3.5) takes  the form 

h,rkl-p=At,F;+'+At.P;+1 (3.6) 

where 7, r+ 1, and At are two  time-levels and  the  interval 
between  them  respectively. 3';;;' means that F1, should 

b I I I ,  I I ' I  
\" , 

1.0 . 2.0 3.0 ' b  

""" -"" METHOD ----""". A 0.5 

- l.OL 

FIGURE 3.1,"The upper figure shows amplification  rate of computed 
physical  mode, R,, as a function of parameter b. b=vcAt. 
Thc lower  figure shows  the  ratio of phase  velocity of computed 
physical  mode  to  the  true phase vclocity (e) as a function of b. 
For esamplc,  suppose b = v c 4 t =  1.5. Then, if we u s e  Method 
-4, an amplitude of computed w a r e  :it a time level T+ 1 is 0.55 
times  that   at  T, and a wave lnoves with a spccd 0.66X c. If we 
use Method B, an amplitude of wave does not  change and a 
nloring  speed of computed w a r e  is 0.86X c.  

be  evaluated by using hT+l.  In this case (3.4) becomes 

&+'-&=--ivc,(At)&+'. (3.7) 

This is the  same as (2.3) with a=vci(Al) .  The amplifica- 
tion rate of hi,i.e., R,, and  a  measure of the  fictitious change 
of phase  velocity'  are  shown  in  figure 3.1 against  the 
parameter b=vci(At). From  this figure and  table 3.1, 
it is  easy to see that for  a specified wavelength  and At, 
damping of the  wave is highly  selective  for gravitational 
waves,  for  which vcf is  several  times  larger than for  a 
low-frequency  wave. This is the  merit of this  method. 
It should  be noted, however, that damping of the meteoro- 
logical  wave is also unavoidable,  however  small At may 
be.  Consequently,  successive  use of (3.6) will at  last 
cause  a  noticeable  da.mping of the lorn-frequency wave. 

1 As mentioned before, the  amplification  rate  and  phase  velocity of the  computed  mode 
are given by RI and -81/v(At) respectively,  where RI and 91 are the  magnitude  and  phase 
angle of the  eigenvalue for an amplification  matrix of (3.7).  Accordingly, -&/.ei(At)= 
-&/b is   the ratio of phase  velocity of the  computed  value to the t,rue phase  velocity. 
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As for  the error  in  phase velocity, it is large  when b is 
large. 

Method B.-Time integration of (3.5) takes  the  form 

hl+'-k=- At (Ff+'+lq)+, At  (F;+'+Zq. (3.5) 
2 i 

The form of (3.4) corresponding to (3.S) is 

which  is  equivalent  to (2.4) with a=vci(At)/2=b/2. 
I n  this case, too, the amplification rate  and  ratio of the 
phase  velocity of the  computed hi to  the  true  one  are 
estimated  and  are shown in figure 3.1. This  method is 
neutral  for  any  value of 6 .  Therefore,  amplitudes of 
both  meteorological and  gravitational waves are  to  be 
conserved,  although very small amplification or damping 
of waves may be  inevitable  in  practice  because of round- 
off error in  the numerical  computation  and  some  error 
in  obtaining kt' as a solution of (3.S). As for the error 
in  phase velocity,  those of gravita.tiona1  waves are  much 
larger than  that of the meteorological wave. As a 
consequence, it may  be concluded that, if we are  not 
concerned with  predicted  phases of gravitational waves, 
we can  make a time  step  in (3.8) somewhat  larger than 
what is  usually  required  in the explicit integration of 
the primitive  equations. It seems desirable  for  users 
of this method to apply it after  gravitationnl  waves  are 
mostly  filtered by other  methods (such as method A or 
filtering  initialization).  This  is  particularly  important 
when rt system of  nonlinetLr equations  is  treated,  where 
the  three waves are no longer  independent of each other. 

Method C.-Tseng Ch'ing-ts'un [12] formulated a 
scheme of time  integration of the  primitive equat,ion  in 
which the linear  terms of the equa,tions were written  with 
average values a t  two time-levels and  the nonlinear 
term  and  &term were to be  evaluated explicitly by using 
values  only at  the time-level 7. His  method was  used 
with  some  changes by  Bortnikov [I], with a grid size of 
300 km.  and  time  increment of 3 hr., which  is very  large 
compared  to the ra.tio of space  increment  to  phase  velocity 
of gravitational waves. It should  be  noted  that a spatial 
smoothing was made of some  terms a t  each step. 

Applying  Tseng's  idea  to ( 3 . 5 )  we hnve 

(3.10) 

Hence a corresponding  formula  for  each wave is  derived, 

This is  equivalent  to  h4ethod C in  section 2 .  From 
(2.2) and (3.11) i t  follows that 

p=v -. 
ci+u 2 

For the meteorological  wave and  one of 
tional  waves, IpI becomes  larger  t'han 

(3.12) 

the two gravita- 
1 4 ,  and IPI<bI  

holds  only  for the  other  gravitational wave.  Accordingly, 
the discussion in  the previous  section  suggests that  the 
former  two  waves will be amplified while damping is 
to be espected  for  only  one  wave. 

If we also use  finite difference representation  for  space 
differentiation  in the beginning parts of this  section, 
(3.1) through (3.5) are modified to some extent.  Some 
considerations  concerning  these are given in Appendix 1. 
In order to discuss  fairly  Tseng's method we should  use 
these modified forms. As a result we will have  different 
forms of a and p in (3.12). However,  the modifications 
of LY and P may  be small  except  for short waves with  the 
wavelength of several  grids.  Such a scheme is not  really 
computationally  stable.  This  instability  cannot be 
eliminated by reducing a time  interval. 

Method 1 .-The centered t,ilne difference schelne is  the 
one most widely used a t  present. Its form  and cor- 
responding  formula  for  each  mode of waves  are, 

hrf"-hr"=2. At (F; fF , ' )  (3.13) 

h:+'-&"="i2vci(At)h; (3.14) 

respectively.  Some  characteristics of this  method  are 
illustrated  in figure 4.1. I n  case of (3.14), a parameter 
b in  the figure is equal to Ivci(At)(. Computational 
stability  requires  that Ivci(At) 1<1. With  the use of 
typical  value of vci in table 3.1, the  nlaximum allowable 
value of At is  estimated  and  listed  in  table 3.2 as a function 
of the  shortest  wavelength  to  be  treated.  When  one 
uses a functional  form  in  representing  the  distribution 
of quantities  and deduces Fl and Fz in (3.13) by  analytical 
computations, eg.,  the use of Foulier series or a spherical 
harmonics  expansion method,  then At should be de- 
termined by  the snlallest  scale  one treats.  Or,  alter- 
natively, if the  time  interval is fixed to some  value,  all 

TABLE 3.2-The  shortest  wavelength  to be treated (L )  and  rnaximunt 
value of the time  incre?nent  (At)  which  satisJies  the  computational 
stability  condition for  ilfethod 1 .  I t  is assztnted  that a wave i s  
treated analytically, L e . ,  a spectrum  method is used.  

250 
500 

1000 
2000 1 4000 

119 

950 
1804 

(3.11) 
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waves  shorter  than  a  critical  wavelength  should be 
truncated from the  functional  form. 

The  most  troublesome deficiency in  this  method is the 
occurrence of the  computational  mode. If the  amplitude 
of this  mode  becomes  large it is meaningless to  continue 
the  time  integration. 

Method D.-This method is written as follows: 

hr+'--hr"=2.AtF:+2.AtF~+' (3.15) 

Namely,  the  advection  term is estimated  explicitly  and 
the  other  terms  implicitly.  The  corresponding  formula for 
each  mode is 

&+'-@"=-2i~(~i-U) *(At)@+"2ivU* ( A t ) h l  (3.16) 

This  is  identical  with (2.6) if we put 

( Y = ~ v ( c ~ - U ) .  ( A t )  

/3=2vU* ( A t )  
(3.17) 

If we  suppose ci= U in  (3.16), it takes  the  form of (3.14). 
If we neglect the second term on the  right  hand  side of 
(3.16),  assuming that Icil> U, then we have a form  similsr 
t80 (3.7). Hence  this  method looks favorable  from  the 
viewpoint of effective damping of gravitational waves. 
Strictly  speaking,  however,  this  method  is  not  computa- 
t'ionally stable.  This will be  explained as follows. The 
conclusion  from the previous  section  was that  the condi- 
tion of computational  stability of (3.16) is IaI>IpI. In  
the case of a meteorological  wave, a takes a small  and 
non-zero value  and  this  condition  cannot  be satisfied. 
On  the  other  hand  for gra.c.itationn1 waves, la1 is  much 

larger  than 1 / 3 1 ,  and  those waves will be  damped.  Con- 
sequently,  this  marching  scheme  cannot  be used for a 
long-range  time  integration. 

However, since the  amplification  ra.te of the met,eorolog- 
ical  wave  is  very  small,  this  method  may  be  used  in  short- 
range  integrations. A test  computation of this  kind was 
attempted  by using  a  simple  linearized  model. The 
model  adopted  is  the  same as (3.1), u=50  m.sec.-l, j is 
taken a t  45' latitude,  and  gH=8X104 m.2sec.-2. The 
wavelength of the  sinusoidal  wave we treated is 4500 km. 
To give the  initial  values of u, v, and 4, S l = l O O O  gpm., 
S2=50  gpm.  and  S3=50  gpm. were taken  in  (3.2).  Then, 
computations were repeated  with A t = l  hr.  by  the scheme 
(3.15), mere h stands for u, v, and 4. I n  computing 
@+I, we nmde a slight  change in the scheme.  Namely, 
vr was used i n s t e d  of ~ + l  for evaluating  the  first  term on 
the  right  hand  side of the  third  equation of (3.1).  Then 
substituting UT+' in  the  third  equation  from  the  first 
equation,  in which vr+l was substituted  from  the second 
equation, a one-dimensional  Helmholtz-type  equation  for 
@+l was obtained. I n  our test,,  a finit,e difference compu- 
tation  with a 300 km.  grid was used and  a  Helmholtz-type 
equation was solved by  matrix inversion.  With  the 
solution of @+l,  both ar+l  and vr+l were easily computed. 
In  this way calcu1:itions were continued  up  to five days, 
i.e., 120 t,ime steps.  In figure 3.2 the values of 4 and 
bulbx a t  x=O are  plotted  together  with  the  true  variations. 
Effective  damping of gravitational waves is  clearly  seen. 
Chm~ges  in amplitucle of the  meteorological  wave  are 
negligible so far as this  example is concerned. A rough 
estimate for our test case shows that  the amplification 
rates for the meteorological  wave is 1+0(10-3)  and 
those for gravitational  waves a,re 0.6 or  thereabout,. 

I I 1 1 I 

0 1 2 3 4 5 
DAYS 

FIGURE 3.2.-Prediction of 0 and au/dx with a system of equations (3.1). Method D was used  with A t = l  hr.  Time  variation of 4 and 
3u/dx at x = O  is shown (true  value is shown by continuous  line  and  computed  value by asterisks). 
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4. ITERATIVE  METHOD 
To adopt  an  implicit scheme in  the  time  integration of 

(3.1) requires  solving  some  equations  involving  values  a,t 
a  time-level in  advance. In  order  to  avoid  this process, 
we can  use  some  guess in  evaluating  implicit  terms  in  the 
equation.  This  idea  makes  a  computation scheme 
effectively  explicit and  similm  to  the so-called  predictor- 
corrector  method. 

We shall  again  write (3.1) in  the symbolic  form : 
bh/dt=F, where F is  equal to  the  right  hand side of (3.5). 
~hifdt=-iucihi(i=1,2,3) is an  equation for any com- 
ponent  wave  which  moves  independently of the  other  two 
waves.  This is equivalent to  (3.4). Then, it is  not diffi- 
cult to  obtain  a  fornlula  in which hT+' is  written explicitly 
in  terms of hi and h{-', for  each  scheme of iteration. In  
the following the  computation scheme written  in symbolic 
form and  the corresponding  formula  for  a  component 
wave are given  for  four  methods  (where h* is  a  value to  be 
estimated at  the first step  and h**, if necessary,  is at   the 
second; F* and F** show  values of F which a,re  evalunted 
by using h* and h**, respectively; by definition, b is  equal 
to vCi(At)): 

Method .i?-(Euler-backward iteration): 

h*-hr=At.Fr (Euler  method) 

hrf1--h7=At-F* (backward  correction) (4.1) 

hl+'=(l-"-lb"~)h: (4.2) 

Method $"Modi$ed Euler-backward  iteration): 

Ihr+'-k=At.F** (backward  correction) (4.3) 

(4.4) 

Method .4-((leapfrog-trapezoidal iteration): 

h*-""=2.AtFr (leapfrog  method) 

hr+ ' -hr=~t .$ (F*+F)  (trapezodial  correction) 
(4.5) 

Method  5-(1eapfrog-backward ,iteration): 

t h*-hr"=2.At Fr (leapfrog  method) 

hrfl-hr=At.   F* (backward  correction) 
(4.7) 

h;+'=(1-2b2)h:-J=ibh;" (4.8) 

The  characteristic  qualities of each  method are revealed by 
the eigenvalues of the amplification  matrices for (4.2), 
(4.4),  (4.6), and (4.8). In  the case of methods 2 and 3, 
there exists  only  one  computed  mode for each of the 
three  component  waves,  i.e.,  the  computed  physical  mode 
which will be  denoted  by suffix 1 hereafter. While with 
methods 4 and  5 we have  another  mode,  i.e.,  the com- 
putationa,l  mode to  be identified  by suffix 2. From  the 
eigenvalues,  estimates are  made of the amplification rate 
of ea.ch mode and  the  ratio of phase  velocity of the com- 
puted mode to  the  phase velocity to be  derived  from a 
parameter b. The  latter one is equal  to  the  analytical 
solution (3.3), if computation of F is made  analytically 
with  respect  to  space. If F is  estimated  by  centered 
space  difference  methods b is  equal t G  vc',(At) where ci' is a 
phase  velocity modified due to  taking finite  differences 
with  respect to  space. The  ratio of c: to  ci is  given 
together  with vci in  Appendix 1 for  some  cases.  Hence, if 
finite  difference methods  are used for both  space  and  time, 
( - & / a )  x (c ; /c i )  will yield the  ratio of the  phase velocity 
of the  computed  value  to  the  true  phase velocity.  Figure 
4.1 shows how R1, RB, " s , / b ,  and -&/b or - ( ~ J ~ + n ) / b  
depend on b. I t  is suggested by figure 4.1 and  tables A.l 
and A.2 in Appendix 1 that a fictitious  acceleration of 
the physical  mode by  Methods 1, 2, 3, and  5  might be 
compensated  or  even  overcompensated  by  a  fictitious 
retardation of the wave  as  a result of finite  differencing 
in  space. 

The condition  for computational  stability  is Ibl<l.O 
for Method 2, Ibj<&i for Methods 3 and 4,  and lbl< 
a,bout 0.8 for Method 5.  Consequently,  comparing  with 
the  criterion for Method 1, we cannot  get  time economy 
in computation since  iterntions  are  required. If 
b=vci.(At), i.e.,  when F is computed  analytically,  the 
a.bove criterion  gives  a  relation  between At and  the 
shortest  wavelength we can  treat, as shown  already  in 
hble  3.2.  When an  estimate of F is made  by  centered 
space  differences,  i.e.,  in the case of b=vci'.(At), the 
maximum  value of vet', which  is  usually  a  function of 
grid  size and also  depends on the  finite difference  scheme, 
determines  the  maximum  time  interval. For example, 
consider the case  given in Appendix 1 and assume that 
Ivci'. (At)l<l is a  stability  condition.  Then,  the maximum 
tolerable  value of At for a grid  size of 250 km.  is 740 sec. 
or 560 sec.,  depending  on  whether  the  three-point  method 
or five-point method is used in  estimating  the  horizontal 
gradient of u scalar field quantity. It is 1470 sec. or 
1110 sec.  for  a  500-km.  grid and 2820 sec.  or 2170 sec. 
for a 1000-km. grid. 

Figure  4.1  shows that  the selective  damping  for  gravi- 
tational waves can be  made  the  largest  by  Method 3. 
It is  characteristic of Methods 4 and  5  that  they  result 
in a high ra,te of damping of the  computational  mode, 
especially that corresponding to  the meteorological wave. 
Only Method 1 is neutral,  provided  the  stability  condition 
is satisfied.  Consequently, i t  seems a good design t o  use 
Method 1 a t  most  time, steps  but t,o utilize  some  kind of 
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FIGURE 4.1.-Amplification rate of computed  physical  mode  (the  upper  left figure) and  that  of computational  mode  (the  upper  right figure) 
are  shown  against  parameter 6. b=vcAt,  if a  spectrum  method is used  in  treating a wave.  When a centered difference grid  method is 
used, b.=vc'At.  (vc and vc' are  listed  in  tables 3.1, A.l,  and A.2.) The lowcr left figure shows  ratio of phase  velocity of computed 
physical  mode  to c (or c', if the  grid  method is used).  Ratio of phase  velocity of computational moclc to c (or c') is shown  in  the  lower 
right figure. In  three figures, vertical  scale is changed at b=0.4 .  Suppose that  6=0.5  and  Method  4 is used.  Then,  an  amplitude 
of computed  physical  mode at a time  level T +  1 is 0.99  times that  at T .  It moves  with a speed  0.99Xc, if a spectrum  method  is  used, 
or  with a speed  0.99Xc', if a centered  difference  grid  method is used.  An  amplitude of computational  mode  at T+ 1 is 0.25 times  that 
at T .  Its  moving  spced is 2.15Xc  or.2.15Xc'. 

1.0 

FIGURE 4.2.-Prediction of inertia oscillation by iterative  methods, 
with A t = 1  hr. u is plotted. u *  = u O = 1  was assumed for 
Methods 1, 4, and 5. 

iterative  methods  intermitt,ently. In doing so, the selec- 
tion  and  combination of appropriate  iterative  methods 
has t o  be  based  upon  their.particular  properties.  To use 
an  iterative scheme at  every  step  may  not  be  suitable 
for some  purposes,  since  the  effect of damping of the wave 
will accumulate  with  time.  For  example,  let  us assume 
a  wave of length 4000 km.  and  phase velocity 15 m. sec." 
Then At=20 min.  makes b approximately 0.028. The 
amplification rate of Method 2 for this  value of b is 
0.99961. Therefore,  with  the  exclusive  use of Method 2 ,  
an  amplitude of the wave will be decreased by 2.8 percent 
in one day (72 steps),  resulting  in  the decrease of kinetic 
energy of disturbance  by 5.5 percent. 

As a  test of the  iterative  methods,  the  differential 
equation  governing inertia oscillation was integrated 
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TABLE 5.1."Summary of the  properties of the  methods  studied. I n  "difference  equation", F ,  and FI represent  nonlinear  and  linear  terms, 
respectively,  and F= F1+ Fz. " N u m b e r  of time levels" means  what  is associated with  each  marching  step. I n  "computational  stability", 

retardation or acceleration  means  a  fictitious  change of phase  velocity  resulted  only from finite  diflerencing in time. 
b=vcAt i f  a  spectrum  method is used in trea1in.c a wave.  b=vc'At, i f  a  centered  diference  grid  method is used. I n  "physical  mode", 

Method  Difference  Equation  Computational  Stahility 
Number  

"" I I- I 

1 1 lcayfrog  (centered) h r + l - h , - l = Z A t F r  I I 3 I Conditionallg  stable 
@<I) 

PhysicaI Mode 

Ampli tude Phase 

-_ 

lIighly sclective  damping 

i i t t , le retardation  No  change 

Retardation 
" 

Computational Mode 

Ampli tude 

hTone 

None 

I I None 

Damping of gravity  wave  DRmping 

meteoroloaical  wave 
and weak  nmplif:iinp of 

No  change 

None Large acceleration Moderately  selective 

No change  Modcrate  accrleration 

damping 
" 

TTighly selective  damping  None  Moderate  acceleration 

Li t t le   damping  Li t t le  crror Vergef fec t iv~  damping 
(in particular of mc- 
tcorological wave) 

I 
Moderately  selectire  Moderate acceleradion Damping 

damping  -I 

The equation,  for which the  iterative  methods mere 
npplied, is the  same ns ( 2 . 5 ) .  j=.lr/9  (hr.-') was assumed. 
Hence,  the period of oscillation is IS hr. As a starting 
value, wo=uo=l  was given  for  h4ethods 2 and 3. For 
Methods 1, 4, and 5, it is also necessary to give the  value 
of w a t  a time-level nearest to  the  initial,  i.e., w' or w-l, 
to  start  the calculation. If we estimate w1 from wo by a 
modified Euler  nlethod which  we used to  start  the calcula- 
tion by Method 1 in figure 2.5, we cannot  detect  the 
existence of computational  mode. I n  order  to  iorce a 
large initid amplitude of the  computational  mode  the 
inte,grations  with  Methods 1, 4, and 5 were begun  with 
wl=wo. Figure 4.2 shows the predictions of u in  the case 
o l  At=1 hr.  For  this case we have  b=2r(At)/(period)= 
0.35. On the  other  hand,  the  ordinate values  against  this 
value of b in figure 4.1 suggest damping of the physical 
mode of oscillation by  Methods 2, 3, and 5, the consider- 
able  damping of the  computational  mode  by IMethod 4 
(52 percent a t  each  step)  and  by  Method 5 (63 percent), 
the conservation of both modes by  Method 1, and  the 
fictitious  increase of phase  velocity by  Method 2. It is 
seen that  the features of the  curves  in figure 4.2 are  the 
sit~ne  with these  suggestions. The predictions made  with 
At=2  hr.,  for which the corresponding  value of 6 is 0.70, 
showed the  fast  damping of the  conlputational  mode by 
Met,hod 4 and slow clanlping by h4ethod 5. I n  case of 
At=2.7 hr., for  which  b=0.94, h/Iethod 2 yielded  a very 
slow damping of the  physical  mode  and a large  fictitious 
decrease  in  period of oscillation; Method 3 rapidly  damped 
the oscillation; Method 4 damped t,he computational  mode; 

and  the  computntion  by  Method 5 became  unstable. All 
of these coincide quite well with  what we observed in 
figure 4.1. 

5 .  SUMMARY 

The  main  properties of the  methods considered in 
sections  2 to 4 are shown in  table 5.1. 

The properties of Method A (two  time-levels,  backward 
inlplicit  method) , &letbod B (two time-levels, trapezoidal 
implicit method),  Method C (two time-levels, partly 
implicit method),  and  Method 1 (three time-levels, 
leapfrog  method) have been discussed so far,  more  or less. 
They  are confirmed in section 2, where the characteristics 
of these  methods  in  case of wave  equation  in  simple  form 
are described. In section 3, we consider  these methods 
especially from  the  viewpoint of their  applicability  to  the 
int'egration of the  primitive  equations. 

Methods A and B are  conlputationally  absolutely 
stable. In   the use of these  methods,  the  anlount of 
computation  required to solve the  non-trivial  equations 
for  the  quantities  at a, new time-level and  the decrerme 
of accurttcy of the predicted  low  frequency  wave  should 
be weighed against the  advantage of a long  time  interval 
in a marching process. The :bmplitude of any wave will 
not  be  changed  with  Method B. Method A results  in a 
damping which  increases with  the increasing value of the 
parameter b. ( b = v c A t  if a spectrum  method is used in 
treating a wave. When we use  a  centered difference grid 
method, b=vc'At where e' is a  modified phase velocity.) 
The  property of selective  dumping of wave is useful  for 
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reducing the noise in  the solution of the primitive  equa- 
tions. 

Method 1 has no damping effect for  either  physical or 
computational modes. 

The  characteristics of Method D (three time-levels 
partly  implicit  method)  are  made clear in sections 2 and 3. 
It yields an effective  damping of gravitational waves. 
It is because of this  that, despite  a  slight  computational 
instability of this  method, we used it in section 3. Method 
D may  be used  with  a  relatively  long  time interval, sa37 
one  hour,  for  the  short-range  intoepation of the primitive 
equation. 

The numerical  properties of Methods 2, 3, 4, and 5 
(iterative  methods)  are  investigated  in section 4.  The 
condition of computational  stability for Methods 3 and 4 
is somewhat  weak  as  compared  with  Methods 1,  2, and 5 .  
By utilizing the characteristic  features of Methods I,  3, 
and 4, we may  synthesize  a scheme  more  desirable  thall 
any of its  parts.  Namely,  after using Metbod 1, Method 
4 is  employed  for  a few steps to  eliminate the computa- 
tional  mode,  then  Method 3 is  applied to  damp  the noise 
before returning t o  Method I, and so on. 

APPENDIX 1.-FICTITIOUS CHANGE OF THE PHASE 
VELOCITY DUE TO THE USE 0F.CENTERED SPACE 

DIFFERENCES 

If computatio~ls  are  made  accurately of an  advection 
term  and  the  right  hand side of (3.1), the  phase velocities 
of three waves, cl,  c2, and c3, are  given by (3.3). We mill 
call  these  analytical  phase  velocities. 

Let  us  estimate  the  horizontal  gradient of some quanti- 
ties, say %(x), by a. finite  difference  calculation. If 
z (x)=z ,  esp [iv(x+xv)1 is assumed, it follows that 
dz/bz=ivz.  The corresponding  finite  difference  formula 
for  a  usual  three-point  method is given by 

z (z+A)-z (z -A)  .sin V A  = 2  ___ 
2A A 4 x 1  , 

where A is the space-increment. The similar one for  a 
five-point method  is 

~.z(x+A)-~.z(x-A)-z(x+~A)+z(x-~A) 
1 2 . 4  

=i (sin vA)  . (4-cos vA)  
3A (x) 

The  above two  finite difference formulas take  a common 
form,  namely bz jbx=iv f z  instead of analytical vdue i v z .  

Now,  with the use of the  above expression  for  a  hori- 
zontal  gradient  and an assumption of an equal wave 
length  for u, v, and 4, (3.1) is modified as  follows: 

l i f i v ’ U v = - j u  bt 

The  solutions of (3.1-A) are  given by 

[3.1-A) 

3 C$=x &, C$i=h’i esp iv(pA-clt)  
1=1 1 

where p is  the  integer  and v=2a/(nA),  where n (integer 
2 2 )  is a  number of grid  points  within  a  wavelength,  i.e., 
in other words, n A  means  wave  length. v f  may ba written 
in  terms of n and A, 

V’ =- s ~ n  - 1 . 2n 
A n  for  the  three-point  method 

V’ =A sin 2 (4- cos 2) for the five-point  method. 3A n 

In  (3.2-A), c i ( i= l ,  2, 3) are  phase  velocities of three 
component  waves in a system of linearized equations 
(3.1-A) and should be obtained  as  solutions of the  equa- 
tion 

We shall  call  these  phase  velocities modified phase  veloci- 
ties. I t  is  seen, from  the comparison of the  above  equa- 
tion  with  the corresponding one in section 3, that cf 
is the same  with c in  the case where U and gH are modified 

to - U and - gH, respectively. As v’lv is nearly  equal 

to  one for  large n, the fictitious  change of phase  velocities 
due to  space  finite  differencing  is s~nnll for  relatively  long 
waves. On the  contrary, v f / v  is smaller than  about 0.9 
for n18 (in the case of the  three-point  method)  or for 
n 1 5  (five-point method),  and  an  error  in  the  phase 
velocity of waves  corresponding to  these n becomes  large. 
An important  formula which is derived  from (3.1-A) 
and (3.2-A) and  is  equivalent to  (3.4) is 

v f  (Y 

-+iv’Uh,=-~(vc;-v’U)h,. ah, 
bt (3.4-A) 
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TABLE A.B.-Ratio (c'i/ci) of the  modijied  phase  velocity (c'i) to  the 

analytical  phase  velocity  (c;)  and vc'i, in the  case of a five-point 
jinite  difference  scheme  with  a  grid  size of 250, 500, and 1000 k m .  
Refer  to  table A.1 for  further  explanation. 

TABLE 4.1.-Ratio  (c,'/ci) of the  modified  phase  velocity  (c,')  to  the 
analytacal  phase  velocity  (ci)  and vci', in case of a  three-point 
Jinite  difference  scheme  with  a  grid  size of 250, 500, and 1000 k m .  
n i s  the number of grid points  within  a  wavelength,  Le., n X ( 5 r i d  
size)  =wavelength.  Assumed  values of U, gH, f are  the same  as 
those shown in table 3.1. 

I1 
250-km. grid 

2 
3 
4 
5 ; 

0.0 
61.8 
84. 4 
93. 0 
96. 4 
98.0 
98.8 
99. 2 
99. 5 

100.0 
100.0 

2. 5 
62. 1 
84. 9 

96. 5 
93. 2 

98. 1 
98.8 
99. 3 
99. 5 

loo. 0 
100.0 

62. 1 
3. 5 

84.9 

96. 5 
93. 2 

98.8 
98. 1 

99. 3 
99. 5 

loo. 0 
100.0 

2.585 1o;r  1.734 10-3 1.213 10-3 
.......... 1.0% 10" I. 0% 10-4 

2. 654 1:779 1. 245 
2.326 1.563 1.093 
2.005 1.351 9.448 10-4 
1.741 1. 178 8.239 
1.531 1.040 7.278 
1.362 9.304 1 0 - 4  6.509 
1.225 8.411 5.884 

2.352  2.406  1.698 
5.796 10-5 4.351  3.046 

250-km. grid 

3 
2 

4 
5 
6 
7 
8 

10 
9 

20 
40 

1. 713 1 0 - 4  
1.9% 
1.885 
1.713 
1. 543 
1.391 
1.260 
1.148 
5.688 10-5  
2. 338 

. . . . . . . - 1. 028 1 0 - 4  
1 . 1 ~ 9  10-3 
1.337 

1.159 
1.2i2 

9.492 lo" 
1. 048 

8. 643 
7.918 
4.  287 
2.398 

8.110 
1.028 1 0 - 4  

9.352 

8.110 
8.898 

7.331 
6. 640 
6.046 
5. 540 
3.001 
1.698 

a 
9 

10 
20 
40 

93.3 
98. 1 

93. 7 93. 7 
98. 5 

99.4 99. 7 
98. 5 
99. 7 5O(tkm, grid 

2 
3 
4 
5 
6 
7 
8 

10 
9 

40 
20 

o n  4 9  7 0  
I. 274  10-4 8.732 

I. 143 7. 882 

....._._ ~. 1.028 10-4 

1.309  8.958 

9.787 10-5 6.833 
8.439 5.981 
7.358 5.306 
6.483 4.767 
5.764 4.333 
2.351 2.405 
6.674 10-0 1.559 

1.028 10-4 
6.109 
6.267 
5.515 

4 185 
4.781 

3.713 
3.337 
3.033 
1.698 
1.155 

61. 3 62. 4 
84. 4 

62.4 

92. 8 
85. 1 
93.3 

85. 1 

90. 3 96. 6 
93.3 

97. 9 98. 1 
96. 6 
98. 1 

.. - .. - . I  

500-km. grid 

3 
2 

39.3 
0. 0 

62. 5 
74. 5 
81. 6 

89. 0 
SF. 0 

91. 0 
92. 5 
97. 5 
99. 1 

42. 1 
4. 9 

64.3 
76. 3 
83. 3 
87. 6 
90.6 
92. 6 
94.1 
98. 8 
99.8 

42. 1 
7. 0 

64.3 

83.3 
76. 3 

87. 7 
90. 6 
92. 6 
94. 1 
98.8 
99.9 

8.295 10-3 5.890 4.121 
9.680 6.766 4.734 
9.175 6.445 4.510 

.__.__.. 1. 0% 10-4  1.028 10-4 

4 
5 
6 

8 
7 

9 
10 

40 
20 

98. 7 Y8. 9 
99. 2 

98.9 
99. .? 99. R 

99.4 99.5 
~~ . 

100.0 100.0 100.0 
99. 5 

100.0  100.0  100.0 

1000-km grid 
2 
3 
4 
5 
6 
7 
8 

10 
9 

20 

59. 3 
0.0 

83. 2 
92. 0 
95. 7 
97. 5 
98.4 
98. 9 
99. 3 
99.9 

w. 4 
9. 8 

85. 7 
93. 7 
96.9 

99. 4 
99.0 

100.0 
99. 6 

98.3 

14.0 
63.5 
85. 7 
93. 7 
96. 9 
98. 3 

99. 4 
99. 0 

100.0 
99. 6 

4.488 
1.028 10-4 

4.598 
4.076 
3.571 
3.165 
2.846 
2.596 
2.397 
1.559 

3.142 
1.028 10-4 

3.219 
2.855 
2.503 
2. 220 
2.000 
1.828 
1.692 
1.155 

6.615 10- 1.556  1.153 

6.023 1 0 - 5  
6.205 

4.472 
5.335 

3.  758 
3.182 
2.716 
2.335 
6.669 10-6 

_.....".. 

1000-km. grid 
2 
3 
4 
5 
6 
7 

36. 2 
0. 0 

44. 1 
9.8  14.0 

59. 2 
44.3 

71. 6 
65.9 OF. 0 
77. 8 77. 9 

3.681 10-5  3.122  2.191 
"""" 1. 028 10" 1.028 10" 

4.416 3.538 2.480 
4.149 3.385 2.374 
3 . w  3.122 2.191 
3.213 2.864 2.012 
2.795 2.639 1.85i 
2.434 2.448 1. 72i 
2.124 2.258 1.619 
6.439 1o-S 1.547 1.148 

K?. 4 
78.8 84. 7 84. 8 

RQ. n R9. 1 
8 
9 

10 
20 

SG. 5 91. 8 
.. ~ .~ ~ 

92.0 
88. 7 
90.3 

93. 7 93.9 
95. 1 95. 3 

96. 5  99.2  99.4 
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